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ABSTRACT In recent years, pose-invariant face recognition has been mainly approached from a holistic
insight. DCNNs (ArcFace, Elastic Face, FaceNet) are used to compute a face image embedding, which is
used later to perform face recognition. This paper presents a novel approach to pose-invariant face recognition
through the use of ensemble learning and local feature descriptors. The proposed method trains a base learner
for each person’s face recognition ensemble system, based on feature vectors (SIFT, GMM, LBP) extracted
from image regions surrounding specific facial landmarks. Three different classification models (SVM,
Naive Bayes, GMM) are exclusively used as base learners, and the training procedure for each of these
models is detailed. The proposed methodology includes a novel face pose descriptor referred to as the Face
Angle Vector (FAV) which is utilized by a head pose classification model to determine the pose class of a
face image. This model works together with a Base Learner Selection (BLS) block, to determine a set of
facial landmarks to extract local feature descriptors, and uses them as the input to their corresponding base
learners. Experimental results show a better performance over state-of-the-art methods using the CMU-PIE
as the testing dataset, and face poses within ±90◦.

INDEX TERMS Ensemble learning, facial landmarks, local feature descriptors, pose-invariant face recog-
nition, base learner selection.

I. INTRODUCTION
The significant role played by face recognition in real-world
applications (biometric authentication, surveillance, security
and law enforcement, health, education, marketing, finance,
entertainment, and human-computer interaction) has been
widened in the last decade, and the accuracy of the most
recent works on face recognition has revealed a relevant
improvement since standard face databases were established
for comparison at the beginning of 1990s [1], [2]. The prob-
lem of face recognition (FR) can be approached as an identi-
fication, or a verification problem. Face identification is also
referred to as the 1:N matching problem. The unknown face
is compared with all the faces in the database of known iden-
tities and a decision is made as a result of all the comparisons.
If the person is known to be in the database, the task is called
as closed-set, otherwise, it is called as open-set. On the other
hand, face verification is known as the 1:1 matching problem.

The associate editor coordinating the review of this manuscript and

approving it for publication was Senthil Kumar .

The identity of the query face is either confirmed or rejected
by comparing it with the face data of the claimed identity in
the database [2]. Face recognition has been one of the most
active research topics in computer vision for more than three
decades. Over the years, significant progress has been made
in automatic face recognition, with promising results being
achieved in both controlled and uncontrolled environments,
as well as across various types of images, including color,
thermal, and multispectral images [3]. However, face recog-
nition remains significantly affected by the wide variations
of pose, illumination, and expression often encountered in
real-world images [4], [5], [6].

Pose-invariant face recognition (PIFR) implies the prob-
lem of recognizing a person by analyzing face images of
different poses (i.e. pose variation) [1], [7]. In other words,
the identity of an unknown person is obtained by processing
a non-frontal view face image of this person. However, the
dramatic appearance changes (e.g. self-occlusion, nonlinear
variations on the visible facial texture) in the face image
caused by pose variation, make the face recognition under
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different poses a still challenging problem (especially for
pose angles beyond 45◦), as argued in recent works. The
most common setting for both the research and application of
pose-invariant face recognition is to handle the identification
problem of matching an arbitrary pose probe face with frontal
gallery faces [5]. The pose problem is also usually combined
with other factors, such as variations in illumination and
expression, to affect the appearance of face images. In con-
sequence, the extent of appearance change caused by pose
variation is usually greater than that caused by differences in
identity [5].

Many promising approaches have been proposed to tackle
the pose challenge in face recognition. These methods can
be broadly classified according to an approach taxonomy.
Ding et al. [5] proposed a taxonomy comprising two main
methodologies for PIFR. The first one is synthesis-based
methods. This method can be implemented with 2D or 3D
techniques. For 3D face synthesis a 3D Face Morphable
Model (3DMM) must be employed. On the other hand,
synthesis-free methods aim to extract pose-robust features or
transform features from different poses into a shared feature
subspace.

Another taxonomy is detailed in [1]. In this taxonomy, the
authors classify PIFR methods into 3D, and 2D approaches.
If a 3D approach is employed, it is essential to obtain 3D
face data information to normalize the pose-view (i.e. gen-
erate a frontal image from a pose-view image). This can be
accomplished by using the 3D face model for more accurate
reconstruction, or by using a 3DMM (3D Morphable Model)
to synthesize face images under new poses using the textured
3D face model. Nonetheless, if a 2D approach is utilized,
multiple-view face images are required during the learning
step to improve the face recognition accuracy on a neutral
face image database. Another option for a method under a
2D approach is to use pose normalization within the 2D
image domain. However, this technique has shown to be
computationally expensive.

Zhang et al. [8] divided the methods employed to address
PIFR into holistic methods and local methods. Holistic
methodologies [9], [10] aim to extract discriminative feature
embeddings from facial images by treating the images as
a whole. These methods still cannot perfectly address the
problem of facial pose variation, and the face recognition
performance of these holistic methods degrade when images
are captured under unrestricted environments. Conversely,
the local methods [8], [11], [12] usually consider several
facial regions or sets of fiducial points, from which features
for classification are extracted (e.g. LBP, Gabor features).

In this paper, we present a robust pose-invariant face
recognition system which exploits the concept of ensemble
learning to develop face recognition models trained with data
extracted from image regions surrounding a set of selected
facial landmarks. Themain novelty of our proposedmethod is
the way a base learner, constituting a face recognition ensem-
ble system (one ensemble per person), is trained according to

the feature vectors extracted from image regions around an
specific facial landmark. In other words, we are proposing a
link between a base learner and a facial landmark. We select
3 different classification models (SVM, Naive Bayes, GMM)
to be used as base learners exclusively. Furthermore, the
training procedure for each of these models, according to
the proposed methodology, is detailed. First, the input face
image is processed by face and facial landmark detectors.
Second, the locations of the facial landmarks are processed
according to a novel face pose descriptor referred to as the
Face Angle Vector. This descriptor is fed to a Head Pose Clas-
sification model, which returns the pose class, defined by a
finite set of pose angle ranges. Third, the predicted pose class
is utilized by a Base learner selection (BLS) block. Indeed,
this block select a set of facial landmarks to extract local
feature descriptors. Then, the descriptor of each landmark is
used as the input to its corresponding base learner. We are
proposing 3 feature descriptors (SIFT, HOG, LBP) to be
used separately. The outputs of the utilized base learners are
then combined (according to a combination rule) to compute
the ensemble decision support. The mean rule, and trimmed
mean rule are utilized independently to assess its impact on
the overall recognition performance. At the end, the identity
of a face image is obtained by choosing the ID (identity) of
the ensemble system with the highest decision support.

We evaluate the performance of the proposed methods on
the CMU-PIE database, and compare the results with state-of-
the-art methods to show a surpassing performance, especially
for face images with a large pose angle. In summary, the
contributions of this paper are listed as follows:
• We propose a face pose descriptor, called FAV. This
descriptor utilizes the 2D locations of a landmark group,
and allows to classify the face pose angle into a finite set
of pose angle ranges.

• A new base learner training, and facial landmark
description procedures are introduced in this work.
Besides, the potential of linking a base learner with
a specific facial landmark on an ensemble-based face
recognition model, is showed empirically in this work.

• We present a base learner selection algorithm. This algo-
rithm aims to reduce the computational time during face
recognition, while keeping a high recognition rate.

• The results of using 3 different feature descriptors
(SVM,Naive Bayes, GMM), and 3 different base learner
models (SIFT, HOG, LBP) are included in this work for
a further comparison.

• The current works using the CMU-PIE database for
pose-invariant face recognition employed only the
Rank-1 accuracy for assessing face identification perfor-
mance. We conduct additional experiments on face veri-
fication and identification. The TAR@FAR and Rank-N
accuracy are used as the performance metrics.

The subsequent sections of this paper are organized as fol-
lows. In Section II, we present the related work on facial land-
mark description, and ensemble learning for face recognition.
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In Section III, the proposed methodology is detailed. The
experimental results, as well as a comparison with state-of-
the-art works, are detailed in Section IV. Finally, the paper is
concluded in Section V.

II. RELATED WORK
A. WORK ON FACIAL LANDMARK DESCRIPTION
Most of theworks using local descriptors for face recognition,
obtain and process these descriptors in a traditional way. First,
a generic keypoint detector based on the image gradient is
typically employed, and feature vectors are obtained from
these points. In contrast to this approach, some works have
focused on detecting a predefined set of facial landmarks in
a face image and considering them as keypoints for further
extracting feature descriptors. These vectors are then used for
face recognition.

A methodology considering multi-scale image patches
centered at 31 landmarks (inner face), is proposed in [8]. Each
of these multi-scale patches was processed using the Weber
Local Descriptor (WLD) to obtain aWLD histogram for each
selected landmark. The authors considered these histograms
as individual histograms. They then grouped the histograms
according to the facial regions they belong to (eyes, eyebrows,
nose, and mouth), and proposed a feature fusion method to
obtain a set of fusion histograms. Both individual and fusion
histograms were used to train a KNN-based face recognition
model. To perform face recognition, these histograms are fed
to a group of KNN classifiers, and the final recognition result
is obtained by using a majority voting rule. Experimental
results were obtained on databases with small pose varia-
tion (ORL, FERET, GT), and large pose variation (LFW)
databases. Themethod achieved accuracies between 85 - 97%
on databases with low pose variability. However, it showed
a high dependency on the number of training images per
person. On the other hand, the accuracy dropped to 45% on
the LFW database.

Some other authors differ in the way they utilize land-
marks as keypoints to extract feature descriptors. Umer et al.
[13], extracted image patches around a group of selected
landmarks from a detected face image, and concatenated
them to generate a new image. The SIFT algorithm is then
applied to this new image, and the resulting feature vectors
are clustered using K-means to obtain a codebook. Later, the
codebook is used to obtain a new set of feature vectors using
Locality-constrained Linear Coding (LLC) and Spatial Pyra-
mid Matching (SPM). The face recognition model comprises
a multiclass SVM classifier, where each class represents one
subject. They conducted experiments for face identification
and verification on the IITK, CASIA-V5, LIBOR, ORL, and
Extended Yale B databases. According to their results, they
achieved an accuracy of 69.17 - 100.00%. However, they used
more than 50% of the available training images per subject.

Face recognition is not the only field facial landmark
description can be used for. Indeed, a gradient-magnitude-
based feature extraction method around facial landmarks
were proposed for a gender recognition system [14]. This

feature extraction consisted of detecting the landmark loca-
tions and computing the gradient magnitude of each color
channel of a face image at those locations. Then, a face
descriptor vector is built from these magnitude values. The
authors employed a 68-landmark scheme (the final vector had
204 elements), and a Linear SVC as the classification model.
During the evaluation of this method, the FERET database
was modified to be used for gender classification, and an
accuracy of 77.5− 83% was achieved.

The locations of a selected group of facial landmarks can
be used to generate a feature vector as well. This approach
(geometrical approach) was employed to perform emotion
recognition in [15]. The methodology consisted of locating
14 landmarks (related to the eyebrows and mouth move-
ments), on a 68-landmark scheme, and calculated the nor-
malized distances between pairs of these landmarks. These
distances comprised the elements of the feature vector.
To perform emotion recognition, a Random Forest model
was trained with the proposed feature vector computed over
156 images of the Extended Cohn-Kannade (CK+) database.
The achieved average accuracy (tested on 225 frontal images)
reached a value of 90%.

B. WORK ON ENSEMBLE LEARNING FOR FACE
RECOGNITION
Yuan and Abouelenien [16] proposed a multi-class
AdaBoost-based boosting method, called MultiBoost,
to address face recognition with imbalanced training data.
In order to recover balance among all classes (minority and
majority classes), the authors proposed a resampling strategy
(perturbation strategy) to diversify the training data according
to the smallest class size (i.e. subject). The boosting model
comprises a set of base learners trained independently on
different balanced data (eigenfaces) sets. The number of
employed base learners was obtained according to a weighted
face recognition error function. The weights employed in this
error function are updated in an iterative way, such that the
error value of the currently trained base learner is employed
to compute the error weights of the next base learner. Fur-
thermore, the error value for a given base learner determined
how much a learner contributes to the final decision (i.e. its
decision weight). At the end, face recognition is performed
by gathering the recognition results from all the base learners
and combining them using a weighted majority voting rule.
In order to obtain experimental results, the authors used
AT&T, AR, and Yale face databases and two synthetic data
sets, and simulated imbalanced training data conditions.
The results showed an improved performance under highly
imbalanced data scenarios.

Feng et al. [11] proposed an ensemble learning face recog-
nition system, which utilized 3 feature descriptors (PCA,
LBP, GIST), and combined the recognition results (based on
these features) to get a final decision. For each face image,
they created a 5-scale image pyramid (5 face images were
generated by downsampling each face image), and applied
the 3 descriptors to each image in the pyramid. Thus, 15 face
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recognition models were trained for each subject. The effec-
tiveness of the proposed ensemble identification algorithm
was proved by conducting experiments on the ORL face
database. The recognition rate of the proposed ensemble
system (97.65%) was higher than that of the results obtained
by performing face recognition using PCA, LBP, and GIST
independently (89.21%, 93.24%, and 94.84%, respectively).
Therefore, the improvement obtained by using an ensemble
learning approach was shown.

Choi and Lee [17] proposed a Gabor DCNN (GDCNN)
ensemble FR method which exploits various Gabor face
representations as inputs during training and testing phases
of a DCNN ensemble comprising several VGG-Face and
Lightened CNN as base learners. Instead of using grayscale
or color input representations for FR, they proposed the use
of different Gabor face representations (different parameters
are used for each Gabor filter) to train an ensemble of DCNNs
and to execute DCNN-based ensemble FR. The study sug-
gested that this approach can be useful for learning different
and complementary DCNN models for a given FR task. The
authors also proposed an effective decision rule called Con-
fidence based Majority Voting (CMV) as a decision rule to
combine multiple and complementary FR outputs obtained
from the proposed GDCNN ensemble, which results in sig-
nificantly enhanced FR performance on challenging face
datasets (FERET, CAS-PEAL-R1, FLW, MegaFace). The
proposed method achieved recognition rates of 93.6% and
80.09% on the FLW and MegaFace databases, respectively.

III. PROPOSED METHODS
A. FACE POSE CLASSIFICATION
The problem of finding the orientation of a human face in
a digital image is called Head Pose Estimation (HPE). This
problem involves processing a raw image containing a face
and computing its three orientation angles (yaw, pitch, roll).
HPE has been considered a crucial task in computer vision
given its potential applications on human behavior analysis,
driving safety, surveillance and VR systems [18]. In the last
ten years, this problem has been addressed using different
approaches (e.g. 2D appearance based methods, geometric
methods, regression methods, Deep learning methods) and
the performance of each proposed method was tested on
publicly available datasets (e.g. Pointing04, BIWI, AFLW,
VGGFace2) [18], [19], [20].

As the literature shows, HPE can be implemented on
two different levels. The first one is the coarse level. This
implementation level aims to identify a head pose from a
finite set of orientations (i.e. head pose classification). The
granular level conversely, returns continuous values for the
rotation angles. Thus, the head pose classification (HPC)
problem is defined as a simplified way to implement HPE.
In this problem, the number of pose classes Npose, and the
face pose representation of a face image X (Ij) are defined
at the beginning. The main goal is to train a model which
can predict the pose class y′j ∈ {1, 2, ..,Npose} given X (Ij),
such that the expression

∑
j[y
′
j = yj] is maximized. Where

yj ∈ {1, 2, ..,Npose} is the real pose label for the jth face image
and Ij is the face image [21]. The simplest case comprises
Npose = 3, where a face image is classified into a frontal or
profile face (right and left profiles) [22].

The HPC problem implies the definition of a face pose
representation. This face pose representation must convey
useful data about the face pose of a person in a digital image
such that pose classification can be carried out accurately. For
the purposes of this work, the term face pose descriptor is
employed to denote face pose representation. The methodol-
ogy employed to addressHPC determines the definition of the
face pose descriptor [18]. Some works use 3D information,
while others use 2D information to infer the pose of the
head. We are employing a geometrical approach in a 2D
environment. Thus, the face pose descriptor is defined as a
vector containing information about the geometrical relations
between a set of facial features (e.g. eyes, eyebrows, nose, lip,
cheeks) on a face image.

As was mentioned above, a geometrical approach is
utilized in the current work. Indeed, we propose a face
pose description method which processes the 2D spatial
locations of a set of facial landmarks and computes a
vector which will be used later for training and testing
purposes. This vector is called the Face Angle Vector
(FAV), and it comprises the angles between the mouth land-
marks and the eye centers. In order to compute the FAV,
the angle between two points va, vb ∈ N2 in a digital
image is computed by using the Atan2(va, vb) operation,
as defined in (1). Where atan2 is the 2-argument arctangent
function.

Atan2(va, vb) = atan2(vb[0]− va[0], va[1]− vb[1]) (1)

In the present study, a facial landmark detectionmodel [23]
with a 68-landmark scheme (Fig. 1a) is adopted, and Lm =
12 mouth facial landmarks (depicted in pink on Fig. 1b) are
considered. The location of the k thm mouth landmark on a face
image is denoted as pkm ∈ N2. The angles between the mouth
landmarks and the left eye center cle ∈ N2 are contained
in the vector θL ∈ RLm . While θR ∈ RLm contains the
angles between the mouth landmarks and the right eye center
cre ∈ N2. These vectors are defined in (2) and (3) respectively.
A graphical representation of θL[km] and θR[km], for the k thm
mouth landmark, is shown in Fig. 1b. At the end, the FAV
� ∈ R2Lm is defined in (4).

θL[km] = Atan2(pkm , cle); km ∈ {0, 1, ..,Lm − 1} (2)

θR[km] = Atan2(pkm , cre); km ∈ {0, 1, ..,Lm − 1} (3)

� =

[
θL
θR

]
(4)

As can be seen in (4), the vector � comprises θL and
θR. Then, � can be expressed in terms of these two vec-
tors as defined in (5). Some face image examples and their
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FIGURE 1. Face landmarks used for computing the FAV: (a) The employed
68-Facial landmark scheme; (b) Geometric representation of the angles
comprising the FAV.

corresponding FAVs are depicted in Fig. 2.

�[ks] =

{
θL[ks] if ks < Lm
θR[ks − Lm] otherwise

;

ks ∈ {0, 1, .., 2Lm − 1} (5)

In the proposed face pose classification method, after the
definition of the face pose descriptor (i.e. FAV), the next
step is to train a classifier which can predict the face pose
class y′ of an input image I , from a finite set of pose classes
{1, 2, 3, . . . ,Npose}, by using its FAV as input. The training
process consists of defining Npose and assigning an angle
range to each pose class. Then, a set of face images with
known yaw pose angles that vary between ±90◦ is selected.
The third step involves computing the FAV �j for each
selected image Ij and assigning a pose class value yj according
to its real pose angle value (i.e. ground truth data). The
face pose classification model is trained with all the �j as
input data, and their yj as the ground truth labels. A Linear
Support Vector Classifier (Linear SVC) is employed as the
pose classification model. The number of pose classes are
set to Npose = 3 (Fig. 2a) and Npose = 5 (Fig. 2b) inde-
pendently, to assess its effect on the overall face recognition
performance. During the testing stage of the proposed face
pose classifier, its multiclass confusion matrix metrics are
analyzed to assess the classification performance for each
Npose instance.

B. FACIAL LANDMARK DESCRIPTION
The procedure carried out for describing the facial infor-
mation surrounding a specific landmark on a face image
is defined as Facial landmark description. This procedure
is based on the description of a generic point (i.e. a pixel
comprising its intensity and location) on a digital image.
In this work, three local descriptors are considered for facial
landmark description. Each of the local descriptors employed
in this work requires the specification of a set of parameters
(summarized in Tabl. 1), which must be tuned precisely.

FIGURE 2. Sample images and their corresponding Face Angle Vectors
(FAV): (a) For Npose = 3 pose classes. ; (b) For Npose = 5 pose classes.

Otherwise, the face recognition performance might be
affected drastically.

The first local descriptor is SIFT. In this work, we do
not employ the SIFT keypoint detector. But, a generic point
is converted into a SIFT keypoint by specifying the point
location and its diameter [24]. Then, the SIFT description
algorithm is computed from this SIFT keypoint and the
result is considered as the image point descriptor. This pro-
cess is carried out by the function ComputeSIFT(), defined
in Algorithm 1. The second local descriptor is HOG. The
function ComputeHOG(), in Algorithm 1, details the steps
performed to obtain the HOG descriptor vector. First, a patch
Ipatch is obtained from the image by using the function get-
Patch(). This patch is a small region of the main image I ,
centered at the point p ∈ N2 and with a size of sp (e.g.
40×40 pixels). Then, the HOG vector is computed from this
patch, according to [25], by using the getHOGDescriptor()
function. The size of the HOG vector |fHOG| depends on its
parameters Khog, ppchog, cpbhog and also on the patch size sp,
as defined in (6).

nblocks = ⌊
sp

ppchog
− cpbhog⌋ + 1

|fHOG| = n2blockscpb
2
hogKhog (6)

The third local descriptor employed in this work is LBP.
The process for computing this descriptor is described in the
function ComputeLBP() in Algorithm 1. As for the HOG
descriptor, the getPatch() function is employed to obtain a
small region of interest in the image. Then, the LBP algo-
rithm [26], expressed as the getLBP() function, is used to
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TABLE 1. Facial landmark descriptor parameters.

compute the LBP image ILBP from the image patch Ipatch
(with Klbp = 16, and rlbp = 3). Finally, the function
getHistogram() constructs a normalized histogram, with nb
bins, from the intensity values of ILBP. This histogram is
considered as the descriptor vector using LBP.

So far, the process for obtaining a descriptor vector from a
generic point on an image has been explained. This process is
used later to compute the landmark description matrix as can
be seen inAlgorithm 1 (lines 20−26). First, a listP containing
the locations of a selected landmark set on a face image I is
obtained by using the function getLandmarkLocations(). This
function uses the landmark detection model [23] to find the
facial landmark locations, according to the above mentioned
68-landmark scheme. Then, some landmarks are selected
from the total 68 according to their indexes (e.g. 0, 1, . . . , 67).
These indexes are specified by the index list ilist.
In the second step, the landmark description matrix M

is initialized with zeros. Finally, the rows of M are filled
with the descriptor vectors of each landmark in P by
using the function computeDescriptor(), as observed in lines
23 − 25. Actually, this function is a generic notation for
the three descriptor vector computing functions defined in
Algorithm 1. In other words, depending on which local
descriptor is utilized, computeDescriptor() represents Com-
puteSIFT(), ComputeHOG(), or ComputeLBP().

C. PROPOSED ENSEMBLE LEARNING SYSTEM FOR PIFR
On a classification environment, a generic ensemble system
has three components. The first component is the set of base
learners. This set comprises single classifiers which receive
the input data (different classifiers can receive different por-
tions of the input data or all the same) and output a classifi-
cation decision value, which can be discrete or continuous
depending on the model employed for a base learner (e.g.
SVC, ANN, Naive Bayes). The second component is the base
learner training method. The methodology used for training
a set of base learners depends on the underlying approach
used to obtain a classification result from the ensemble sys-
tem (e.g. Bagging, Boosting, AdaBoost) [27], [28]. The last
component is the combination rule. The combination rule

Algorithm 1 Facial Landmark Descriptor Matrix
Computation From a Face Image
Input: A gray scale image I, landmark index list ilist
Result: Facial landmark descriptor matrixM.
Data: Descriptor parameters:
• SIFT: σsift, �sift
• HOG: Khog, ppchog, cpbhog, sp
• LBP: Klbp, rlbp, nb, sp

1: Function ComputeSIFT(I,p):
2: kp = getKeypoint(p,�sift)
3: f = getSIFTDescriptor(I,kp,σsift)
4: Return f ∈ N128

5: End Function
6:

7: Function ComputeHOG(I,p):
8: Ipatch = getPatch(I,p,sp)
9: f = getHOGDescriptor(Ipatch,Khog, ppchog, cpbhog)

10: Return f ∈ R|fHOG| // |fHOG| is defined
in (6).

11: End Function
12:

13: Function ComputeLBP(I,p):
14: Ipatch = getPatch(I,p,sp)
15: ILBP = getLBP(Ipatch,Klbp, rlbp)
16: f = getHistogram(ILBP, nb)
17: Return f ∈ Rnb

18: End Function
19:

20: P = getLandmarkLocations(I , ilist)
21: M ← 0|P|×|f | // |f | is the size of the

selected local descriptor
22: for (i = 0; i < |P|; i++) do
23: M [i] = computeDescriptor(I ,P[i])
24: end
25: ReturnM

(e.g. mean rule, product rule) defines how the outputs from
the base learner set are processed together in order to obtain
the ensemble support value. This value is employed later to
classify the input data.

In the present work, the ensemble system framework
depicted in Fig. 3a, is adopted to carry out face recognition.
In this framework, the input face image is processed to find
the face bounding box and the facial landmark locations.
In the following steps the input face image and landmark loca-
tions are processed by two different blocks. The first block
performs Face Pose Classification (FPC) as was explained
above. According to the face pose class computed by the
FPC block, the Base Learner Selection (BLS) block defines
which base learners will be used in the ensemble system.
Indeed, there is a set B comprising all the available base
learners, and only a subset T of selected base learners is
used (i.e. T ⊆ B). In this work, a base learner is linked
exclusively to a facial landmark according to the 68-landmark
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scheme. Therefore, after defining the selected base learner
subset, the BLS block also specifies which landmarks should
be described in the face image. Then, the second block
(Facial Landmark Description) receives this information and
compute the descriptor matrix from the input face image,
as detailed in Algorithm 1.

For the purpose of this work, a base learner βj,k is a model
expert in performing face recognition in a not very accurate
way. This base learner processes the feature descriptor vector
obtained from the k th facial landmark of the jth subject on a
face database (i.e. a base learner is linked to a facial land-
mark) to compute its decision support dj,k ∈ [0, 1]. The
ensemble system receives the landmark descriptor matrix,
and distributes the descriptor vectors to their corresponding
base learners, selected by the BLS block, and combines the
outputs dj,k of the selected base learners βj,k by using the
combination rule to compute the ensemble decision support
value Dj. The value of Dj indicates the probability that the
input image matches the jth subject (i.e. person) for which
the jth ensemble system was trained. We are employing the
mean rule and trimmed mean rule to compute Dj, as defined
in (7), and (8) respectively. The landmark setK , comprises all
the landmarks for a given face pose class, while the trimmed
set K ′ ⊂ K removes the landmarks whose dj,k is in the top or
bottom p%top of all the dj,k values for a given j.
In order to obtain an unknown person’s ID (i.e. to perform

face recognition), the ensemble systems trained from all the
J subjects on a face database (one ensemble system per
subject) are employed as shown in Fig. 3b. Where only the
images from the face database are used during the training and
testing of the face recognition ensemble systems (i.e. closed-
set face recognition). The ensemble decisions from all the
ensemble systems are gathered and the person ID is computed
by selecting the ID of the ensemble system with the highest
decision value. Actually, the predicted identity is called the
ensemble face recognition result JE , and it is defined in (9).
It is worth mentioning that, the ensemble face recognition
result JE is different from an ensemble decision valueDj. The
first one is the predicted ID from the input image obtained
by gathering the decision value from the ensemble systems
of all the subjects in the database. While the second one is
the probability value of the input face to match with the jth

subject.

Dj =
1
|K |

∑
k∈K

dj,k (7)

Dj =
1
|K ′|

∑
k∈K ′

dj,k (8)

s.t. K ′ is the trimmed set of landmarks

JE = arg
C

max
j=1

Dj (9)

Jb(k) = arg
C

max
j=1

dj,k (10)

According to the definition of a base learner for this work,
a model is trained for a specific landmark on a subject

FIGURE 3. Proposed PIFR framework: (a) Proposed framework for a
single subject ensemble system; (b) Proposed framework including the
ensemble system from every subject in the database. The blocks in
orange represent processes or operations while the blocks in gray
represents data or objects.

from the database. This process is called base learner train-
ing. The steps followed during base learner training depend
on the working principle of the model type used as a base
learner. Three different models are employed as base learners.
The first model is Support Vector Machine (SVM). A base
learner using SVM is trained according to Algorithm 2. First,
it obtains the ID of the subject j from the face database DB,
initializes the ground truth vector y⃗j and descriptor matrix
Mj,k with zeros, and creates a base learner object βj,k . Sec-
ond, it loops through all the subjects in the face database
DB, to fill the elements of Mj,k, and y⃗j. In order to do
this, some images I for the subject j′ are obtained (line 9),
according to a face pose angle list θlist (we employ images
from pose angles: 0◦, 67.5◦, −90◦). Each of these images I
are processed to detect the k th landmark location pk ∈ N2,
and obtain the descriptor matrixMj,k by stacking the feature
descriptors computed from points surrounding pk within a
radius r , as depicted in Fig. 4 (lines 10 - 15). Furthermore, the
elements of the ground truth vector y⃗j are modified when the
identity id ′ of the subject j′ is the same as id (lines 16 - 18).
After training the base learner model βj,k (line 23), its deci-
sion support dj,k ∈ [0, 1] represents the probability that the
landmark descriptor vector fk obtained from an input face
image corresponds to the jth subject (person). The second
model is Naive Bayes. The training procedure for this model
is the same as for SVM. However, its decision support dj,k ∈

{0, 1} just indicates whether fk match with the jth subject or
not.

The third model is Gaussian Mixture Model (GMM). Its
training procedure, detailed in Algorithm 3, slightly differs
from the one for SVM. First, the descriptor matrix Mj,k is
initialized with zeros (there is no ground truth vector). Sec-
ond, it obtains the descriptor matrixMj,k by looping through
all the subjects in the face database DB in the same way as
for SVM, except for the ground truth vector y⃗j. After train-
ing a base learner with a GMM model, its decision support
dj,k ∈ (−∞, 0] is the log-likelihood [29] that the landmark
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FIGURE 4. Descriptor matrix computing during base learner training for a
landmark in the right eye: (a) Face images of three subjects with green
rectangles depicting the regions of interest; (b) Descriptor matrices
obtained from an eye landmark pk . A circle in blue indicates the
surrounding points of the pk landmark within a radius r .

descriptor vector obtained from the k th landmark of an input
face image corresponds to the jth subject.

After performing the base learner training for each subject,
we are proposing amethod to use less base learners during the
testing stage for face recognition so that computational time
can be reducedwithout considerably affecting the recognition
performance. This method is called Base Learner Selection
(BLS), and it aims to solve the following problem: ‘‘Given
a set of available base learners and their face recognition
hypothesis, develop a method to select a subset of these base
learners in such a way that the recognition performance of
using this subset is equal or better than the performance
obtained by using all the available base learners’’. The BLS
procedure is conducted for each pose scenario (Npose), and it
is shown in Algorithm 4.

The overall recognition rate aE , the set of selected base
learners T , and the individual selected base learner accu-
racy vector α⃗ are initialized at the beginning of the BLS
algorithm. Second, 8 and 4 subjects are chosen randomly
from the whole face database and placed on the Ss and Sv
lists, respectively. Third, the individual base learner accuracy
vector α⃗s is computed by using the computeBLAccuracy()
function. This function, computes the recognition accuracy
(on the images from the subjects on Ss) of each base learner
in B, according to its face recognition hypothesis. The face
recognition hypothesis Jb(k) of the k th available base learner
is defined in (10). Where dj,k is the decision support of

the k th base learner for the jth subject. Fourth, according to
the accuracy values of the available base learners (α⃗s), the
p%top most accurate base learners are selected from B and
placed in Ts. Fifth, the ensemble recognition accuracy values

Algorithm 2 Base Learner Training Algorithm for
SVM and Naive Bayes
Input: A gray scale image I, landmark index k ,

gallery face pose angle list θlist
1: . Result: The set of trained base learners B for the

landmark with index k based on the
68-landmark scheme.

Data: Landmark neighborhood radius r
2: B← ∅
3: foreach j ∈ DB do
4: id = getID(j)
5: y⃗j← 0 // initialize label vector

with zeros
6: Xj,k← 0 // initialize descriptor

matrix with zeros
7: βj,k ← createBaseLearnerModel(id, k)
8: foreach j′ ∈ DB do
9: id ′ = getID(j′)
10: I = getImages(s′,DB,θlist)
11: foreach I ∈ I do
12: pk = getLandmarkLocations(I , {k})
13: P′ = getSurroundingPoints(p, r)
14: i = 0
15: foreach p′ ∈ P′ do
16: Xj,k[i] = computeDescriptor(I ,p′)
17: if id ′ == id then
18: y⃗j[i] = 1
19: end
20: i+ = 1
21: end
22: end
23: end
24: βj,k .train(Xj,k, y⃗j)
25: B← B ∪ {βj,k}
26: end
27: Return B

aE,s, a′E, of using Ts and T as base learners respectively, are
computed independently on the images from Ss ∪ Sv. Sixth,
T and aE are updated on each iteration (lines 9 - 18). The
function combineBL() uses α⃗s and α⃗ to change the elements
of Ts. In case an element (i.e. base learner) of T gets a better
accuracy than an element of Ts, it is exchanged. After Niter
iterations, the definitive set of selected base learners T is
returned as the result.

IV. EXPERIMENTAL RESULTS
The proposed method is implemented in Python 3 language
on an Arch Linux PC with a Core™ i7-8750H CPU and
8.00 GB of RAM. For face detection, the Google MediaPipe
model is employed. Whereas the implementation of [23] is
used for facial landmark detection.
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Algorithm 3 Base Learner Training Algorithm for
GMM
Input: A gray scale image I, landmark index k ,

gallery face pose angle list θlist
Result: The set of trained base learners B for the

landmark with index k based on the
68-landmark scheme.

Data: Landmark neighborhood radius r
1: B← ∅
2: foreach j ∈ DB do
3: id = getID(j)
4: Xj,k← 0 // initialize descriptor

matrix with zeros
5: βj,k ← createBaseLearnerModel(id, k)
6: I = getImages(j,DB,θlist)
7: foreach I ∈ I do
8: pk = getLandmarkLocations(I , {k})
9: P′ = getSurroundingPoints(p, r)
10: i = 0
11: foreach p′ ∈ P′ do
12: Xj,k [i] = computeDescriptor(I ,p′)
13: i+ = 1
14: end
15: end
16: βj,k .train(Xj,k)
17: B← B ∪ {βj,k}
18: end
19: Return B

TABLE 2. Ensemble learning system parameters.

A. DATABASES
The CMU-PIE database [30] comprises over 40 000 images
of 68 subjects. This database has over 600 images from
13 poses (variation in the head yaw and pitch angles), with
43 different illuminations (the authors used a ‘‘flash sys-
tem’’), and with 4 expressions (neutral, talking, blinking, and
smiling). In order to verify the effectiveness of the proposed
pose-invariant face recognition method, only the images with

Algorithm 4 Base Learner Selection (BLS)
Algorithm
Input: Set of available base learners B for npose pose

class
Result: The set of selected base learners T from B
Data: Face image database DB

1: aE = 0, T ← B, α⃗← 0
2: for i = 0; i < Niter ; i+ = 1 do
3: Ss = selectSubjectsDB(DB, 8)
4: Sv = selectSubjectsDB(DB, 4)
5: α⃗s← computeBLAccuracy(B, Ss)
6: Ts = selectBL(B, α⃗s, p%top)
7: aE,s = computeAccuracy(Ts, Ss ∪ Sv)
8: a′E = computeAccuracy(T , Ss ∪ Sv)
9: if aE,s ≥ a′E && aE,s ≥ aE then
10: aE = aE,s, T = Ts
11: end
12: else
13: Tm = combineBL(Ts, α⃗s,T , α⃗)
14: aE,m = computeAccuracy(Tm, Ss ∪ Sv)
15: if aE,m ≥ aE then
16: aE = aE,m, T = Tm
17: end
18: end
19: α⃗← computeBLAccuracy(T , Ss ∪ Sv)
20: end
21: Return T

ambient illumination, neutral expression and yaw angle vari-
ation (Fig. 5) are used. Thus, in this work we use 9 images
per subject with a total of 612 images.

Regarding the pose class of a face image, two versions
are considered for base learner training. The first version
consists of training the base learner set for semifrontal images
(images within a pose angle ±45◦). For this version, only
the images with a pose angle 0◦ are employed. The sec-
ond version consists of training the base learners for profile
images (images with a pose angle ±67.5◦, ±90◦). In this
case, the images with pose angles −90◦ (flipped) and 67.5◦

are employed. In summary, for each subject in the CMU-PIE
database, 3 images are employed during base learner training.

B. FACE POSE CLASSIFICATION
As it was mentioned above, two face pose classification
instances are considered in this work. The first one consists of
classifying a pose-view face according to Npose = 3 classes,
while the second one comprises Npose = 5 classes. During
the training stage, 9 images of 27 subjects from the CMU-PIE
database are utilized (243 images in total). The effectiveness
of these classifiers are assessed according to the analysis of
their confusion matrices. The results of this analysis, as well
as the face pose angle range of each class, are summarized
in Table 3 and Table 4 for Npose = 3 and Npose = 5
respectively.
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FIGURE 5. Sample images taken from the CMU-PIE database depicting
pose variation.

C. PERFORMANCE ON THE CMU-PIE DATABASE
The face recognition results on the CMU-PIE database are
mostly expressed in terms of the face recognition rate (also
called Rank-1 accuracy). We conduct additional experiments
on face verification and identification. The TAR@FAR met-
ric is used to measure the performance on face verification,
while the Rank-N accuracy is employed for face identifica-
tion [31]. The TAR@FAR value is a composed metric aiming
to find the similarity score threshold t∗ for a given FAR (False
Acceptance Rate) value kFAR, as shown in (12). This thresh-
old is then utilized to compute the TAR (True Acceptance
Rate) which actually becomes the value of TAR at a given
FAR, as defined in (13). Where U is the set of unmatched
pairs (a face image from a subject is tested with an ensemble
system trained for a different subject), S is the set of matched
pairs (a face image from a subject is tested with an ensemble
system trained for the same subject), and ds : (j, j′)→ [0, 1]
is the value of the ensemble decisionDj obtained after testing
the ensemble system for the jth subject, with a face image
of the subject j′. On the other hand, the Rank-N accuracy is
defined in (14), whereNt-match(i) denotes the number of probe
imageswith a truematch ranked at position i or better (i.e. less
than i), and Nprobe is the total number of probe images [31].

FAR(t) =
|{ds(u) ≥ t ; u ∈ U}|

|U |
(11)

t∗ = FAR−1(kFAR) (12)

TAR@FAR(t∗) = 1−
|{ds(m) < t∗ ; m ∈ M}|

|M |
(13)

Rank-N(r) =
r∑
i=1

Nt-match(i)
Nprobe

(14)

1) INFLUENCE OF THE FACIAL LANDMARK DESCRIPTOR
PARAMETERS
Each of the three feature descriptors mentioned in this work
requires the setting of a group of parameters (Table 1). Indeed,

TABLE 3. Confusion matrix analysis results for face pose classification
with Npose = 3 classes.

TABLE 4. Confusion matrix analysis results for face pose classification
with Npose = 5 classes.

we conduct additional experimental trials to evaluate the
impact of the values assigned to these parameters on the
final face recognition performance. For SIFT, σsift, and �sift
are adjusted. The patch size sp, and number of orientations
Khog are modified for HOG, while ppchog and cpbhog are
fixed. In the case of LBP, only sp and nb are modified.
The experimental results of tuning the feature descriptor
parameters are summarized in Tabl. 5, and the best value for
each performance metric is highlighted in bold. During face
verification, a considerable decline in performance can be
spotted when Npose = 3 pose classes are considered instead
of 5, with SIFT as the descriptor. The effect of varying the
descriptor parameters is mostly noticeable when employing
LBP. However, in general, the optimal results are achieved
by utilizing SIFT as the feature descriptor. By adjusting the
SIFT parameters suitably, a recognition rate of 1.000 can be
attained.

2) INFLUENCE OF THE BASE LEARNER SELECTION AND
COMBINATION RULE
As mentioned above, three types of base learners and two
combination rules are employed independently in the cur-
rent work for conducting experimental trials. Furthermore,
we consider the impact of the BLS algorithm on the face
recognition results. These experimental results are shown in
Tabl. 6. The main parameter controlling the BLS algorithm is
p%top. In Table 6 we include the face recognition results for
p%top = 80 and p%top = 100, where the best value for each
performance metric is highlighted in bold. As can be seen, the
best performance on both face verification and identification
are obtained by using SVM as the base learner, mean rule as
the combination rule, and BLS with p%top = 100. However,
when SVM is used as base learner, changes in the combina-
tion rule, or the p%top value do not generate a performance
drop during identification. Furthermore, the performance for
face verification just experienced a small setback. In general,
the use of different combination rules affects mostly the
results during face verification. On the other hand, changes in
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TABLE 5. Effect of the descriptor parameters on the face verification, and identification performance (Base learner model type: SVM, p%top= 80%,
Combination rule: Mean rule).

TABLE 6. Effect of the base learner selection and combination rule on the face verification and identification performance for different base learner
model types (Npose = 5, Descriptor: SIFT).

the p%top value do not show a considerable negative impact on
the recognition performance. This suggests that the number
of base learners per ensemble can be reduced to a certain point
without generating a large recognition performance drop.

3) TRAINING AND TESTING TIMES
The main purpose of including a base learner selection block
is to reduce the computational time during face recognition
while keeping a high recognition performance. Therefore,
besides assessing the accuracy of the proposed method, the
time employed during the training and testing stages are also
regarded as important parameters to determine the perfor-
mance of the proposed method. The training and testing time
values for SVM, GMM, and Naive Bayes are depicted in
Figure 6. The training time bar (blue bar) indicates the time
required to train a face recognition ensemble system for one
subject. The testing time is divided into two bars. The first
bar (orange bar) is the face recognition testing time with
p%top = 80. It comprises the time employed to obtain the
decision values of all the ensemble systems and process them
in order to predict the identity of the person on the input face
image. The last bar (green bar) has the same interpretation as

FIGURE 6. Computational times during training and testing according to
the base learner model and feature descriptor.

the previous one, but using p%top = 100 instead. The results
show that an ensemble systemwith SVMas base learner takes
more time during training, but the testing time remains low.
Furthermore, it can be seen that the use of SIFT as the feature
descriptor reduces the time during training and testing. Lastly,
the testing time with BLS at p%top = 80 is slightly lower than
the one with p%top = 100.

4) COMPARISON WITH STATE-OF-THE-ART RESULTS
The CMU-PIE database has been employed on several state-
of-the-art works to test the efficiency of their methods on
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TABLE 7. Detailed performance comparison of the proposed method with state-of-the-art methods for PIFR on the CMU-PIE database.

PIFR. We gather the experimental results of these works
and compare them with our results in Tabl. 7. As can be
seen, some works [1], [32], [35] just considered a pose angle
range of ±45◦ during their experimental trials. In this work,
we employ pose angles between ±90◦, and achieve a recog-
nition rate of 100% for every pose angle. Furthermore, it can
be seen that other works considering±90◦ pose-view images,
experimented a severe performance decline in their results for
images beyond the range of ±45◦.

V. CONCLUSION
In this paper, we address the pose-invariant face recognition
problem from an ensemble learning approach. One ensemble
system is trained exclusively for one person. A base learner,
constituting an ensemble system, is trained for a specific
facial landmark, according to a 68-landmark scheme. There-
fore, we demonstrate the potential of using local methods
for face recognition, with facial landmarks as the keypoints.
On the other hand, we also propose a simple, yet effective
face pose classificationmethod (a simplified version of HPE),
which aims to increase the face recognition performance by
deciding which facial landmarks should be considered for
applying local feature description. Besides, a base learner
selection (BLS) algorithm works conjointly with the pose
classification model to reduce the number of base learn-
ers while keeping a high recognition rate. Experimental
results are obtained on the CMU-PIE face database, and
show a recognition rate (Rank-1 accuracy) of 100% on any
pose-view face image within a range of ±90◦. Therefore,
the proposed method surpasses the performance of state-of-
the-arts methods, considering the CMU-PIE as the testing
database, in terms of accuracy and pose angle range.
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