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ABSTRACT We present a ciphertext-only attack on the GEO-Mobile Radio Interface-2 (GMR-2) system
for the first time. The GMR-2 is a satellite communication standard adopted by Inmarsat, a British satellite
telecommunications company that offers global mobile services. The best publicly known attack on GMR-2
is a known plaintext attack called the inversion attack, proposed by Hu et al. in 2018. It recovers the 64-bit
session key in 20 milliseconds when one keystream frame (15-byte) is available. Our contributions are
twofold. First, we improve the previous inversion attack using a novel approach, pre-filtration. With our
improvement, we can recover the session key in 4.5 milliseconds and 0.62 milliseconds using one and two
keystream frames, respectively. Second, we propose a practical ciphertext-only attack on the GMR-2 by
exploiting a vulnerability in the CIPHERINGMODE COMMANDmessage type. We find that this message
type only has 211 degrees of freedom despite being transmitted in a 184-bit format. Additionally, we find
that two or more keystream frames can be derived from a single message in four of the six channels through
which this message typemay be transmitted. Assuming the CIPHERINGMODECOMMANDmessage type
is transmitted using one of these four channels, we can iteratively guess the message and conduct a known
plaintext attack to recover the session key. Thanks to the speed improvement achieved by our pre-filtration
method, our ciphertext-only attack can recover the session key in 1.3 seconds.

INDEX TERMS A5-GMR-2 stream cipher, ciphertext-only attack, cryptography, Inmarsat, GMR-2 satellite
communication system.

I. INTRODUCTION
People in areas where terrestrial communication systems
are unavailable can communicate using satellite communi-
cation systems, which can offer mobile services regardless
of regional limitations. They can cover sparsely populated
areas and harsh environments, such as the ocean, desert,
and mountainous areas. Satellite communications typically
use the GEO-Mobile Radio Interface (GMR) standard from
the European Telecommunication Standards Institute (ETSI).
The GMR is derived from the Global System for Mobile
Communications (GSM) global cellular standard [1] and has
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two variants: GMR-1, adopted by Thuraya, TerreStar, and
SkyTerra, and GMR-2, adopted by Inmarsat

The official standards exclude ciphers’ specifications used
in the GMR-1 and GMR-2. A5-GMR-1 and A5-GMR-2,
stream ciphers used in GMR-1 and GMR-2, respectively,
were disclosed by Driessen et al. in 2012 through reverse
engineering [2], [3]. Because satellite communication sys-
tems are inherently vulnerable to eavesdropping, the use
of robust ciphers is required to ensure data confidentiality.
However, several studies have identified the weaknesses of
these ciphers and attacks on them.

Except for the polynomials for internal linear feed-
back shift registers (LFSRs), A5-GMR-1 and the A5/2
stream cipher used in GSM are structurally identical.
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TABLE 1. Comparison of previous attacks with ours.

Briceno disclosed the A5/2 specification through reverse
engineering [4]. Goldberg et al. proposed the first attack on
A5/2 [5], and Barkan et al. presented a practical ciphertext-
only attack [6]. Driessen et al. proposed a ciphertext-only
attack on A5-GMR-1 using Barkan et al.’s attack [2], and this
attack has recently been significantly improved in terms of
time, data, and memory complexity by Lee et al. [7].

A5-GMR-2 has completely different structure from A5/2.
Each of the two parts of A5-GMR-2 selects one byte from the
session key in every clock. Driessen et al. proposed a known
plaintext attack that uses the possibility of colliding these two
bytes [2]. Their read-collision based attack reduces the size of
the brute-force space from 264 to 210 when 14-20 keystream
frames are available.1 Given 4-5 keystream frames, the brute-
force space can be reduced to 218 when the time-data tradeoff
is used. Li et al. proposed the dynamic guess-and-determine
attack, a low-data complexity attack, which reduces the brute-
force space to 228 using one keystream frame [8]. The best
publicly known attack on A5-GMR-2 is the inversion attack
that Hu et al. presented [9]. The inversion attack has three
phases: table generation, dynamic table look-up, and verifi-
cation. Candidate keys are reduced during table generation
and dynamic table look-up phases, and during the verification
phase, brute-force search is used to identify the correct key.
According to [9], the inversion attack uses one keystream
frame and takes approximately 20 milliseconds to recover the
session key.

This study examined the GMR-2 system’s security and
demonstrated a practical ciphertext-only attack on it. Our
contributions are twofold. First, we added a new phase called
pre-filtration between the table generation and dynamic table
look-up phases to enhance the inversion attack of [9]. The pre-
filtration phase requires negligible time and accelerates the
dynamic table look-up and verification phases. Therefore, our
improved attack incorporating the pre-filtration phase takes
4.5 milliseconds and 0.62 milliseconds on average using one

1The length of one keystream frame is 15 bytes.

and two keystream frames, respectively. This demonstrates
that our improved attack is 1.6 and 11.5 times faster than
the original inversion attack, respectively, because our imple-
mentation of the previous inversion attack takes 7.2 millisec-
onds to recover the session key with one keystream frame on
average.

However, execution time may not provide a reliable com-
parison because it depends on how the attack is implemented
and the environment in which it is run. To demonstrate the
improved performance, we present two additional metrics
that are independent of the execution environment: the total
number of vertex visits because a graph traversal is a pri-
mary process for the pre-filtration and dynamic table look-
up phases, and the size of the brute-force search space for the
verification phase. Table 1 presents the comparison of our and
previous works based on these metrics. Our improved attack
using one keystream frame requires 2.8 (21.5) times fewer
vertex visits than the previous inversion attack. Our improved
attack using two keystream frames requires 74 (26.2) times
fewer vertex visits and has a brute-force search space that is
12 (23.6) times smaller than the previous inversion attack. Our
table generation phase and the previous inversion attack are
identical and require negligible time. Additionally, we found
that 2.75KB ofmemory is sufficient to run the previous inver-
sion attack, while [9] indicated that 6 KB is required. Pre-
filtration requires an additional 2.5 KB of memory, resulting
in a memory complexity of 5.25 KB for our improved attack.

Second, we present a practical ciphertext-only attack on the
GMR-2 system. Our analysis of the GMR-2 standards shows
a vulnerability in the CIPHERING MODE COMMAND
message type [10], [11], [12], [13]. This message is sent in a
184-bit format, with 173 of the bits being inferable, limiting
the degrees of freedom to 211. According to the standards,
the CIPHERING MODE COMMAND message is sent over
one of the six channels, but the information provided cannot
determine the specific channel used. For each of these six
channels, we determined the number of keystream frames
that are derived from a single plaintext. This derivation is
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typically intuitive, but the diagonal interleaving of GMR-2
makes it unusual. Some frames are associated with multiple
plaintexts because the diagonal interleaving mixes frames
from different plaintexts during channel coding. According
to our analysis, we cannot derive any keystream frames from
a single plaintext in two of the six channels. In the remain-
ing four channels, we can derive two or more keystream
frames from a single plaintext. If the CIPHERING MODE
COMMAND message is sent over one of these four chan-
nels, we can perform a ciphertext-only attack by guessing
211 possible plaintexts and conducting our improved known
plaintext attack. Our attack outputs the session key only if
the attack is conducted using the correctly guessed plaintext;
otherwise, it outputs nothing. This enables us to identify
the plaintext corresponding to the given ciphertext, which
enables a ciphertext-only attack. The required time is equal
to the time required to repeat the known plaintext attack 211

times. Therefore, our ciphertext-only attack can recover the
session key in 1.3 seconds, thanks to the speed improvement
achieved by pre-filtration. The complexity of our ciphertext-
only attack is shown in Table 1.

The remainder of this paper is organized as follows.
Section II gives the background of the GMR-2 system and
some notations required to understand this paper and briefly
describes the A5-GMR-2 stream cipher. Section III describes
the inversion attack proposed by Hu et al. Section IV presents
an improved known plaintext attack. Section V analyzes the
relevant standards and presents a practical ciphertext-only
attack. Section VI concludes the paper.

II. PRELIMINARIES
A. BACKGROUNDS
This subsection provides some technical background on the
GMR-2 system. In GMR-2, the Mobile Earth Station (MES)
and network send and receive messages. The MES in GMR-2
is equivalent to the Mobile Station (MS) in GSM [10], which
refers to the physical equipment that the subscriber uses to
gain access to the telecommunication services offered [14].
Messages are transmitted through different channels accord-
ing to their purpose and type. Before amessage is transmitted,
it is formatted, channel-coded,mapped to one ormore frames,
and then encrypted frame by frame. Throughout this paper, a
plaintext refers to a formatted message and a ciphertext refers
to an encrypted frame. Each channel has a different channel
coding scheme, and frames from different messages may
be mixed during channel coding, which makes the relation-
ship between known plaintext and known keystream frame
non-intuitive. A detailed discussion on channel coding and
the non-intuitive relationship between known plaintext and
known keystream frame is provided in Section V.
The official standards exclude information about the

GMR-2’s encryption, such as the specifications of the ciphers
used. Additionally, the standards do not specify which
channels or message types are encrypted. Therefore, our
ciphertext-only attack, proposed in Section V, focuses on the

CIPHERING MODE COMMAND message type, although
there are other message types with similar limited degrees
of freedom. This is the only message type that for which
standardmentionswhether it is encrypted. The standard states
that ‘‘one of three valid forms of CIPHERINGMODECOM-
MAND is sent in ciphered mode’’ [12]. The details of the
CIPEHRINGMODE COMMAND message are discussed in
Section V.

B. NOTATIONS
We introduce the definitions of terms related to graph theory
and several data structures required to understand this paper.
Definition 1 (Reachable [15]): In a directed graph, a ver-

tex v is considered reachable from a vertex u if v can be
reached by following the directed edges starting from u. The
set of all vertices that are reachable from u is referred to as
the reachable set of u.
Definition 2 (Predecessor and Successor [15]): In a

directed graph, if a vertex v is reachable from a vertex u, then
u is a predecessor of v, and v is a successor of u. If there is a
directed edge from u to v, then u is an immediate predecessor
of v, and v is an immediate successor of u.

Every vertex in the directed graph is reachable from itself,
and a vertex with an outdegree one has a unique immediate
successor. Definitions 4 and 5 define stack data structures,
queue data structures, and some related operations.
Definition 3 (Stack Data Structure [16]): A stack data

structure is a collection of elements in which elements are
inserted and removed in a Last-In-First-Out (LIFO) manner.
The top of the stack is referred to as the most recently added
element. The following three operations can be performed on
a stack S:

1) S.top: Returns the value of the element at the top of the
stack.

2) S.push(x): Adds an element x to the top of the stack.
3) x ← S.pop: Removes the element at the top of the stack

and assigns its value to the variable x.
Definition 4 (Queue Data Structure [16]): A queue data

structure is a collection of elements in which elements are
inserted and removed in a First-In-First-Out (FIFO) man-
ner. The following four operations can be performed on a
queue Q:

1) Q.front: Returns the first element in the queue.
2) Q.back: Returns the last element in the queue.
3) Q.push(x): Inserts an element x to the back of the

queue.
4) x ← Q.pop: Removes the first element of the queue

and assigns its value to the variable x.

C. DESCRIPTION of A5-GMR-2
The specification of A5-GMR-2 stream cipher is disclosed by
Driessen et al. through reverse engineering [2]. A5-GMR-2
accepts a 64-bit session key and 22-bit frame number and
outputs a 15-byte keystream. It consists of three components:
F , G, andH. Fig. 1 shows the overall structure of A5-GMR-2
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FIGURE 1. Overall structure of A5-GMR-2.

TABLE 2. Definition of τ1 and τ2.

and Fig. 2, 3, and 4 show the structures of the F-, G-, and
H-component, respectively.

The cipher outputs a 1-byte keystream per clock based
on internal states. The internal state consists of two 8-byte
registers (K and S), a 3-bit counter (c), a 1-bit toggle bit (t),
and a 1-byte value (p). When the internal states are ready
to generate the keystream, the F-component computes 8-bit
O0 and 4-bit O1 based on K , c, t , and p. Based on O0, O1,
and S, G-component computes 6-bitO′0 and 6-bitO

′

1. Finally,
H-component generate a 1-byte keystream based on O′0, O

′

1,
and t . The detailed process of each component is as follows.
The following description assumes that the cipher is at the
l-th clock and the notation (·)x is used to denote a binary value
of x bits.

1) F -COMPONENT
In the F-component, two bytes of the session key are used.
First, α is calculated from c, p, and t as follows.

α =

{
((Kc ⊕ p)&0× 0F)4 if t = 0,

(((Kc ⊕ p)≫ 4)&0× 0F)4 if t = 1.
(1)

Then, O0, O1 are calculated. Two functions τ1 and τ2 are
defined as Table 2.{

O0 =
(
Kτ1(α) ≫ τ2 (τ1 (α))

)
8 ,

O1 = ((((Kc ⊕ p)≫ 4)⊕ (Kc ⊕ p))&0× 0F)4 .
(2)

2) G-COMPONENT
Three linear transformations B1, B2, and B3 are used for the
G-component.
B1 : (x3, x2, x1, x0) 7→ (x3 ⊕ x0, x3 ⊕ x2 ⊕ x0, x3, x1) ,

B2 : (x3, x2, x1, x0) 7→ (x1, x3, x0, x2) ,

B3 : (x3, x2, x1, x0) 7→ (x2, x0, x3 ⊕ x1, x3,⊕x0) .

FIGURE 2. F-component.

FIGURE 3. G-component.

Fig. 3 illustrates the calculation process for O′0 and O′1.
We can also briefly express O′0 and O′1 as shown in the
following equations, where Oi,j and Si,j denote the j-th bit of
Oi and Si, respectively.

O′0 = (O0,7 ⊕ O0,4 ⊕ S0,5,O0,7 ⊕ O0,6 ⊕ O0,4 ⊕ S0,7,
O0,7 ⊕ S0,4,O0,5 ⊕ S0,6,O1,3 ⊕ O1,1 ⊕ O1,0,

O1,3 ⊕ O1,0)6,
O′1 = (O0,3 ⊕ O0,0 ⊕ S0,1,O0,3 ⊕ O0,2 ⊕ O0,0 ⊕ S0,3,

O0,3 ⊕ S0,0,O0,1 ⊕ S0,2,O1,2,O1,0)6.

(3)

3) H-COMPONENT
The H-component uses two 6-bit-input and 4-bit-output
S-boxes, namely S2 and S6 that are used in the DES block
cipher [17]. A detailed description of S2 and S6 can be found
in Table 3. Note that all values in the table are presented in
hexadecimal format.

Unlike DES, in A5-GMR-2, the most-significant 4-bits
determine the column index and the least-significant 2-bits
determine the row index. Based on the toggle-bit t , 1-byte
keystream at l-th clock, Zl , is calculated as follows.

Zl =

{ (
S2

(
O′1

)
, S6

(
O′0

))
8 if t = 0,(

S2
(
O′0

)
, S6

(
O′1

))
8 if t = 1.

4) INITIALIZATION PHASE
The internal states of A5-GMR-2 are initialized as
follows:
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TABLE 3. Description for S2 and S6.

FIGURE 4. H-component.

– c, t , and p are set to zero.
– 64-bit session key is written into the 8-byte register K in

the F-component.
– 8-byte register S is initialized with a 22-bit frame

number.2

5) GENERATION PHASE
Once the internal states have been initialized, the cipher is
clocked to generate a keystream. Following each clock cycle,
the cipher updates its internal states as follows:
– The cipher generates 1-byte Zl based on the current

internal states.
– c← (c+ 1) mod 8, t ← t ⊕ 1, and p = Zl .
– Si← Si+1 for i = 0, 1, . . . , 6 and S7← Zl .
The cipher is clocked 23 times, the first 8 bytes are dis-

carded, and the next 15 bytes are used as a keystream. In the
rest of this paper, we count the index of the clock after the
first 8 clocks and denote the 15-byte keystream as Z =
(Z0,Z1, ..,Z14).

III. INVERSION ATTACK ON A5-GMR-2
The inversion attack, proposed by Hu et al. [9], is currently
the best publicly known attack on the A5-GMR-2 cipher.
This attack was named an inversion attack because it uses
the inverse properties of the F-, G-, and H-component of
A5-GMR-2. The phrase inverse property in this context refers
to a property that allows the input to be inferred from the
output.

2We omit explaining the detailed process because it is irrelevant to our
attack.

A. INVERSE PROPERTY of A5-GMR-2
This subsection introduces and combines the inverse proper-
ties of each component.

1) INVERSE PROPERTY OF H-COMPONENT
Each hexadecimal digit from 0 × 0 to 0xF, appears exactly
once in each row of Table 3. Therefore, given Zl and l,3 there
are four possibilities for O′0 and for O′1, that is, there are
16 possibilities for (O′0,O

′

1).

2) INVERSE PROPERTY OF G-COMPONENT
Equation (3) can be re-written as follows:

O′0,5
O′0,4
O′0,3
O′0,2
O′0,1
O′0,0
O′1,5
O′1,4
O′1,3
O′1,2
O′1,1
O′1,0



=



1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1



·



O0,7
O0,6
O0,5
O0,4
O0,3
O0,2
O0,1
O0,0
O1,3
O1,2
O1,1
O1,0



⊕



S0,5
S0,7
S0,4
S0,6
0
0
S0,1
S0,3
S0,0
S0,2
0
0


(4)

As the 12× 12 binary matrix in Eq. (4) is invertible, given
(O′0,O

′

1) and S0, (O0,O1) can be uniquely determined.

3) INVERSE PROPERTY OF F -COMPONENT
The following four equations can be derived from Eq. (1).

Kc,7 ⊕ Kc,3 = O1,3 ⊕ p7 ⊕ p3,
Kc,6 ⊕ Kc,2 = O1,2 ⊕ p6 ⊕ p2,
Kc,5 ⊕ Kc,1 = O1,1 ⊕ p5 ⊕ p1,
Kc,4 ⊕ Kc,0 = O1,0 ⊕ p4 ⊕ p0.

(5)

Using Eq. (5), we can derive 16 possible values for Kc,
given O1 and p. Specifically, if O1,i ⊕ pi+4 ⊕ pi = 0, then
(Kc,i+4,Kc,i) can be either (0, 0) or (1, 1), while (Kc,i+4,Kc,i)
can be either (1, 0) or (1, 0) otherwise. Using Eq. (1), we can
then calculate α for each possible value of Kc. Finally,
Eq. (2) allows us to compute (Kτ1(α), τ1(α)) given O0 and α.
Therefore, for any given values of O0, O1, and p, there are
16 possible combinations of (Kc,Kτ1(α), τ1(α)) that satisfy
the equations.

4) COMBINING INVERSE PROPERTIES OF F , G, AND H
Given l, Zl , S0, and p, we can combine the inverse prop-
erties of the three components to find 256 possibilities for
(Kc,Kτ1(α), τ1(α)). The Proposition 1 states that only one of
these possibilities is compatible with the session key.
Proposition 1 [9]: Given l, Zl , S0, and p, we can find

256 possibilities for
(
Kl−8,Kτ1(α), τ1(α)

)
. Let (x0, y0, z0),

(x1, y1, z1), · · · , (x255, y255, z255) be the possibilities. Then,

3Note that t can be naturally derived from l as t = l mod 2.
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all x0, · · · , x255 are distinct, meaning that {x0, x1, · · · ,
x255} = {0, 1, · · · , 255}.
Therefore, we can express the possibility (x, y, z) for

(Kc,Kτ1(α), τ1(α)) as follows: if Kc = x, then Kz = y.

B. ATTACK PROCEDURE
Although our description of the inversion attack may slightly
differ from that of [9], the underlying principle and attack
complexity remain the same. These modifications aim to
make our improved attack more understandable, which is
described in Section IV.

The inversion attack is divided into three phases: table
generation, dynamic table look-up, and verification. The
attack uses one keystream frame (15-byte) to recover the
session key. We denote the 15-byte known keystream as
Z = (Z0,Z1, . . . ,Z14).

1) PHASE 1: TABLE GENERATION
For 8 ≤ l ≤ 14, we can find 256 possibilities for
(Kl−8,Kτ1(α), τ1(α)) from l, Zl , S0 (= Zl−8), and p (= Zl−1)
based on Proposition 1. From 7 × 256 possibilities we con-
struct a directed graph G as follows. Every vertex in the
resulting graph G has an outdegree of one.
1) G has 8 × 256 vertices. We denote each vertex as vi,j,

where 0 ≤ i ≤ 7, 0 ≤ j ≤ 255, which corresponds to
‘‘Ki = j.’’

2) If there is a possibility (x, y, z) for (Ki,Kj, j), we add a
directed edge from vertex vi,x to vertex vz,y to represent
the condition ‘‘if Ki = x, then Kz = y’’.

3) For each vertex v7,j, where 0 ≤ j ≤ 255, we add a
self-loop on it.

2) PHASE 2: DYNAMIC TABLE LOOK-UP
Assume that there exist directed edges from vi0,j0 to vi1,j1
and from vi1,j1 to vi2,j2 . The existence of these two directed
edges implies that ‘‘if Ki0 = j0 then Ki1 = j1’’ and ‘‘if
Ki1 = j1 thenKi2 = j2’’, respectively, which can be simplified
to ‘‘if Ki0 = j0 then Ki1 = j1 and Ki2 = j2.’’ From this
concept, we present Proposition 2, which generalizes the idea
of combining multiple relations.
Proposition 2: Let G be a directed graph constructed in

the table generation phase. Assume that vx,y is reachable from
vi,j in G. This implies that ‘‘if Ki = j then Kx = y.’’
Assume that vi,j′ is reachable from vi,j, where j ̸= j′. Based

on Proposition 2, this implies that ‘‘if Ki = j then Ki = j’’
which is a contradiction. This leads us to the conclusion that
Ki ̸= j. Proposition 3 generalizes this idea.
Proposition 3: Let G be a directed graph constructed in

the table generation phase. If a reachable set of vertex vi,j
of G includes two vertices vx,y and vx,y′ such that y ̸= y′,
then vi,j can never be compatible with the correct session key,
meaning Ki ̸= j.
All session key candidates can be mapped to {v0,j0 ,

v1,j1 , · · · , v7,j7}, where 0 ≤ j0, j1, · · · , j7 ≤ 255. If there
exists ji, such that the reachable set of vi,ji includes vx,y, where
y ̸= jx , then {v0,j0 , v1,j1 , · · · , v7,j7} never be the correct ses-
sion key. Therefore, we can restrict the session key candidates

Algorithm 1 Dynamic Table Look-Up
Input: G, a directed graph constructed in the table

generation phase
Output: KC , a set of session key candidates

1 Function BackTracking(S, vi,j):
2 while S.top is immediate predecessor of vi,j do
3 vi,j← S.pop

4 if j = 255 then
5 if i = 0 then
6 return ({} ,Null,False)

7 vi,j← S.pop
8 Go to Step 2.

9 else
10 S.push(vi,j+1)
11 return

(
S, vi,j+1,True

)
12 Function Main:
13 S ← Empty Stack, vcur ← v0,0, S.push(vcur )
14 vi,j← immediate successor of vcur

15 if there exist vi,j′ ∈ S such that j ̸= j′ then
16 (S, vcur , res)← BackTracking

(
S, vi,j

)
17 else if vi,j ∈ S and |S| = 8 then
18 KC ← KC ∪ {S}
19 (S, vcur , res)← BackTracking

(
S, vi,j

)
20 else if vi,j ∈ S and |S| ̸= 8 then
21 i← min i | ∄vi,j ∈ S
22 vcur ← vi,0, S.push(vcur )
23 res← True

24 else
25 vcur ← vi,j, S.push(vcur )
26 res← True

27 if res = True then
28 Go to Step 14.

29 return KC

to the sets of vertices that satisfy the following: Assume
that S = {v0,j0 , v1,j1 , · · · , v7,j7}, and R0,j0 ,R1,j1 , · · · , R7,j7
are the reachable sets of v0,j0 , v1,j1 , · · · , v7,j7 , then S =
R0,j0 ∪R1,j1 ∪ · · · ∪R7,j7 . Algorithm 1 gives the process of
finding all such S in G and storing them in KC , a set of key
candidates. We begin at the vertex v0,0 and traverse the graph
G by following its directed edges in a deterministic manner4

(Steps 13-14 and 24-26). We store the visited vertices in a
stack data structure and perform operations as follows:
• If a contradiction occurs, the algorithm backtracks to a
new starting point (Steps 1-11 and 15-16).

4every vertex in G has outdegree one.
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• If the desired set is found, the set is stored and
then the algorithm backtracks to a new starting point
(Steps 1-11 and 17-19).

• If the number of vertices visited through traversing is
less than eight, the algorithm jumps to a new starting
point (Steps 20-23).

• The algorithm terminates when there are no vertices to
backtrack. (Steps 27-29).

3) PHASE 3: VERIFICATION
During the verification phase, we find the correct one among
the session key candidates in KC that is obtained during the
dynamic table look-up phase. We pick a key candidate and
check if the cipher generates the given keystream with the
picked key candidate. According to the previous work [9],
only one of the key candidates generates the known keystream
with a 97.2% probability. Otherwise (worst case), multiple
candidates generate the given keystream and the adversary
cannot uniquely determine the correct session key. Previous
work stated that even in theworst-case scenario, the adversary
can determine the correct session key if only one additional
keystream byte is provided. However, this argument is flawed
because, in GMR-2, the size of the frame is fixed to 15 bytes,
that is, the cipher never generates the 16th keystream byte.
Instead, to determine the correct session key in the worst-case
scenario, the adversary needs one more keystream frame.

C. COMPLEXITY ANALYSIS
Hu et al. stated that the inversion attack recovers the session
key in an average of 20 milliseconds and requires 6 KB
memory [9]. For a fair comparison with our improved attack
discussed in Section IV, we implement the inversion attack
directly on our computer. Our implementation takes 7.2 mil-
liseconds to recover the session key.5 The only memory
required is for storing the directed graph G constructed in the
table generation phase. For vi,j in G, assume that vx,y is an
immediate successor of vi,j. We store x and y using i and j
as indices. Because we need 3-bit and 8-bit to store x and
y, respectively, our implementation only requires 2.75 KB
(=2048× 11 bits) of memory.

IV. IMPROVED KNOWN PLAINTEXT ATTACK
We introduce a new phase called the pre-filtration phase and
add it between the table generation and dynamic table look-
up phases to improve the time complexity of the inversion
attack. The pre-filtration phase requires negligible time, but
significantly reduces the time required for the dynamic table
lookup and verification phases, which results in an overall
time complexity reduction.

A. NEW PHASE: PRE-FILTRATION
First, we define the black vertex and dead vertex as
Definition 5 and the reachable index set as Definition 6.

5We use our implementation of the previous inversion attack for compar-
ison with our improved attack. Additionally, we present two more metrics
other than execution time to demonstrate improvement in Section IV.

Definition 5 (Black Vertex and Dead Vertex): Let G be a
directed graph constructed in the table generation phase. For
a vertex v in G, v is called a dead vertex if its reachable set
includes any pair of vertices (vi,j,vi,j′ ) where j ̸= j′. v is called
a black vertex if it is not a dead vertex.
Definition 6 (Reachable Index Set): Let G be a directed

graph constructed in the table generation phase. For a vertex
v in G, let R be a reachable set of v. Then, we define the
reachable index set of v asRidx = {i : ∃j s.t. vi,j ∈ R}.
According to Proposition 3, a dead vertex can never be

an element of the set we are looking for in the dynamic
table look-up phase. Therefore, traversing a dead vertex in
the dynamic table look-up phase is futile. We effectively find
all dead vertices and exclude them from G to reduce the time
complexity of the dynamic table look-up phase.

Algorithm 2 gives the process of classifying all vertices
in graph G as either black or dead. We traverse the graph
G following the directed edges and use a queue, Q, to store
the path of the visited vertices. For simplicity of explanation,
we call a vertex that we do not yet know whether it is a black
or dead vertex a white vertex, and a gray vertex if it is in Q.

We initially set all 2048 vertices to white and operate based
on the following five rules: Rule 1 outlines the action to
take when the queue Q is empty, and Rules 2-5 explain the
operation for the remaining cases. In Rules 2-5, vcur refers to
the last vertex pushed to Q and vi,j refers to the immediate
successor of vcur (Steps 3,6, and 11).
• Rule 1: Push any white vertex toQ ifQ is empty. If there
are no white vertices left, Algorithm 2 ends. (Steps 2-5)

• Rule 2: If vi,j is a white vertex, pop vertices while
there exist vi,j′ inside Q. According to Proposition 3, all
popped vertices are dead vertices. Then, push vi,j to Q.
(Steps 7-12)

• Rule 3: If vi,j is a gray vertex, this implies that all the
vertices in Q are black vertices. As we pop vertices one
by one from Q, we store the reachable index set of each
vertex. Note that a cycle is formed from vi,j. (Steps 13-
17)

• Rule 4: If vi,j is a black vertex, letRidx be its reachable
index set. Suppose that there exist x and y such that vx,y
is in Q and x is inRidx . Then, there must exist a y′ such
that the vertex vx,y′ is reachable from vi,j. Given that vi,j
is black, we know that vx,y′ is also black. Additionally,
because vx,y is gray, we must have y ̸= y′. This causes a
contradiction. We pop vertices while such vx,y exist inQ
and classify them as dead. The remaining vertices in Q
are black. As we pop the remaining vertices one by one
from Q, we store the reachable index set of each vertex.
(Steps 18-26)

• Rule 5: If vi,j is a dead vertex, all vertices in Q are dead
vertices. Pop all the vertices from Q. (Steps 27-30)

Only white vertices are pushed to Q, and when a vertex is
popped out of Q, it is classified as either black or dead. That
is, pre-filtration visits all vertices only once.

We now explain how to extend the pre-filtration phase
given two keystream frames. We conduct the table generation
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Algorithm 2 Pre-Filtration
Input: G, a directed graph constructed in the table

generation phase

1 Q← Empty Queue
2 if ∃ white vertex v ∈ G then
3 vcur ← v, Q.push(vcur )

4 else
5 Terminate Algorithm

6 vi,j← immediate predecessor of vcur
7 if vi,j is white then
8 while ∃vi,j′ ∈ Q such that j ̸= j′ do
9 v← Q.pop
10 Classify v as dead.

11 vcur ← vi,j, Q.push(vcur )
12 Go to Step 7.

13 else if vi,j is gray then
14 while Q is not empty do
15 v← Q.pop
16 Classify v as black
17 Store the reachable index set of v.

18 else if vi,j is black then
19 LetRidx be a reachable index set of vi,j.
20 while ∃x, y s.t. vx,y ∈ Q and x ∈ Ridx do
21 v← Q.pop
22 Classify v as dead.

23 while Q is not empty do
24 v← Q.pop
25 Classify v as black
26 Store the reachable index set of v.

27 else
28 while Q is not empty do
29 v← Q.pop
30 Classify v as dead

31 Go to Step 2.

and pre-filtration phase with the first known keystream frame.
Then, we independently conduct the table generation phase
with the second known keystream frame. Let the resulting
graph be G. Before starting the pre-filtration phase on G,
we initialize the vertices as follows: If a vertex vi,j is deter-
mined to be a black vertex after the pre-filtration phase with
the first keystream frame, we initialize vi,j to a white vertex.
Otherwise, it is initialized as a dead vertex. Following the
second pre-filtration, far fewer vertices are classified as black,
which significantly reduces the time required for the dynamic
table look-up phase. Additionally, the size of the KC is also
reduced, which significantly reduces the time required for the
verification phase.

B. COMPLEXITY ANALYSIS
Table 1 lists the results of testing the inversion attack and our
attack 10,000 times each. For a fair comparison, we present
not only the average execution time but also two additional
metrics that are not influenced by the execution environment.
The first metric is the number of vertex visits during the
pre-filtration and dynamic table look-up phases. Because
traversing the graph is the main process for both the pre-
filtration and dynamic table look-up phases, it is a fair metric
to validate the speedup of the dynamic table look-up phase.
The secondmetric is the size of the brute-force space (the size
ofKC), which allows a direct comparison of the time required
for the verification phase.

Our implementation of the previous inversion attack
takes 7.2 milliseconds to recover the session key, requires
219 vertex visits for the dynamic table look-up phase, and has
the brute-force space size of 212.8. Our improved inversion
attack with one keystream frame takes 4.5 milliseconds to
recover the session key, requires 217.5 vertex visits for the pre-
filtration and dynamic table look-up phase, and has the brute-
force space size of 212.8. Our improved inversion attack with
two keystream frames takes 0.62 milliseconds to recover the
session key, requires 212.8 vertex visits for the pre-filtration
and dynamic table look-up phase, and has the brute-force
space size of 29.2. The results are summarized in Table 1.
The experimental results demonstrate that, compared with the
previous inversion attack, our improved attacks are between
1.6 and 11.5 times better in terms of time complexity. To store
the reachable index set and state (white, gray, black, or dead)
of each vertex, 8-bit and 2-bit are required, respectively.
Therefore, the memory complexity of our attack is 5.25 KB
(=2.75 KB+ 2048× 10 bits).

V. CIPHERTEXT-ONLY ATTACK ON GMR-2
This section presents a practical ciphertext-only attack on the
GMR-2 system. We identify a vulnerability in the GMR-2
system by analyzing the relevant standards [11], [12] and
develop a ciphertext-only attack based on it. Our attack
specifically targets the CIPHERING MODE COMMAND
message. We limit the degrees of freedom of this message
type to 211 by inferring all but 11 bits. We also find the
six channels through which the CIPHERING MODE COM-
MAND message might be transmitted. We analyze these six
channels and demonstrate that if the four specific channels
among them are used to transmit CIPHERINGMODECOM-
MAND messages, the session key can be recovered through
a ciphertext-only attack.

A. INFERRING CIPHERING MODE COMMAND MESSAGE
The GMR-2 standard provides a secure satellite communi-
cation system; however, our examination of the standards
reveals a vulnerability that allows for the inference of certain
messages, specifically those of type CIPHERING MODE
COMMAND. This subsection presents the process of infer-
ring all but 11 bits of the CIPHERING MODE COMMAND
plaintext based on two GMR-2 standards [11] and [12].
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First, we identify the key clauses in [12]. Clause 10.1.9 pro-
vides the functional definitions and contents of the CIPHER-
ING MODE COMMAND message. This message is sent
on the main Satellite Dedicated Control Channel (S-DCCH)
from the network to the MES, to indicate whether ciphering
will be performed or not. The contents are three bytes long as
shown in Fig. 5. Clause 4.4.7.2 defines three valid CIPHER-
ING MODE COMMAND message formats, but we concen-
trate on only one transmitted in ciphered mode. This form
indicates no ciphering and is received by theMES in ciphered
mode. The other two forms are transmitted in not ciphered
mode. Therefore, we can deduce that all encrypted CIPHER-
ING MODE COMMAND messages indicate no ciphering.

FIGURE 5. Contents of CIPHERING MODE COMMAND message.

The value of contents can be inferred from Clause 11.6

According to Clause 11.2, the protocol discriminator for the
radio resource (RR) management message is represented by
the 4-bit value of 0110. Clause 11.3 states that any mes-
sage received with a skip indicator other than 0000 should
be ignored. The 8-bit message type for the CIPHERING
MODE COMMAND message is defined in Clause 11.4 as
00110101. According to Clauses 11.5.2.9 and 11.5.2.10, the
configuration of the 1 byte for ciphering mode setting and
cipher response is shown in Fig. 6. In the case of the message
indicating no ciphering, the 1-bit SC is set to 1. The 3-bit
algorithm indicator is set to 000 if SC is 1. The 3-bit spare is
always set to 000. The CR, a 1-bit value, is used to indicate
information that should be included in the response to the
CIPHERING MODE COMMAND message, and we cannot
infer its value.

We now examine the key clauses in [11] to understand the
content formatting and deduce the remaining bits. According
to Clause 5.1, the frame format used for the CIPHER-
ING MODE COMMAND message is as shown in Fig. 7.7

Clauses 5.3, 5.4, and 5.5 specify that the address field, con-
trol field, and length indicator field are each 1 byte long.
Clause 8.8.3 details the maximum length of the information
field for each channel, with a 20-byte limit for the main
S-DCCH. The total length of the information field and the
fill bits is equal to the maximum length of the information
field. If the content length is less than the maximum length
of the information field, the remaining space is allocated to
the fill bits. Because the contents of the CIPHERINGMODE
COMMAND message are three bytes long, the information

6The detailed use of each element, which is defined in [18], will not be
covered because it falls outside the scope of this paper.

7The length of each field shown in 7 is specific to the CIPHERINGMODE
COMMAND message and may differ for other message types.

FIGURE 6. Configuration of Ciphering mode setting and Cipher response.

FIGURE 7. Frame format for CIPHERING MODE COMMAND message.

field is 3 bytes long, and the remaining 17 bytes are allocated
to the fill bits.

Clause 5.2 specifies that all bytes of the fill bits in mes-
sages sent by the network must be set to the binary value
00101011. The formats of other fields are described in
Clause 6. Clause 6.1 states that the spare bits are set to 0.
Clause 6.2 outlines the address field’s format and is shown
in Fig. 8. Clause 6.2 also describes the 2-bit link protocol
discriminator (LPD), but we cannot determine its value from
the information provided. Further details regarding the vari-
ables are outlined in Clause 6.3. The address field extension
bit (EA) is used to manage situations in which the length
of the address field is extended. Because the address field
in our target message is 1 byte long, EA is set to 1. The
command/response field (C/R) bit indicates whether a frame
is a command or a response. Our targetmessage is a command
from the network to the MES; therefore, C/R is set to 1.
Clause 6.3.3 states that the service access point identifier
(SAPI) for radio resourcemanagementmessages is set to 000.

FIGURE 8. Address field format.

Clause 6.4 describes the format of the control field, but we
cannot determine its value from the information provided.
Clause 6.6 details the format of the length indicator field,
as shown in Fig. 9. The length indicator field extension (EL)
bit is used to manage situations in which the length of the
length indicator field is extended. Because the length indica-
tor field in our target message is 1 byte long, EL is set to 1.
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The more data bit (M) is used to indicate the segmentation
of frames. The information field in our target message is set
to 3 bytes long, which is less than the maximum length of
20 bytes. Therefore, segmentation is not required, and M is
set to 0. The length indicator (L) indicates the length of the
information field. Because the information field in our target
message is 3 bytes long, L takes the binary value 000011.

FIGURE 9. Length indicator field format.

Fig. 10 shows thematching of all inferred bits to the format,
where ‘−’ indicates the bits we could not infer. Note that
the values are written in order from higher bit numbering
according to Clause 5.8.3 of [11].

B. ANALYZING THE MAIN S-DCCH IN GMR-2
In the previous subsection, we discovered that the CIPHER-
ING MODE COMMAND is sent on the main S-DCCH.
Clause 3.1 of [12] states that S-FACCH or S-SDCCH is called
the main S-DCCH in GMR-2. According to the standard [13],
4 S-FACCHs (S-FACCH/Q2.4, H2.4, QBS, HRS) and
2 S-SDCCHs (S-SDCCH/E, Q) are supported in the GMR-2
system. We analyze how a plaintext corresponds to a
keystream in each of these six channels.

We use S-FACCH/HR2.4 (Satellite Fast S-TCH/HR2.4
Associated Control Channel) as an example. In S-FACCH/
HR2.4, a plaintext is channel coded as follows: A plaintext
of 184 bits is first extended with the 40-bit fire code and
24 zeros, resulting in a block of 248 bits. This block is
then encoded using a 1/4, 64-state convolutional code, and
32 coded bits are punctured, leading to a length of 960 bits,
represented as c = {c(0), c(1), · · · c(959)}.8 Then, c is split
into two 480 bit blocks, ce and co as follows:

ce(k) = c(2k), co(k) = c(2k + 1) for k = 0, 1, · · · , 479.

ce is then divided into four equal parts, each consisting of
120 bits. The first part, SubGroup1, consists of c(0) to c(119);
the second part, SubGroup2, consists of c(120) to c(239); and
so on. We denote SubGroupi as cei = {cei(0), · · · cei(119)}.
Then, 15 SubGroups, SubGroup−6, to SubGroup8, are diag-
onally interleaved together. Note that for i ≤ 0, SubGroupi
represents 120 coded bits from the previous data, and for
i > 4, SubGroupi represents 120 coded bits from the sub-
sequent data. Set it to 120 zero bits, if there is no such
data. Among the diagonally interleaved blocks, there are
11 blocks related to the current data. We denote them from

8The detailed process of generating c can be found in [13] and is irrelevant
for this paper. Only the fact that c is derived from a single plaintext is
significant.

FIGURE 10. Inferred Bits of CIPHERING MODE COMMAND message.

TABLE 4. Relationship between plaintext and keystream in the six
channels through which CIPHERING MODE COMMAND might be
transmitted.

SubGroup′1 to SubGroup′11 and they are as follows:

SubGroupi : ce
′
i(0), · · · , ce

′
i(119),

ce′i(j) = cei−7+(j mod 8)(j)

Each SubGroup′i is further interleaved with a 12×10 block
interleaver. We denote the block-interleaved SubGroup′i as iei
and the blocks obtained through the same process with co as
ioi. Then, iei and ioi are alternately mapped onto consecutive
frames.

Note that 22 frames are required to transmit a single
plaintext. Fig. 11 shows the distribution of bits derived
from a single plaintext over 22 frames. A complete
keystream frame cannot be derived from a single plaintext
in S-FACCH/HR2.4; at least two plaintexts are required.
Additionally, we can derive two complete keystream frames
from two plaintexts. Similar to S-FACCH/HR2.4, the remain-
ing five channels can also be analyzed. Fig. 11 shows the
distribution of bits derived from a single plaintext for each
of the remaining five channels. Table 4 summarizes how a
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FIGURE 11. Distribution of bits from a single plaintext in six channels through which CIPHERING MODE COMMAND message might be
transmitted.

known plaintext corresponds to a known keystream for each
channel.

C. SESSION KEY RECOVERY WITH INFERRED MESSAGE
We can infer all but 11 bits of the CIPHERING MODE
COMMANDmessage from the previous subsection. We also
know that, given a single plaintext, we can derive at least two
complete keystream frames in S-SDCCH/E, S-SDCCH/Q,
S-FACCH/QBS, and S-FACCH/HRS.

If one of these four channels is used to transmit the
CIPHERING MODE COMMAND message, we can per-
form a ciphertext-only attack by guessing 211 possible plain-
texts, computing the corresponding keystream frames, and

conducting our improved known plaintext attack with those
keystream frames. Our attack only outputs the session key if
the attack is conducted with the keystream from the correctly
guessed message; otherwise, it outputs nothing. This allows
us to distinguish the message corresponding to the given
ciphertext and recover the session key. The required time
is approximately 1.3 seconds, which is equal to the time
required to repeat the known plaintext attack 211 times.

VI. CONCLUSION
In this study, we analyzed the security of the GMR-2
satellite communication standard. First, we proposed an
improved inversion attack on A5-GMR-2. Our attack,
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using pre-filtration, recovers the session key within
4.5 milliseconds given one keystream frame and within
0.62 milliseconds given two keystream frames. Additionally,
we investigated the relationship between known plaintext and
keystream frames in each channel of GMR-2. Our analysis
revealed that in some channels, two ormore keystream frames
are derived from a single plaintext, making the speedup of our
attack given two keystream frames more significant. Further-
more, we discovered that GMR-2 uses an inferrable message
type. By combining our inversion attack with pre-filtration
and the presence of inferrable message types, we presented a
practical-time ciphertext-only attack on GMR-2 systems for
the first time.
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