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ABSTRACT Face masks are recommended to reduce the transmission of many viruses, especially
SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask
is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was
considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether
it is possible to classify the type of mask on the face. The previously proposed dataset of thermal images
was extended and annotated with the description of a type of mask and a location of a mask within a face.
Different deep learning models were adapted. The best model for face mask detection turned out to be the
Yolov5 model in the ‘‘nano’’ version, reaching mAP higher than 97% and precision of about 95%. High
accuracy was also obtained for mask type classification. The best results were obtained for the convolutional
neural network model built on an autoencoder initially trained in the thermal image reconstruction problem.
The pretrained encoder was used to train a classifier which achieved an accuracy of 91%.

INDEX TERMS Deep neural networks, epidemic prevention, health infrastructure, mask area detection,
mask type classification, thermal imaging.

I. INTRODUCTION
Due to the emergence of the coronavirus pandemic in the
world, wearing face masks is no longer a novelty, not only
in the case of this one disease. Many solutions are based
on assessing whether a face mask has been worn - which is
essential when epidemiological restrictions apply, for exam-
ple, when monitoring entrances to buildings and hospitals.
Wearing masks allows for the reduction of the spread of
diseases, including COVID, influenza, etc.

Machine learning algorithms, in particular deep learning,
can be used to solve the classification problem - of determin-
ing whether a face mask is worn or not. In [1], the authors
proposed a Deep Masknet model that can be used to detect a
mask on a face (actually perform the binary classification:
‘‘mask’’, ‘‘no mask’’). The proposed model for the classi-
fication task was verified using the Facemask [2] dataset,
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Facemask Detection Dataset (20,000 Images) [3], and for
the set FaceMask Dataset [4] achieving accuracy, precision,
recall, and F1-score at least 97.5% for each metric. The
authors have also developed their own dataset - MDMFR,
containing over 6000 RGB images. The classification results
obtained for the new dataset were characterized by 100%
accuracy.

Authors of [5] proposed a classification model suitable for
working with real-time images. The model architecture was
based on five convolutional layers, five pooling layers, and
one fully-connected layer for classification. It was trained
using the Face Mask Detection Dataset [6]. The obtained
results indicate the high accuracy of the proposed solution
(98%).

In another work, [7], a deep learning model was pro-
posed based on the AlexNet model [8]. Two datasets were
used for training: the Real-World Masked Face Dataset
(RMFD) [9], and Celeb Faces Attributes (CelebA) [10].
The study used the pixel-oriented algorithm with a Deep
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C2D-CNN (color 2-dimensional principal component anal-
ysis (2DPCA)-convolutional neural network) model to detect
a face.

A model based on ResNet50V2 was used to classify faces
with or without a mask in [11]. Evaluation of the model
on the MAFA [12] set showed accuracy at 90.49%, higher
than the other tested base models. The proposed model was
optimal regarding inference time, error rate, detection speed,
and memory usage among the compared models.

The article [13] proposes detecting three conditions for
wearing a mask: correctly, incorrectly, and not wearing it.
Using the Labeled Faces in theWild [14] dataset and applying
different mask types on faces, the authors achieved a 92%
classification accuracy for the Resnet50 model.

The previously mentioned challenges for masked face
images are solved for visible light images. Many related
datasets have been proposed. However, only limited datasets
are available in other domains, like infrared imaging. Ther-
mal imaging is potentially desirable since it can provide
images even in low-light conditions. Additionally, thermal
images are usually represented by less recognizable biometric
features and therefore could be more acceptable regarding
privacy aspects. Some datasets with thermal face images are
also available. One of the most popular databases of facial
thermal images is the dataset proposed in [15]. It contains
high-resolution images with a wide range of head positions
and a high variation of facial expressions. Images have been
recorded from 90 people and manually annotated.

The face mask classification problem has also been inves-
tigated for thermal images. In [16] analyzed face detection of
people wearing masks using images obtained from different
types of thermal cameras (with different resolutions and qual-
ity of images). Several deep learning models were adapted
and verified, showing the ability to detect faces with masks
using the Yolov3 model, achieving an mAP of 99.3%, while
the precision was at least 66.1%.

A similar classification problemwas described in [17]. The
model based onMobileNetV2 was used for feature extraction
from a thermal image and for detecting if a person is wearing
amask. The private dataset was used with images of size 80×

60 pixels. The obtained accuracy of determining whether a
person is wearing a mask was 98%.

In the article [18], face detection was performed based
on features extracted by Max-pooling and fast PCA, and
SVM was used to classify these features. The authors relied
on a small dataset (containing only 800 images), and the
average face mask recognition proposed by the method
can be up to over 99.6%. Facial recognition in thermal
images was taken up in the article [19]. Face recogni-
tion is performed using temperature information. The fea-
ture vector underlying the classification consists of the
most representative thermal points on the face, and random
forests were used as the classification method. The study
also considered images with noise and various types of
occlusions.

In [20], the authors proposed a network to detect and
capture the temperature of a specific point inside a predicted
region. They additionally used RGB data for the ResNet50-
based RetinaNet model [21] to classify data into 3-classes
evaluating how the facial mask is worn: ‘‘good,’’ ‘‘bad,’’ and
‘‘none.’’ The proposed method achieved an average confi-
dence score of 81.31%. They also described problems with
head detection accuracy.

Many other studies were focused on the processing of
face images with masks. For example, the analyzed problems
addressed face recognition (e.g., [22], [23]) or emotion recog-
nition (e.g., [24], [25]) using face images covered by masks.

However, to our knowledge, no studies were published on
face mask detection problems in the thermal domain, i.e.,
localization of a mask within a face. Single studies focus
on detecting the location of the mask on the face for visible
light images. The authors of [26] have created a face mask
detection dataset (FMD) containing over 52,000 images and
annotations for class labels, with and without a mask, mask
incorrect, and mask area. They proposed a solution based on
the YOLOv4 [27] model to detect the position of the mask
on the face, achieving an average precision with a value of
87.05%. In another paper from the same research group [28],
the ETL-YOLO v4 model was proposed for the detection of
various variants of the position of themask on the face and the
detection of the mask area, which was trained and evaluated
using the FMD set [26]. The YOLOv4 model in the ‘‘tiny’’
version was improved by adding a dense SPP network, two
extra YOLO detection layers, and using the Mish activation
function. On the test set, it achieved an average precision of
mask location detection of 86.97%, while on the whole set,
mAP was 67.64%.

Additionally, only limited works addressed the problem
of mask type classification. In [29], in addition to the well-
known task of classification - whether a person is wearing
a mask or not, authors also proposed a classification of the
type of mask. Types of masks have been divided into two cat-
egories - qualified masks (N95 masks and disposable medical
masks) and unqualified masks (mainly including cloth masks
and scarves). The authors showed a method based on transfer
learning, using the MobileNet [30] model, which achieved an
accuracy of 97.84%.

Using thermal imaging for mask recognition under epi-
demiological restrictions could provide additional informa-
tion. Analyzing the average temperature change in the face
mask region in a sequence of thermal images can be poten-
tially used to estimate the respiratory pattern and rate. In [31],
the authors show the visualization of exhalation flows in ther-
mal images while wearing protective face masks. However,
the analyzed area is not searched automatically.

In this study, we focused on two main goals: 1) to detect a
face mask within a face region of an image and 2) to classify
the protective mask type.

The problem of the automatic detection (i.e., localization)
of masks on thermal face images is complex. There are no
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public datasets of thermal face images with masks. Addition-
ally, thermal images are usually more smooth than visible
light images of faces. Therefore, it is much more challeng-
ing to distinguish characteristic features of protective masks
about the skin in thermal images (facial mask temperature
changes towards the skin’s surface temperature and it is much
more difficult to distinguish the mask’s borders). No earlier
studies have presented results in this area, so no models are
specialized in detecting the location of masks that could be
used in the comparison.

The motivation for using thermal imaging is to use the
same modality as for a person’s body temperature estimation
to see what other important information we can obtain. Many
methods have been previously proposed to estimate respi-
ratory rate and patterns from sequences of thermal images
recorded for the face (nostrils and mouth). During the pan-
demic, people wear facial masks, so nostrils and mouth are
covered. By detecting facial mask areas in thermal images,
we can obtain information about the local temperature change
caused by breathing. This can be verified in a separate study.
First, the mask detection method should be proposed and
validated to verify if it is possible to reliably extract mask
area from thermal images of faces (mask area detection not
face area detection). This is an important novelty of the
paper. Proper detection of mask location (not face) gives
many possible future applications. This includes extraction
of respiratory-related signals (average temperature within
a detected mask region for each frame produces the esti-
mated respiratory signal) and verifying if the mask covers
the mouth/nostrils area properly. These two methods are not
presented in this paper but are described as our motivation
and possible future applications.

This work aims to find and train a model that automati-
cally detects the mask’s position on the face. We also check
whether it is possible to classify the type of mask worn in
thermal images. Different models were analyzed for mask
detection using the created database of thermal images of
people with masks. Classification of the type of face mask
was carried out by validating various models using a subset
of images.

The main contributions of this work include: 1) Creation
of an extended dataset containing over 9,000 images recorded
with different types of thermal cameras with different resolu-
tions, showing people in three types of masks. 2) Demonstrat-
ing, probably for the first time, that adapted object detection
deep models could efficiently localize virus protective masks
within a face thermal image. 3) Demonstrating, probably for
the first time, that the deep, autoencoder-based model can be
successfully used to classify the type of face mask in thermal
images.

The paper is structured as follows: in the following section,
we first introduce the dataset used in this paper. In section III,
we introduce the detail of the model’s testing scenario and
characterize the details of the models used both for mask
classification and detection tasks. Following this, we provide

FIGURE 1. Examples of images included in dataset with marked mask
regions.

results and a discussion of the obtained results. In section V,
we present the conclusions.

II. DATASETS
A. FACE WITH MASK THERMAL DATASET
As no public face mask databases are available, we decided
to create our own dataset - Face with Mask Thermal Dataset
(FMT Dataset). Therefore we extended a dataset created in
our previous work [16] - a dataset consisting of almost 8,000
thermal images showing people’s faces (92% of the images
were masked), with different quality and different poses of
people (real situations were depicted, e.g., entrancing the
buildings). Additional images were collected using a FLIR
Boson camera (60 fps). Participants put on face three types of
masks (an FFP2mask, a surgical mask, and a cloth facemask)
and performed head movements (side-to-side and up-and-
down movements) approximately 80 cm from the camera.
Every 20th frame from the recording was selected for the
dataset. The experiment was performed with permission of
the local Committee for Ethics of Research with Human
Participants of 02.03.2021. Each of the participants in the
experiment gave informed consent to its performance.

The extended dataset includes 9,394 images with new
descriptions that describe the position of the mask in the
image. In all of the images, people are wearing a mask of
various types: a surgery mask, an FFP2 mask, or a cotton
face mask. The number of labeled masks in the dataset is
12,306 - there was more than one person in some images.
Figure 1 shows examples from the data set with a mask
bounding box.

The collected images were recorded using three different
cameras (Table 1). The dataset was divided into the training
subset (90%) and the test subset (10%). In each of the sep-
arated subsets, there are images taken by each camera, and
in each of the subsets, there were images of different people.
The images were manually labeled using the same software
reported in [16]. The criteria for annotating the face mask
were: 1. marking the regions that include the whole mask and
2. a region could be annotated if a minimum of 50% of its
area was visible. The annotations of masks were made by six
people and were checked twice for accuracy and correctness.
A subset was extracted from the dataset, which allows the
classification of the type of masks into three classes. This
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TABLE 1. Descriptions of cameras.

FIGURE 2. Example of three types of mask: (a) FFP2 mask, (b) surgical
mask, and (c) cloth face mask.

subset contains 1841 images depicting ten people. It was
divided into a training set of 1285 images (from 7 people)
and a test set of 556 images (from 3 people). In Figure 2,
examples of images of one person in each of the three types
of masks were used to classify the type of mask.

B. SIMULATED DATASET
Due to the lack of available databases of thermal images with
mask annotations and the number of available thermal images
in our collection, we decided to use transfer learning to train
mask detection models. All models were first trained on the
WIKI dataset (with cropped faces), derived from the IBMD-
WIKI dataset [32], which was prepared for mask detection by
randomly applying one of eight types of masks to the images.
Among the applied masks were drawing masks and masks
extracted from thermal images. The [33] tool was used to
put the mask on the face in the correct orientation - images
with the masks applied and the coordinates of their location
were saved. The images were then converted to grayscale to
make them similar to thermal images. Figure 3 shows sample
images from the WIKI collection, masked and converted to
grayscale. Masks were applied only to images where a face
was detected. The obtained set was divided in a ratio of 9:1
into a training set and a test set.

III. METHODS
A. ADAPTATION OF DEEP LEARNING MODELS TO FACE
MASK DETECTION TASK
After the extended state-of-the-art analysis, we decided to
adapt two models that are the efficient solution for detecting

FIGURE 3. Example of four of the eight types of masks added to images
from the WIKI collection and converted to grayscale.

TABLE 2. Models hyperparameters.

in visible light images. The architectures with a small number
of parameters of the consideredmodels were selected because
of the limited number of available thermal images with facial
masks.

The first adapted model was the nano Yolov5 [34]. The
Yolov5 model was created for object detection and can be
easily extended to custom data. The ‘‘nano’’ version of the
adapted Yolov5 model has 1.9M trainable parameters in total.
In comparison, the ‘‘small’’ version has 7.2M parameters.
Model training approaches were used with or without transfer
learning. It is described later in this section.

The secondmodel chosen in this study was RetinaNet [21].
As the backbone, the ResNet model [35] with 18 layers was
selected for calculating the feature maps due to the smallest
number of parameters. Additionally, we decided to check
another backbone - the ResNet-101 model, which contains a
more significant number of layers and will allow comparing
the impact of the number of parameters on the metric values
obtained during facemask detection. This model is often used
for face detection (e.g., [36], [37]) for visible light recorded
images as well as in the domain of thermal images - for
example, for human detection (e.g., [38], [39]).

All models were trained using the training hyperparame-
ters presented in Table 2.
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FIGURE 4. Architecture of convolutional autoencoder.

The training was also carried out with or without transfer
learning for each model. Two different sets of pretrained
initial weights were used: COCO set [40] and WIKI set [32]
with masked faces. During the transfer learning scenario, the
feature extraction part of themodel was frozen. This approach
will allow to analyze different scenarios and choose the best
model training strategy.

B. DEEP LEARNING MODELS IN FACE MASK
CLASSIFICATION TASK
We decided to use a semi-supervised convolutional neural
network (CNN) with Convolutional Autoencoder (CAE) as
the first phase in the mask classification task. The use of a
combination of autoencoders with DNN for a classification
problem is commonly used for different tasks, for example,
for intelligent fault diagnosis of main reducer [41] or make-
up detection [42]. The Autoencoder model was inspired by
the [42] model and is used for feature extraction in unsu-
pervised model training using unlabelled data. The weights
obtained in the CEA training will be used to initialize the
CNNweights in the supervised learning approach. Themodel
architecture used in this study is shown in Figure 4. After
each convolutional layer (except the last one), Batch Normal-
ization was applied. The model’s training lasted 50 epochs,
and Adam was used as the optimizer with a learning rate of
0.00015. The loss function used was binary cross entropy.

Semi-supervised learning scheme for the mask classifica-
tion task is presented in Figure 5. Using the autoencoder part -
the encoder and adding two dense layers on top, with 256 and
128 neurons. Then the softmax function was used for classi-
fication into three classes. The trained autoencoder model in
the reconstruction task was used in the classification process.
The weights for the encoder were used for initialization, and
the weights for the classifier part were trained from scratch

FIGURE 5. Semi-supervised learning scheme for mask classification task.

using labeled data. The face mask classifier was trained by
100 epochs, the batch size was 32, and the optimizer used was
Mini Batch Gradient Descent (with a learning rate of 0.001).

Two other models were used to compare the proposed
approach with other popular classification models. The first
of them was ResNet-50 [35]. At the top, a classification part
was added, similar to the CAE-based CNN, consisting of two
dense layers (with 256 and 128 neurons, respectively) and
a classification layer. The input images were 128 × 128x1.
During the model’s training, the weights obtained by the
model on the ImageNet [43] set will be used, and the classifier
will be trained from scratch. Other training parameters will be
identical to those for the semi-supervised CNN.

Vision Transformer was proposed as a second architec-
ture to compare with the CAE-based CNN model. A model
designed to work with small sets of data [44] was used, which
uses the Shifted Patch Tokenization (SPT) block. A dropout
layer has been added between the SPT block and the Trans-
former. For the proposed model, the parameters presented
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TABLE 3. Vision Transformer model parameters.

in 3 Table were used. During the training of the model for
100 epochs, Adam with a learning rate of 0.00003 was uti-
lized as the optimizer, and a batch size was 16. Cross entropy
was used as the loss function. In addition, data augmentation
consisting of random horizontal flips and crops of a random
portion of the image was used to prevent overfitting.

Classifying the type of masks was carried out using a
separate subset allowing for the classification of masks on the
face. To prepare the images for the classification model train-
ing, they were subjected to preprocessing, which consisted of
extracting only the face of the person in the image. This will
provide the model with a fragment of the image on which it
can focus, thus removing unnecessary background elements.
To extract faces from the images, the Yolov3 model [45] was
used, which was trained to detect faces of people with masks
in thermal images described in our previous work [16].

IV. RESULTS
A. MASK DETECTION
For all models, each test scenario was repeated three times,
and the results are presented as the mean value and standard
deviation of the results obtained from single attempts.

Table 4 shows the results obtained for four different train-
ing approaches of the Yolov5 model in the ‘‘nano’’ version.
As can be seen, the highest value of the mAP50 metric was
obtained when initial weight values were transferred from the
model pretrained on the COCO set (RGB images). Only slight
differences in precision, recall, and mAP50 were obtained
for the investigated types of initial weights strategies. High
values, i.e., higher than 93%, of quality metrics were achieved
in all cases. The repeatability of results for each approach is
high; however, the highest standard deviation was obtained
for the approach with random initialization of weights as
assumed.

The metric values obtained for the RetinaNet model are
shown in Tables 5 and 6. Comparing the results obtained
for two different base models, an increase in the mAP50 and
recall value for the base ResNet-101 model is visible for all
types of training. The precision value for the model with

TABLE 4. Results obtained for the Yolov5 model in the nano version on
the test set.

TABLE 5. Results obtained for the RetinaNet model with ResNet-18 as a
backbone on the test set.

TABLE 6. Results obtained for the RetinaNet model with ResNet-101 as a
backbone on the test set.

fewer parameters - ResNet-18 - decreased for most test cases.
For both approaches, the results obtained are high, and a
model trained in this way could be used in an application that
allows the detection of a face mask area. As the RetinaNet
model with the highest parameter values, the model trained
on a set of thermal images with weights obtained during
training on the COCO set, where the ResNet-101 model was
the model base, can be indicated. For this model, the standard
deviation in training repetitions is lower, which gives a better
representation of the results on a small set, despite the more
significant number of parameters.

Figure 6 presents the values of losses obtained for the
training and test sets during the training of the best versions
of Yolov5 and RetinaNet models. Please notice that different
loss functions were used in the models. The loss function
depicted in the graphs is the bounding box regression loss,
showing the difference between the predicted boundary box
and the ground truth. For the ResNet-101 based model, the
loss function was Smooth L1 loss, while for the Yolov5model
was Complete Intersection over Union function. Analyzing
the presented graphs, it can be seen that for both models, the
loss values rapidly decreased during the first ten epochs. For
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FIGURE 6. Example of loss function change during models training on a
thermal images dataset with weights obtained on the COCO set for:
(a) Yolov5 model - CIoU loss (b) ResNet-101 based RetinaNet model -
Smooth L1 loss.

the test sets losess are slightly larger than in the case of the
training set, but they retain the decreasing trend in the training
cycle, which proves the correct course of the training.

Examples of mask area detection by the best version of the
Yolov5 model and RetinaNet (ResNet-101 based) are shown
in Figure 7. For each model, an example of mask position
prediction with a high Intersection Over Union (IoU) and a
much lower one is shown. The ground truth bounding boxwas
marked in yellow, and the predicted bounding box in blue.
The presented detection examples have confidence above 0.9.

B. MASK TYPE CLASSIFICATION
The results obtained for all mask classification models are
presented in Table 7. The accuracy value achieved by the
CNN based on the CAE model shows that 91% of the images
from the test set are correctly classified.

High precision and recall values were obtained for each
type of a mask. Analyzing the obtained F1-score values for
each of the classes, they illustrate a high balance between pre-
cision and recall for each of the classes. In Figure 9 confusion
matrixes are presented demonstrating results of CNN based
on CAE, Resnet-50 based model and Vision Transformer.
The classification model pretrained on the autoencoder cor-
rectly classified all examples belonging to ‘‘FFP2 mask’’

FIGURE 7. Examples of Yolov5 and RetinaNet (ResNet-101 based) results
(in blue) vs. ground truth (in yellow). Best matching: (a) Yolov5 -
IoU=0.954, (b) RetinaNet - IoU=0.927; Worse matching: (c) Yolov5 -
IoU=0.601 and (d) RetinaNet - IoU= 0.525.

TABLE 7. Results obtained for the classification models on the test set.

FIGURE 8. Missclassification made by CNN based on autoencoder model:
(a) predicted label: ‘‘FFP2’’, true label: ‘‘surgery’’ and (b) predicted label:
‘‘surgery’’, true label: ‘‘cloth’’.

class in the test set. Several incorrect classification results
were observed for other two types of facial masks. The most
incorrect classification is the assignment of surgery or cloth
masks to the FFP2 class. Figure 8 depicts an example of
misclassifications made by the CNN based on CAE model.

The accuracy of mask classification for the ResNet-50
based model was 81% which is good but much lower than
for the CAE-based model. Analyzing the confusion matrix,
a more significant number of mistakes is observed for this
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FIGURE 9. Confusion matrices for the classification models on the test
set: (a) CNN based on CAE, (b) ResNet-50 based and (c) Vision
Transformer.

model. The most challenging task for the ResNet-50 based
model was correctly classifying surgery and cloth based
masks. Again the classification results for ‘‘FFP2 masks’’ are
the best. The highest precision is obtained for surgery masks,
and there were only three wrong assignments of cloth masks
for this class.

The Vision Transformer (VT) model results are also worse
than for CNN based on CAE. Comparing results for all
models, the value of the F1-score for FFP2 masks is the
highest for the VT model. Collating the measures obtained
for individual types of masks, this model could be better at
correctly classifying cloth masks, achieving a recall of only
63% due to incorrectly assigning them to the surgery class.
However, the overall results are the best for CNN based on
CAE, showing the high and balanced F1-score values for all
types of masks.

The proposed best solutions (weights, code for test, and
thermal images examples) for mask detection and clas-
sification are available at https://github.com/natkowalczyk/
thermal-mask-classification-and-detection.

V. DISCUSSION
Adapting deep neural network models for object detection
allows the location detection of facial masks in thermal
images. Three models were trained, each in four test scenar-
ios. This made it possible to verify if the results were acciden-
tal and compare the models. Additionally, it was possible to
check whether transfer learning would allow for better results
than training the model from scratch or fine-tuning it. Facial
masks appear differently in thermal images than in visible
light images. For example, the appearance depends on the
breathing phase that modifies the temperature distribution at
the observed mask surface. The appearance of facial masks in
RGB images does not depend on physiological phenomena.
Additionally, it is much easier to obtain or synthesize RGB
images with facial masks (e.g., [26]). Therefore, theoretically,
transfer learning could be used to reuse the model’s weights
obtained during training with visible light images as freeze or
initial weights in training a model with thermal images. The
results showed that using weights pretrained on the COCO set
(no masks) as initial weights led to the best localization pre-
cision after the proper training on thermal images. However,
the maximum difference between analyzed strategies was
mAP50=2.9%, precision=3.6%, and recall=4%. The Yolov5
model (‘‘nano’’ version) gave the best results mAP50=97%,
precision=96.4% and recall=93.5%. The ‘‘nano’’ version of
the Yolov5 model was experimentally chosen because it
produced the best results and due to the smallest number
of parameters, which allowed the reduction of the overfit-
ting problem. Other methods like early stopping and image
augmentation (e.g., image rotation, flipping) were used to
reduce overfitting. Different types of thermal images were
also used to properly generalize the data (different resolu-
tions and different image quality). Instead of cross-validation,
many experiments with a random selection of batches were
provided.

It is difficult to compare the achieved results to other
studies because, to our knowledge, the lack of published
papers on facial mask localization within thermal images of
the face. Related thermal image datasets are mostly private
and more difficult to collect. So, only a few papers have
focused on face [46] or masked face [16] detection for such
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images. In [16], authors used the Yolov3model to detect faces
with masks in thermal images. The private dataset consisted
of instances of two classes: ‘‘mask’’ and ‘‘no mask’’. The
images represented different human poses at different dis-
tances from the camera. The obtained the mAP50 value was
99.3% and the precision was 66.1%. The low precision was
probably caused by a wide variety of low-quality thermal
images with masked faces recorded from long distances.
In this study, the extended dataset was used with additional
images (about 15% more) presenting faces closer to the
camera. Therefore, the obtained precision highly improved,
reaching 95.9% for the best model, while mAP50 was only
slightly lower (by about 2%).

Detection of facemaskswas also proposed in [26] and [28].
However, the authors only focused on visible light images
using the FMD database. They investigated the detection
and classification problem of face mask images into four
classes. The detection of the mask area (one class) achieves
an average precision of about 87% for both models, while for
all classes mAP was 67.64% for ETL-YOLO v4 and 71.69%
for Yolov4 based solution. For our scenarios and models,
achieved mAP50 is over 94% while retaining high precision
and recall values simultaneously.

This study also addressed the problem of facial mask type
classification. The proposed CNN model based on a con-
volutional autoencoder (CAE) architecture achieved the best
results in classifying mask types.

To our knowledge, no previous studies have classified the
type ofmask on the face in thermal images. Additionally, only
a limited number of studies have been performed on mask
classification in visible light images. In [29], the mask was
classified into two classes (qualified and unqualified), and
an accuracy of 97.84% was achieved. For our best model -
CCN based on CAE, the accuracy was 91%, but the masks
were classified into three more specific classes. In addition,
it is worth noting that in thermal images, the features are usu-
ally smoother and lower quality than in RGB images; there-
fore, the result achieved by the proposed model is relatively
high.

This study is probably the first on face mask classification
in thermal images. It could be potentially used in various
types of monitoring applications when it is necessary to check
the wearing of the correct type of mask.

The interesting observation is the higher recall for FFP2
masks. The test set was well-balanced, so the difference
in classification efficiency among other mask types could
be caused by the geometry of the FFP2 mask from other
types of masks. They resemble a duck’s bill, introducing
more high-frequency features (edges), which may affect
the feature extraction. For surgery or cloth type masks,
errors in the erroneous classification of examples within
these two classes may be due to the similar shape of these
masks. It is also worth noting that in the training and test
sets, people’s faces are registered at different angles, so in
some cases, it may be difficult to distinguish the type of
mask.

FIGURE 10. Example of the respiratory signal obtained for a sitting
person in an FFP2 mask based on detected mask area (average value in a
mask area for each frame). A subject indicated the start of the inspiration
phase (ground truth).

Thermal imaging is effectively used in the estimation of
respiratory rate. In [47], the possibility of using a portable
thermal camera to estimate breathing parameters based on
a video sequence was presented. It has been shown that the
rate and periodicity of respirations can be reliably assessed.
Similarly, in [48], Super Resolution Deep Neural Network
was proposed, allowing for improving the accuracy of respi-
ratory rate estimation from low-resolution thermal sequences.
The topic of determining RR using thermal imaging was also
taken up in many other papers, for example, in [49], in the
context of monitoring this parameter in newborns. The above
works show that using thermal imaging (even from very low-
resolution cameras) allows for estimating the respiratory rate.
In times of pandemic, whenwearing facemasks is mandatory,
detecting the mask area on the face can probably allow esti-
mating the local temperature change in the area of a mask.
It could potentially improve the accuracy of the respiratory
rate estimation compared to using the entire face area with
only local changes near the nostrils and mouth. Figure 10
shows an example signal for a person wearing an FFP2 (N95)
mask, extracted on the basis of the detected area of the mask
on the face. Based on the signal shown, the regularity of the
breath can be observed and its frequency can be calculated.
This signal was estimated for one of the co-author’s thermal
sequences and is used here only to illustrate possible further
studies and applications.

Detection of the position of the mask on the face about the
facial feature points may allow checking whether the mask
on the face is correctly put on and covers the mouth and nose.
This issue is significant about the epidemiological approach
presented in [50] - the spread of droplet-borne diseases (when
speaking, breathing, coughing, etc.) can be reduced by wear-
ing face masks. Improper wearing of masks (not covering
the nose or mouth) does not fully bring the expected results,
and the effectiveness of preventing the spread of the disease
decreases. In Fig. 11 an example of possible characteristic
points detection (68 facial feature points) in reference to the
face in a mask is presented. As can be seen, some of these
points for the person wearing the mask are covered by it.
Identification of these points in reference to the location of the
detected mask will allow determining whether the mask is put
on correctly (i.e. covers the mouth and nose) or whether it is
put on at all. This would be possible using the mask detection
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FIGURE 11. Possible facial feature points in reference to the face in a
mask. Detected mask’s coordinates and detected characteristic facial
points can allow determining whether the mask is put on correctly.

method proposed in this paper and will be analyzed in future
works.

The issue of classifying the type of mask is advantageous
due to the potential of significantly reducing the transmission
of SARS-CoV-2 depending on the type of mask worn on the
face, shown in [51]. The basic fact is that a properly worn
face mask (covering the mouth and nose) can limit the spread
of the disease. In addition, a significantly lower virus spread
was demonstrated when wearing N95 masks compared to
masks used formedical procedures (surgical masks) and cloth
masks.

VI. CONCLUSION
It is probably the first study showing that the detection
(localization) of face masks in thermal imaging is possible
using deep object detection models. Training the models
on a prepared and sufficiently large set of thermal images
allows for achieving high metric values making this approach
potentially interesting for practical applications. For example,
the models can be used in further studies to detect if a mask
is worn correctly to cover a nose and mouth. Additionally,
detecting themask location on a face can be used to determine
the frequency of breathing. It can be achieved by observing
a mean temperature change in different phases caused by the
breathing process. These problems will be addressed in future
studies.

It is also probably the first study that addressed the clas-
sification of facial mask types in thermal images. It was
shown that the classification of the type of mask worn on
the face is possible with relatively high accuracy. For the
classification of three types of masks - FFP2, surgery, and
cloth, a dedicated CNN model was created based on a convo-
lutional autoencoder. A face mask type classification is useful
when requiring a specific type of mask, for example, in some
countries, places, etc.

Both aspects of this study, i.e., facial mask localization
and mask type classification, can be used together in future

applications (e.g., as a part of healthcare infrastructure in
hospitals) related to epidemiological screening. It could be
important during the epidemic state, pandemic state, or in
other related situations (clinics, high environmental pollution,
etc.). The use of adequately worn masks and proper mask
types can be significant factors in reducing the spread of
viruses. This study shows that it is potentially possible to
achieve these practical goals by correctly processing thermal
recordings. Using thermal imaging can be potentially more
acceptable by citizens as it reveals less high-frequency facial
features than visible light images and is usually more difficult
to match with other personal data.
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