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ABSTRACT Word Sense Disambiguation (WSD) is a significant and challenging task for text understanding
and processing. This paper presents an unsupervised approach based on Weighted Co-occurrence bio-Term
Graph (WCOTG) for performing WSD in the biomedical domain. The graph is automatically created from
biomedical terms that are extracted from a corpus of downloaded scientific abstracts. Two kinds of weights
are introduced on the links of the built bio-term graph and are taken as important factors in the process
of disambiguation. The modified Personalised PageRank (PPR) algorithm is used for performing WSD.
When evaluated on the NLM-WSD and MSH-WSD test datasets, and an acronym test set, the method
outperforms thewidely used unsupervised ones addressing the same problem, and the average result is almost
equal to that of the BlueBERT_LE-based method. In contrast, our method has no additional enhancement
or training for BERT-based models. Comparative experiments validate the positive effect of links’ weight
on disambiguation efficiency. Last, the statistical experiments on the relation among system accuracy, the
numbers of medical abstracts in the corpus, and the corresponding extracted terms suggest an excellent
minimum corpus scale, when resources are limited.

INDEX TERMS Biomedical informatics, biomedical natural language processing, word sense disambigua-
tion, unified medical language system, personalised PageRank algorithm.

I. INTRODUCTION
Word Sense Disambiguation (WSD) systems attempt to auto-
matically identify the proper sense of ambiguous words in
context [1], [2]. For example, WSD would aim to identify
the meaning of the word ‘‘cold’’ to be ‘‘cold temperature’’ or
‘‘common cold’’ depending on the context in which it occurs.
WSD is often characterized as an intermediary step in the
process of understanding natural language texts [2], [3]. It is
beneficial for applications in the biomedical domain, such
as information extraction, automated knowledge discovery,
question-answering [4], etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Dimauro .

The disambiguation task in the biomedical field is aimed
at medical texts and terms. Combining domain knowledge
can better improve the system’s performance. Currently,
the Unified Medical Language System (UMLS) Knowledge
Sources are widely used in tasks such as disambiguation
and automatic question-answering in the biomedical field.
However, existing work such as [5] and [6], etc., typically
involves extracting concepts (CUIs) from UMLS to build
systems. In disambiguation tasks, this can lead to a mapping
bottleneck when converting polysemy in biomedical docu-
ments into concepts. Therefore, we build term graphs directly,
not concept graphs, the latter requires the use of term-to-
concept mapping tools. This method can be considered an
improvement of the existing work by Duque et al. [5], whose
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knowledge base is an unweighted concept graph. We not only
directly construct the term graph, but also add weights to
the edges of the graph to improve the system’s disambigua-
tion performance. Transformer-based neural network models
in the biomedical domain and co-occurrence probability of
terms are used to generate weights in graphs.

In summary, this paper proposes a novel approach based
on Weighted Co-occurrence bio-Term Graphs (WCOTG) for
performing WSD in the biomedical domain. The graphs are
automatically created in an unsupervised way from biomed-
ical terms that are extracted from a corpus of downloaded
scientific abstracts. Each graph represents relations between
the ambiguous term and the terms that appear frequently
in the same document. The corresponding weight depends
on the co-occurrence probability or relatedness between
them.

The most important contributions of this paper are:
1) We build graphs from terms instead of concepts, which

bypasses the problem of manual disambiguation of the
mapping tools when transforming polysemous terms from
biomedical documents into concepts.

2) We add weights to the links of the built bio-term graphs
and take them as important factors in the process of disam-
biguation. Two weighting methods are applied to weight the
co-occurrence term graph. The co-occurrence probability of
terms and the relatedness value between BERT-based vectors
of terms are taken as weight respectively. The disambigua-
tion results of weighted and unweighted bio-term graphs
show that weight has a positive impact on disambiguation
performance.

3) We extract sub-term graphs with a relatively small
amount of data for performing WSD, so as to improve the
running efficiency of the system.

4) The PPR algorithm which is normally applied over the
unweighted directed graph is modified for theWSD task over
the weighted undirected term graph.

The rest of the paper is organized as follows. Section II
describes previous approaches to biomedicalWSD. Section III
presents the proposed system, describing the steps for
building a bio-term graph and the disambiguation process.
In section IV, corpus building is discussed. In section V,
several comparative evaluations and further experiments on
different test datasets are carried out. Finally, conclusions and
future work are presented in Section VI.

II. PREVIOUS WORK
Existing methods to automatically resolve ambiguity can
be classified into two different perspectives: knowledge-
based (or not), and supervised (or not). The former can
be further distinguished into knowledge-based only, corpus-
based only, and (both) knowledge & corpus-based. For exam-
ple, the Enhanced WSD Integrating Synset Embeddings
and Relations (EWISER) is a hybrid knowledge-based and
supervised approach to WSD that integrates explicit rela-
tional information from the WordNet LKB [7]. The latter
can be further subdivided into supervised, unsupervised,

and semi-supervised. Supervised methods normally apply
SVM (Support Vector Machine) [8], [9] and neural net-
works [7], [10], [11] to identify the proper sense of the
ambiguous target word. Recently, in the biomedical domain,
the recurrent network LSTM (Long Short-Term Mem-
ory) [8] and deepBioWSD network [12] for WSD have
achieved state-of-the-art accuracy. The disadvantage of these
supervised approaches is that they require lots of labeled
training data, which are extremely time-consuming and
expensive to create [13]. Semi-supervised approaches offer
solutions to that problem by using techniques to gener-
ate sense-tagged examples automatically [9], [14]. Unsu-
pervised methods do not require labeled training examples
and typically use graph-based clustering techniques [15].
Recently, word embedding models [16] and pre-trained lan-
guage model BERT (Bidirectional Encoder Representation
from Transformers) [17], [18] and its variant BERT mod-
els [19], [20], [21] all pre-trained on large corpora were
introduced to conduct unsupervised learning for WSD. For
example, Mao and Wah [6] generate semantic relatedness
measurements between UMLS concepts to achieve disam-
biguation by applying the word embedding models and vari-
ous flavors of BERT.

The work by Duque et al. [5] is an unsupervised method.
It introduces a graph-based approach forWSD in the biomed-
ical domain, wherein, the UMLS database is explored to
convert text from the original document set to biomedical
concepts, and a corpus of biomedical documents is used to
build a co-occurrence graph that is then analyzed to identify
the meanings of ambiguous words. The evaluation results
show that it outperforms most of the knowledge-based meth-
ods for WSD in the biomedical domain. However, the disam-
biguation algorithm does not consider the role of the links’
weights in the graph.

Inspired by this work, we go further to make some
improvements to it. This paper proposes a novel approach
based on Weighted Co-occurrence bio-Term Graphs
(WCOTG) for performing WSD in the biomedical domain.
On the one hand, the weights of links in the created graph
are taken into account in the disambiguation algorithms.
Comparative evaluation of weighted bio-term graphs and
non-weighted ones is also performed. On the other hand, the
work by Duque et al. [5] makes use of the UMLS MetaMap1

program to convert biomedical texts to concepts and build
concept graphs, while in our case, a co-occurrence graph
is built based on terms directly instead of concepts. This
is mainly based on the following considerations. Mapping
programs [22] have automatic disambiguation limitations.
‘‘One of the most difficult problems MetaMap deals with is
ambiguity’’4. Using MetaMap, monosemous words will be
attached to just one concept, whereas polysemous words may
be attached to several concepts [5]. Although the MetaMap
program offers a disambiguation server, it cannot eliminate

1https://metamap.nlm.nih.gov/Docs/FAQ/WSD.pdf
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FIGURE 1. Disambiguation system based on weighted co-occurrence bio-term graph.

most of the ambiguity. And manually assistant mapping is
difficult and time-consuming.

Furthermore, we use a transformer-based neural network
model to calculate the weights between terms in the built
graph. In recent years, pre-trained neural language mod-
els, such as BERT (Bidirectional Encoder Representation
from Transformers) [17], [18], [23], XLNET [24], Gloss-
BERT [25], BEM [26], and ALBERT [27], etc. have achieved
state-of-the-art results in various natural language processing
(NLP) tasks. In Word Sense Disambiguation (WSD) tasks,
Loureiro and Jorge [28] used the BERTmodel to create sense
embeddings for all senses in WordNet. Vial et al. [29] and
Kumar et al. [30] used pre-trained BERT word vectors as
input embeddings. In the biomedical domain, transformer-
based neural network models are also successfully used to
predict the DNA promoters [31] and identify DNA N6 [32].
In the clinical domain, Biseda et al. [33] predict ICD codes
from hospital notes by utilizing the Clinical BERT variant.
Mulyar et al. [34] developed Multitask-Clinical BERT for
multitasking information extraction.

However, WSD in the biomedical field is an intermediary
step, which requires not only natural language processing
methods or models but also domain knowledge or corpus
support. Therefore, neural network models in the general
field have significant limitations in the field of biomedi-
cal disambiguation. The transformer-based neural network
models in the general field are normally pre-trained on gen-
eral English corpora (English Wikipedia and BooksCorpus)
and designed for general language understanding. Therefore,
they often perform poorly in biomedical natural language
processing tasks, because biomedical texts contain a large

number of domain-proper nouns and terms. Then some vari-
ant models of BERT in the field of biomedicine are pro-
posed, and great success has been achieved in biomedical
natural language processing tasks. They are all pre-trained
on large domain corpora. For example, BioBERT [19] is
initialized with weights from the original BERT and then is
pre-trained on biomedical domain corpora (PubMed abstracts
and PMC full-text articles) for 23 days on eight NVIDIA
V100 GPUs [19]. Blue_BERT (NCBI BERT, Biomedical
Language Understanding Evaluation) [20], another popular
BERT-based model in the biomedical domain, is pre-trained
on PubMed abstracts and MIMIC-III clinical notes. Based on
the support of the domain knowledge source (Unified Med-
ical Language System), this paper applies domain BERT to
the constructed term graph and achieves good disambiguation
results.

III. WSD BASED ON WEIGHTED CO-OCCURRENCE
BIO-TERM GRAPH (WCOTG)
A. SYSTEM DESCRIPTION
Our system relies on a data model of weighted co-occurrence
bio-term graph and exploits a modified Personalized PageR-
ank (PPR) to generate disambiguation in the biomedical
domain. The complete system is shown in Fig.1.

Part 1 illustrates the steps for building a weighted
co-occurrence bio-term graph. Each bio-document in the
original set is transformed into biomedical terms through
automatic term extraction, and this work is based on a
dictionary, e.g., the dictionary auto-generated from the
file MRCONSO.RRF2 in the Unified Medical Language

2https://www.ncbi.nlm.nih.gov/books/NBK9676/
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System (UMLS) Knowledge Sources. Then each term set
forms a fully connected graph. The terms extracted from the
bio-document eventually become the nodes of the graph, and
the co-occurrence relations between terms, i.e., appearing in
the same document, become the edges (links) in the graph.
Next, we combine all the above full connection graphs to get
a general co-occurrence graph by removing duplicate nodes
and links. At last, a measure of relation for each pair of nodes
is applied as the weight for the corresponding edge in the
graph. The weighting method is introduced in Section III-B.

In Part 2, for a test instance of the ambiguous target term
T, biomedical terms are extracted from it. Referring to these
terms, in Part 3, a sub-weighted bio-term graph is extracted
from the general graph constructed above, in order to improve
the efficiency of the subsequent disambiguation algorithm.
In subgraph, the terms (nodes) come from the intersection of
the terms in the general graph and the one extracted from
the test instance. And the relationships between the nodes
in the subgraph come from their relationships in the general
graph. Through the construction of a subgraph, i.e., extracting
a subgraph from the general graph, the nodes and edges that
have nothing to do with the current disambiguation task are
greatly removed, which means the size of disambiguation
data is reduced effectually.

In Part 3, a disambiguation algorithm introduced in
Section III-C is applied to output the most suitable sense of
the ambiguous target term in the test instance.

B. WEIGHTING METHODS
In this article, two weighting methods are applied to weight
the co-occurrence term graph.

1) TAKING THE CO-OCCURRENCE PROBABILITY OF TERMS
AS WEIGHT
Duque [35] introduced a method to calculate the p-value for
the co-occurrence of each pair of CUIs (CUI-Concept Unique
Identifiers) in the corpus. Inspired by this, we use a simi-
lar idea to measure the co-occurrence probability between
biomedical terms.

Suppose there are two terms T1 and T2 appear in the n1
and n2 number of documents respectively. The number of
how many ways those terms could co-occur in exactly k
documents can be given by the multinomial coefficient3:(

N
k, n1 − k, n2 − k

)
(1)

where, N = n1 + n2 − k, the total number of documents is n
(n ≥ N). The probability of the terms exactly co-occurring k
times, that is, co-occurring in k documents, by pure chance is
given by:

p (k) =

(
N
n1

)−1 (
N
n2

)−1 (
N

k,n1 − k, n2 − k

)
(2)

3https://brilliant.org/wiki/multinomial-coefficients/

Equation (2) can be written as follows.

p (k) =

∏n2−k−1

j=0

(
1 −

n1
N − j

)
×

∏k−1

j=0

(n1 − j)(n2 − j)
(N − n2 + k − j)(k − j)

(3)

In our work, p(k) is taken as the p-value of each pair of
co-occurrence terms. And the weight of the edge between two
nodes Vi and Vj in the co-occurrence graph is set as:

wij = log(
pij
pmin

) (4)

where, the pij is the p-value of the link (Vi, Vj), and the
pmin is the minimum value of all the p-values of each pair of
co-occurrence terms.

2) TAKING THE RELATEDNESS VALUE BETWEEN TERM
VECTORS AS WEIGHT
Another weighting method proposed is that the relatedness
value between biomedical terms is taken as the weight for
the corresponding edge in the graph. In this paper, we use
a transformer-based neural network model to calculate the
relatedness of terms in the graph.

A common way to use BERT and its variants is to combine
them with the fine-tuning process for a specific NLP task.
However, in our work, BioBERT and Blue_BERT models
are used alone to generate contextualized word embeddings
for each term in the graph without additional training data.
Before applying BERT-based models, two special tokens are
inserted into a term sequence, the classifier token [CLS] at
the beginning, and the ending token [SEP] at the end. Then
we get the tokened term sequences. For example, in the
built graph, there is a term ‘‘regulation of carbohydrate
metabolism’’ (LUI: L2321589) linked to the ambiguous tar-
get term ‘‘Digestive’’. The term sequence for it is made up as
follows.

[CLS] regulation of carbohydrate metabolism [SEP]

Given such term sequences, a BERT-based model is
applied to them separately. Then for each sequence, we get
a vector, i.e., term embedding combined with the embedding
of the tokens and the average embedding of each word in the
sequence.

Next, semantic relevance measurement is performed based
on cosine similarity theory, which is to evaluate the similarity
or relatedness of two vectors by calculating the cosine value
of the angle between them. The greater the cosine value, the
greater the similarity between the two vectors, and the more
related or similar the semantics of the terms corresponding to
the vectors.

In this way, the weight of the edge between two nodes Vi
and Vj in the co-occurrence graph is set as:

wij = cos(EVi,EVj) (5)

where, the EVi and EVj are the BERT-based vectors, i.e., term
embeddings, OF THE corresponding terms.
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C. DISAMBIGUATION ALGORITHM
The disambiguation algorithm that we have selected is the
Personalised PageRank algorithm [36], [37] which has been
successfully applied to WSD tasks. Personalized PageRank
(PPR) evaluates the importance of the vertices of a graph
depending on its link structure. It is normally based on a
directed graph, represented by its incoming and outgoing
edges.

Formally, let G be a directed graph with N vertices (V1,
V2 . . . ,VN ). The PPR value of vertex Vi in the graph can be
calculated through the following formula:

P = cMP+ (1 − c) v (6)

where c is called a damping factor, a scalar value between
0 and 1. It is usually set in the range [0.85, 0.95], and the value
of 0.85 for it is reported to be the best [38]. P is the vector
that contains the PPR values for each node. M is the N ×

N transition probability matrix corresponding to the directed
graph G, built in this way:

Mij =


1

outdegree (i)
if Vi → Vj

0 otherwise
(7)

If there is a link from Vi to Vj then the matrix entryMji has
the value 1/di where di is the out-degree of vertex Vi, and all
other entries have the value 0. And v is an N × 1 vector.4

For a given vertex Vi, the PPR value can be calculated by
a rewritten Equation of (8):

p (Vi) = c
∑

Vj∈In(Vi)

1
dj
p

(
Vj

)
+ (1 − c) vi (8)

where In(Vi) is the set of vertices pointing to the vertex Vi, dj
the out-degree of vertex Vj, and vi the element of the vector v.
The PPR algorithm is normally applied over the directed

graph, to use the PPR algorithm for WSD over our built term
graph, undirected graph, in which the vertices represent terms
and the edges represent relations between terms, we modify
(8) to the following Formula:

p (Vi) = c
∑

Vj∈Link(Vi)

1
dj
p

(
Vj

)
+ (1 − c) vi (9)

Furthermore, considering the weight on edges, (9) is mod-
ified as follows:

p (Vi) = c
∑

Vj∈Link(Vi)

1
dj
p

(
Vj

)
wij + (1 − c) vi (10)

where wij defined by (4) or (5) is taken as the weight on the
edge between the vertices Vi and Vj. The Link(Vi) in (9) and
(10) is the set of vertices linking to the vertex Vi, and dj is the
degree of vertex Vj.
Suppose there are total n vertices in the graph, the person-

alization vector v used in PPR is initialized with the value as
follows:

v =

(
1
n
,
1
n
,
1
n
, . . . . . . ,

1
n

)
(11)

4Note that, vi in lower case refers to one element in vector v, while Vi in
capital letter refers to a vertex in the graph.

The modified PPR (Personalized PageRank) is calculated
by applying an iterative algorithm that computes (10) repeat-
edly until a pre-specified number of iterations have been
executed. After that, each node in the graph will be assigned
a PPR value for ranking. And the candidate term that has the
highest PPR value will be finally chosen as a disambiguation
result.

IV. DATASETS
This section introduces the datasets for the evaluation and
presents in detail the process of building a corpus that is used
for constructing the co-occurrence term graph.

A. NLM-WSD AND MSH-WSD TEST COLLECTIONS AND
CORPUS FOR BUILDING THE CO-OCCURRENCE
TERM GRAPH
Two medical-text test collections of the National Library of
Medicine’s Word Sense Disambiguation (NLM-WSD)5 are
used to evaluate the performance of the proposed method.
One collection is named ‘‘NLM-WSD Test Collection’’.
It consists of 50 highly frequent ambiguous terms. Each of the
50 ambiguous cases has 100 ambiguous instances randomly
selected from the 1998 MEDLINE citations. The average
number of senses per ambiguous term is 2.3. Each instance
of the ambiguous word considered for disambiguation is
determined manually with a correct sense and annotated with
a sense number by human evaluators. Some instances are
marked as None by evaluators, for there are no appropriate
senses in UMLS Metathesaurus for them. We have discarded
those instances with the None category, so finally, the test
collection contains 3, 983 instances and 49 ambiguous terms
out of the 50s since the instances of the ambiguous term
‘‘association’’ have been assigned entirely to None. Another
test dataset is named ‘‘MSH-WSD Test Collection’’. It con-
sists of 203 highly frequent ambiguous terms and contains
both biomedical terms and abbreviations. 37, 888 ambiguity
instances are randomly selected from the 2010 MEDLINE
citations. Each instance of the ambiguous word has a correct
sense annotated by human evaluators. Each ambiguous case
contains approximately 187 instances and has 2.08 possi-
ble senses. There is no None category marked in this test
collection.

In this work, we present an unsupervised system that does
not need any annotations, however, we need to acquire data to
build the co-occurrence term graph. For the evaluation of the
NLM-WSD and MSH-WSD test collection, we performed a
search on Medline for each ambiguous target term. And after
downloading the file in PubMed format from Medline, the
results are restricted to 800 (Or the maximum number that
has been searched) PubMed format files per target term with
two senses, 1200 for the target term with 3 senses, and so on.
And then we extracted abstracts only from the downloaded
PubMed format files. After checking and de-duplication with

5The NLM-WSD and MSH-WSD test datasets are available from
the National Library of Medicine: https://lhncbc.nlm.nih.gov/ii/areas/word-
sense-disambiguation.html
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TABLE 1. A resume of the acronym datasets.

each test instance in the test set, the total number of abstracts
in the corpus for the NLM-WSD test is 35809. This number
may not be the best choice for the disambiguation system,
but it is very close to the number of abstracts (35282) in
the corpus of the work [5], which is helpful to objectively
compare the efficiency of the two methods on the same
corpus scale. And for the MSH-WSD test, the total number
of abstracts in the corpus is 155233.

B. ACRONYM CORPUS
We also validate the proposed method on the acronym
test dataset. Stevenson and Guo [38] provided an
acronym corpus that has been successfully used in WSD
research [5], [39], [40]. However, we failed to successfully
download this corpus, so we built new acronym corpora
containing 22875 abstracts downloaded from Medline. Each
of these abstracts contains an ambiguous acronym from
the set of 18 acronyms originally developed in [41] and is
widely used in previous studies. Each acronym, used as an
ambiguous target term in evaluation, consists of 3 letters, and
it is associated with between 2 and 4 extended forms which
are considered candidate senses.

We create 18 corpora, and each corpus is corresponding
to a target acronym. The specific creation process is similar
to the process of creating the corpus for building graphs
introduced in Section IV-A. The difference is that extended
forms, i.e., candidate senses, are gotten by querying each
item in the MRCONSO.RRF file of UMLS Metathesaurus,
instead of from the NLM-WSD or MSH-WSD Test Collec-
tion. For example, as to the acronym ‘‘ANA’’, two extended
forms ‘‘American Nurses Association’’ and ‘‘Antinuclear
Antibody’’ have the same CUI as it in the MRCONSO.RRF
file. So they are extracted from the MRCONSO.RRF file as
the candidate senses for the acronym ‘‘ANA’’. And then a
search query is made in Medline based on each candidate
sense. We download 600 (Or the maximum number that has
been searched) PubMed format files for each candidate sense
and convert them to 600 files that only contain abstracts. Then
we split these abstract files into two parts. One is used to form
the test datasets, and the other is used as the corpus for graph
building. In partitioning, the data used to create the graph will
never be included in any test datasets.Most of the test datasets

are evenly distributed, i.e., there is nearly the same number of
test instances corresponding to each candidate sense, except
the test dataset for the acronyms ‘‘CMV’’, ‘‘DIP’’, ‘‘LAM’’
and ‘‘MAC’’, due to an insufficient number of instances in
the original corpus.

Four test datasets are created and referred to as T100, T150,
T200, and T300. Table 1 provides a resume of the acronym
datasets used for the evaluation. It can be seen, the number
of senses per term in T100 and T200 is fixed. That is, the
first two datasets T100 and T150 both have fixed numbers
of senses for each ambiguous word, 2 for T100 and 3 for
T150 respectively. All 18 acronyms are present in T100. For
an insufficient number of their extended forms, the acronyms
‘‘ANA’’, ‘‘BPD’’, ‘‘EMG’’, and ‘‘RSV’’ are not present in the
data set T150 whose sense length is 3. The last two datasets
T200 and T300 are mixed-length datasets, and each acronym
has between 2 and 4 extended forms. These two datasets
correspond to the datasets A200 and A300 respectively, that
is, they have the same acronyms.

Table 1 compares the databases of the T series and A series
in terms of sense length (average senses), the number of
abstracts for graph building, and Min/Max senses per term,
etc.We can observe fromTable 1, that the number of abstracts
for building graphs is much smaller than that of the Bio-
Concept-Graph method (BCG) [5] introduced in Section II.
And the average number of possible senses in the T serials
of acronym datasets is higher than that in the A serials of
datasets, except T100.

In our experiment on acronym disambiguation, it is found
that the accuracy of disambiguation on the acronymswith two
senses is much higher than that with three senses. In our opin-
ion, the test dataset with a fixed number of senses for each
ambiguous word is of great significance to the comparative
experiments. So T100 and T150 test datasets, as well as T200
and T300, for the acronymWSD have beenmade freely avail-
able for research and may be obtained from www.ketrc.com
and www.condillac.org.

V. EVALUATION (RESULTS AND DISCUSSION)
In this section, the experimental result obtained by this
approach is described and compared with other state-of-the-
art systems. Further experiments are also performed and
analyzed.

The performance in all experiments is measured by accu-
racy, precision, F1, and recall. Specifically, accuracy is
the percentage of instances correctly disambiguated, that
is the number of correctly disambiguated instances divided
by the total number of instances in the test collection.
Macro-P, macro-R, and macro-F1, as shown in (12) to (16),
are applied in our experiments, for some ambiguities have
multiple senses.

Macro_P =
1
n

∑n

i=1
Pi (12)

Macro_R =
1
n

∑n

i=1
Ri (13)
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TABLE 2. Performance of WSD on the NLM-WSD test collection of
49 ambiguities.

TABLE 3. Comparative results (accuracy) for state-of-the-art methods and
the ones reported in this work (WCOTG, UWCOTG).

Macro_F =
2 ∗Macro_P ∗Macro_R
Macro_P+Macro_R

(14)

Pi =
TPi

TPi + FPi
(15)

Ri =
TPi

TPi + FN i
(16)

For the modified Personalized PageRank (PPR) algorithm
used for disambiguation, the damping factor is set as 0.85 and
the number of iterations is set as 100. For the BERT-based
models used for calculating the term embeddings, the version
of BioBERT-Large v1.1 and BlueBERT-Base are chosen and
shortened to ‘‘BioBERT_L’’ and ‘‘BlueBERT_B’’ respec-
tively in our experiments.

A. EVALUATION ON THE NLM-WSD TEST COLLECTION
OF 49 AMBIGUITIES
In order to verify the effect of edge weights on system accu-
racy, we carry out a comparative experiment on the weighted
bio-term graph and the unweighted bio-term graph respec-
tively. And then we compare themwith several other state-of-
the-art knowledge-based methods, which all have evaluations
over the NLM-WSD Test Collection of 49 ambiguities. This
can lead to a more objective comparison.

The ‘‘COP’’ (co-occurrence probability) refers to the pro-
posed method that the probability of the co-occurrence
terms is taken as the weight for the WCOTG, while
the next two ‘‘BioBERT_L’’ and ‘‘BlueBERT_B’’ refer
to that in which semantic-relatedness between two terms

TABLE 4. Word-by-word comparative results over the NLM-WSD test
collection.

(BERT-based vectors) is used as the weight in the WCOTG.
The MRD (machine-readable dictionary) [1] is an unsu-
pervised vector approach. It chooses the concept whose
feature vector is the closest to the instance vector for the
target ambiguous word. The AEC (Automatic Extracted
Corpus) [1] method trains a Naïve Bayes classifier for WSD
on the automatically retrieved citations from PubMed. The
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FIGURE 2. Evaluation of the accuracy between system WCOTG and
UWCOTG.

Bio-Concept-Graph method (BCG) [5] introduced a tech-
nique based on co-occurrence concept graphs for perform-
ing WSD in the biomedical domain. Wherein, the UMLS
Metamap was used to map terms from the created knowledge
base onto biomedical concepts for graph building, and the
PPR algorithm was used for WSD then. Although it achieved
a good result, it did not account for the links’ weights in the
graph. In the evaluation, the MFS (Most Frequency Sense)
that is standard in WSD evaluation can be considered as
a supervised baseline. And the unsupervised Bio-Concept-
Graph (BCG) method also on co-occurrence graph ideas is
used as another baseline.

Table 2 shows the performance ofWSD on the NLM-WSD
test collection of 49 ambiguities with three modes for cal-
culating the weights in the graph. And Table 3 shows the
comparative results with other knowledge-based methods.

Table 3 shows that on the NLM-WSD Test Collec-
tion of 49 ambiguities the proposed WCOTG (Weighted
Co-occurrence bio-Term Graph), all 3 kinds of weighting,
outperforms MRD and AEC. It is also better than the base-
line Bio-Concept-Graph (BCG) method based on similar
co-occurrence ideas. The average result is near the baseline
MFS. From the table, we can see that the accuracy of the
method UWCOTG (Non-Weighted Co-occurrence bio-Term
Graph) is lower than that of the baseline MFS. But it achieves
better accuracy over the baseline Bio-Concept-Graph (BCG)
method. The former is based on the co-occurrence term graph
and the latter is on the co-occurrence concept graph, both
unweighted.

Table 4 shows a word-by-word comparison between the
WCOTG and others listed in Table 3. As we can observe
in the table, the COP-based WCOTG offers a large number
of best results, the best result in 17 out of 49 cases. Rela-
tively, the baseline MFS offers the best result in 27 cases,
the BlueBERT_B-based WCOTG 10, the BioBERT_L-based
WCOTG 8, the MRD 2, the AEC 6, and the BCG 14.

The COP-based WCOTG outperforms the baseline
MFS in 25 results (including 5 equal cases), and both
the BlueBERT_B-based WCOTG and BioBERT_L-based
WCOTG in 23 results (including 7 equal cases) respectively.
The COP-based WCOTG outperforms the baseline BCG in
37 results (including 5 equal cases), the BlueBERT_B-based
WCOTG in 28 results (including 4 equal cases), and the
BioBERT_L-based WCOTG in 29 results (including 3 equal
cases).

TABLE 5. Comparative results (overall accuracy) of WSD on the MSH-WSD
dataset - 203 ambiguities.

TABLE 6. Performance of WSD on the MSH-WSD test collection.

Fig.2 shows a comparison between the UWCOTG and
WCOTG (COP-based). From Fig.2 and Table 4, it can be
seen that the WCOTG performs better than the UWCOTG.
Specifically, the WSD of the COP-based performs better
in 31 out of 49 cases than that of the UWCOTG, while
the BioBERT_B-based WCOTG better in 22 results, and
the BioBERT_L-based WCOTG better in 17 results. The
UWCOTG offers the best result in 14 out of 49 cases in the
absence of the WCOTG.

B. EVALUATION ON THE MSH-WSD TEST COLLECTION
OF 203 AMBIGUITIES
We also evaluate our method on the MSH-WSD Test Col-
lection (203 ambiguous words) and compare experimental
results with the work of Mao and Wah [6], which applies
BERT variant models for WSD in the unsupervised biomed-
ical domain and using the same test dataset.

As we can observe in Table 5, over the same test collec-
tion, without extra training, the BioBERT_L method outper-
forms the best BlueBERT_LE-based method that enhanced
the BlueBERT_Large model with additional training by the
concept definitions in the UMLS [6]. While the COP-based
WCOTG obtain similar disambiguation results to it. We can
also see that the accuracy of WCOTG (weighted method)
based on two kinds of weights currently tried both outper-
form the UWCOTG (unweighted method). Table 6 shows
the performance (Macro_Acc.,Macro_Prec.,Macro_F1., and
Macro_Rec.) of the proposed WCOTG method for WSD on
the MSH-WSD test collection of 203 ambiguities with three
modes for calculating the weights in the graph.
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TABLE 7. Comparative results (accuracy) over the T and A serial of test
datasets.

TABLE 8. Word-by-word comparative results obtained by the WCOTG and
BCG over the T and A serial of test datasets.

TABLE 9. Comparative performance obtained by UWCOTG and WCOTG.

C. EVALUATION ON ACRONYM TEST DATASETS
On the built acronym test datasets, we verify the difference
in disambiguation accuracy between the term-graph method
and concept-graph one both based on the co-occurrence graph
ideas. Table 7 shows the experimental results of theWCOTG
and UWCOTG methods based on the co-occurrence term
graph on the T serial test datasets against the Bio-Concept-
Graph (BCG) [5] method based on the co-occurrence concept
graph on the parallel A serials test datasets. It can be seen
from Table 7 that the WCOTG (BioBert-based) outperforms
others over all test datasets listed in the table.

Table 8 shows a word-by-word comparison result of the
WCOTGandBio-Concept-Graph (BCG)methods. Aswe can

TABLE 10. Word-by-word comparative results of the UWCOTG and
WCOTG.

observe in the table, over the test dataset with 100 instances,
the WCOTG offers all the best results (including 2 equal
cases), and the average accuracy of WCOTG reaches 0.9939.
Over the test dataset with 200 instances, the WCOTG offers
almost all the best results, except in the case of the acronym
‘‘PEG’’. And over the test dataset with 300 instances, the
WCOTG offers the best result in 8 out of 14 cases while
the BCG offers 6, and the results are basically flat. However,
the total number (TN_graph) of abstracts used for building
graphs varies greatly, with a maximum number of 21075 for
the WCOTG-based system and 50143 for the Bio-Concept-
Graph based one. In other words, ourmethod only uses almost
half the composition level relative to the Bio-Concept-Graph
based method.

Table 9 shows the concrete performance of the UWCOTG
andWCOTGmethods - both based on bio-term graphs - over
the T serial acronym test datasets, and Table 10 shows a
word-by-word comparison of results. As we can see from
Table 10, over the T100 dataset with 2 senses per acronym,
the WCOTG offers the best result in 17 out of 18 cases,
including 12 equal cases with the UWCOTG. Over the T150
dataset with 3 senses per acronym, the WCOTG offers all
the best results, only including 1 equal case. The efficiency
gap between the UWCOTG andWCOTG systems is only 0.7
((0.9939-0.9867) ∗ 100%) percentage points over the T100
with 2 senses per acronym. However, over the T150 with
3 senses per acronym, the efficiency gap between the two
becomes 12.3 ((0.9602-0.8372)∗100%) percentage points.
The WCOTG outperforms the UWCOTG in 15 results over
the T200 dataset, and 12 results over the T300 dataset.
In all, the WCOTG system performs much better than the
UWCOTG system on the test dataset with 2 more senses per
acronym.
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TABLE 11. Comparative results of the WCOTG and other systems based
on BERT models.

D. COMPARATION OTHER WORKS BASED ON BERT
MODELS
As illustrated above, our system uses the Unified Medi-
cal Language System (UMLS) Knowledge Sources in the
biomedical field for building term graphs and has com-
pleted the experimental comparison on the NLM-WSD,
MSH-WSD, and acronym test collections in the biomedical
field.

In recent years, there have been some reports in the gen-
eral domain that BERT models have been well applied in
WSD tasks, but their test sets usually come from the general
domain. In this part, we summarize and compare the effi-
ciency of someBERT-basedWSD systems both in the general
domain and biomedical domains.

Table 11 shows the comparative results. Wherein, in the
general domain, the GlossBert [25] fine-tunes the pre-trained
BERT model on the training corpus. The BEM [26] presents
a bi-encoder model built on top of BERT that is designed

FIGURE 3. Four-axis line chart.

FIGURE 4. Two-axis line chart.

to improve performance on rare and zero-shot senses. The
EWISE [30] uses pre-trained BERT word vectors as input
embeddings. The MMS2348 (BERT) [28] uses the BERT
model to create sense embeddings for all senses in WordNet
in the WSD task.

As shown in the table, the WCOTG has achieved good
results in the collection of acronyms in the biomedical field.
On 1800 acronym test cases, the WSD accuracy can reach
99%. Specific experimental results can refer to in Table 7 to
Table 10. Over the same test collection MSH-WSD, without
extra training, the WCOTG based on BioBERT_L performs
slightly better than the best BlueBERT_LE-basedmethod [6].

When measuring system efficiency, the size of the test
set is an important factor. On the one hand, we can see
from Table 11 that as the number of instances in the test
set increases, the system efficiency under the same method
decreases. The WCOTG based on the domain BERT model
on the NLM-WSD set has better accuracy than on the
MSH-WSD set. Disambiguation models in general domains
also have the same characteristics. It can be seen from the
table that the accuracy of the GlossBert, BEM, EWISE, and
MMS methods on the SemEval 15 test set is generally higher
than that on the SemEval 13. On the other hand, it can be
seen from Table 11 that the accuracy of the WCOTG on
NLM-WSD and NLM-WSD test sets, as well as the accuracy
of the GlossBert and BEM in general fields, can all exceed
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80%. However, the test cases used in the biomedical field are
far greater than those in the general domain.

E. FURTHER EXPERIMENT-SCALE OF CORPUS FOR
BUILDING GRAPH
A co-occurrence graph is created based on the terms extracted
from the abstracts of biomedical documents. So a question
arises: will the size of the abstract corpus affect the result
of WSD?

Fig.3, a four-axis line chart based on the further experi-
ment on the NLM-WSD Test Collection of 49 ambiguities,
shows the evolution of the relations among the system accu-
racy, the average number of biomedical abstracts for each
ambiguous target term, and the number of terms extracted
from the abstracts and used for building the co-occurrence
graph. We can see that, as the number of abstracts that are
used to build a co-occurrence graph for an ambiguous term
increases, the number of terms extracted from the abstracts
increases subduedly on the whole. We also find that number
of abstracts (around 800) selected for each target term in
the previous experiment, introduced in Section IV-A, is not
optimal, although that number is good for the comparison
with a similar system of Bio-Concept-Graph (BCG) [5]. The
size of the corpus will affect the efficiency of the system
to a certain extent. The overall accuracy increases with the
number of abstracts and terms used to build the graph, but the
performance for each WCOTG reaches a plateau beginning
from around the point of 2, 200 abstracts and 8, 000 terms.

Fig. 4, a two-axis line chart is built based on the analysis
of the experiment on the built acronym corpus. The statistical
data - the number of abstracts for building term graphs and
system accuracy- is from Table 1 and Table 7. It can be found
that the disambiguation accuracy is higher and higher with
the increasing number of abstracts for building term graphs.
As introduced in Section V-C and shown in Table 1 and
Table 8, although the number of abstracts for building term
graphs is much less than that used in [5] for building concept
graphs, the system of WCOTG has achieved better results in
WSD on acronym test set.

VI. CONCLUSION AND FUTURE WORK
This paper describes the application of an unsupervised
method based on weighted co-occurrence term graph for
performing WSD in the biomedical domain. We build graphs
from terms extracted from biomedical abstracts directly,
instead of concepts gotten through the mapping tools. This
avoids the bottleneck of mapping terms to concepts when
transforming polysemous terms in biomedical documents
into concepts. The most important contributions of this paper
are that we add weights to the links of the built bio-term
graphs, and take them as important factors in the disam-
biguation algorithm. Furthermore, a sub-term graph with a
relatively small amount of data is extracted from the general
one, to reduce the operation scale of the disambiguation
algorithm. And the PPR algorithm which is normally applied

over the unweighted directed graph is modified for the WSD
task over our built weighted undirected term graph.

The paper provides comparative evaluations of simi-
lar previous methods and several WSD methods over the
NLM-WSD, MSH-WSD test datasets, and an acronym test
dataset. The results show that the proposed unsupervised
WCOTG method outperforms the concept-graph based one
on a very similar corpus scale, and outperforms some unsu-
pervised ones addressing the same problem. Comparative
experiments of weighted and non-weighted bio-term graphs
validate the positive effect of links’ weight on disambiguation
efficiency. Further statistical experiments on the relation-
ship between system accuracy, the numbers of biomedical
abstracts in the corpus, and the corresponding extracted terms
suggest an excellent minimum corpus scale when resources
are limited.

Although our method achieved good overall disambigua-
tion efficiency on the three datasets tested, there were also
some failed cases in the experiment. For example, the 79th
test case of the word ‘Japanese’ in the MSH-WSD test set
is as follows: ‘‘A Japanese experience’’. After removing the
stop word and the word ‘Japanese’ that needs to be disam-
biguated, only one valid word ‘experience’ remains. This
kind of too-short test case often leads to testing failure on this
case. How to effectively disambiguate the semantics of words
in ultra-short sentences is a problem that our future research
will address.

Currently, in the proposed unsupervised WCOTG, cosine
similarity theory is applied in measuring the semantic relat-
edness between terms when weighing edges in the built
term graph. However, there are also many other association
measures that are worth trying to generate weights on the
constructed term graph. In the future, we plan to explore
the use of new methods to calculate the weight of edges in
the co-occurrence term graph and realize corresponding com-
parative experiments. In addition, we would like to construct
a term graph based on the combination of UMLS Metathe-
saurus and self-created biomedical corpus and explore hybrid
artificial intelligence approaches for WSD.
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