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ABSTRACT This study is aimed at addressing the adaptive leader–follower safety formation control problem
for multiple quadrotors with limited measurement range, unknown disturbances, and thrust saturation.
We develop a novel state-transformation-based unified design strategy to solve the underactuation and
nonlinear input coupling problems of quadrotors without dividing the outer and inner loop subsystems. First,
the state transformation technique is introduced to extract virtual control variables from nonlinear coupled
terms combined with the thrust input. Then, a unified formation error is designed to ensure safe formation
tracking between the leader and followers with limited measurement range. In the design of a controller,
compensating signals using radial basis function neural networks are introduced to compensate for unknown
nonlinear terms and develop a modified command-filtered backstepping method. The proposed approach
outperforms the existing hierarchical designs and can effectively avoid collisions between quadrotors,
even in scenarios with thrust saturation and external disturbances. The Lyapunov stability theory is used
to demonstrate that all the errors in the closed-loop system are bounded and can be arbitrarily reduced.
Finally, comparative analyses are performed based on simulations to verify the effectiveness of the proposed
theoretical approach.

INDEX TERMS Safety formation control, state transformation, multiple quadrotors, underactuated system,
limited measurement range.

I. INTRODUCTION
A group of multi-robots can perform complicated tasks more
efficiently than a single robot by sharing individual informa-
tion [1]. In particular, unmanned aerial vehicles are character-
ized by high mission utilization with low cost and excellent
maneuverability [2]. From this point of view, various types
of research have been conducted on the formation control of
quadrotors because it has the advantage of enabling efficient
mission performance due to vertical takeoff and landing.
Among these control strategies, the leader-follower approach
has been widely used due to its scalability and simplicity
(see [3] and the references therein). For successful formation
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control, it is necessary to prevent collisions between quadro-
tors within the measurement range. Therefore, research on
formation control must be performed considering the colli-
sion avoidance and connectivity preservation problems [4].

A quadrotor is an underactuated system that contains
highly nonlinear coupling terms in the position model.
To address this problem, control approaches such as
proportional-derivative [5], linear-quadratic regulator [6],
model predictive control [7], and feedback linearization [8]
have been proposed under the assumption that the roll and
pitch angles approach zero. However, linearized model-based
methods exhibit low efficiencies in translational motion and
are vulnerable to external disturbances due to their nar-
row operating ranges [9]. Nonlinear control methods using
the hierarchical strategy have been studied to overcome the
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disadvantages of linear control methods. In [10], a time-
varying formation tracking method was proposed using the
dynamics of the outer loop simplified by a double integrator.
Robust control methods, such as H∞ [11] and the sliding
mode control [12], were developed to ensure robustness
against disturbances. In [13], an event-triggered formation
control method was proposed to improve the battery life.
In [14] and [15], neural networks were utilized to handle
unknown nonlinear functions. Robust filters were used to
address state-dependent disturbances [16]. Reinforcement
learning was applied for the model-free formation control
of underactuated quadrotors [17]. A distributed consensus
control considering a constrained environment was developed
for multiple quadrotors [18]. Despite these efforts, the hier-
archical design strategy-based methods [10], [11], [12], [13],
[14], [15], [16], [17], [18] encounter the following problems:
When deriving the desired roll and pitch angles, they are
assumed to be equal to the actual angles of the quadrotor.
However, this assumption can be restrictive because angular
errors occur inevitably during transient responses. Addition-
ally, this framework cannot consider external disturbances in
the position model. Therefore, the position-tracking perfor-
mance of the quadrotor may be degraded. To improve the
performance, large torque inputs may be necessary; however,
these inputs can reduce the operating time of the quadrotor.

The artificial potential field (APF) method has been
widely used due to its real-time operation and concise
mathematical description for collision avoidance. In [19],
a potential-function-based control method was proposed to
avoid intervehicle collisions. A sliding-surface-like variable
combining the gradient of theAPF [20] and a target avoidance
function [21] were developed to avoid collisions between
quadrotors and obstacles such as static or dynamic objects.
Fuzzy control rules [22] and the rotating potential field [23]
were introduced to solve the local minimum problem [24]
of the APF. Notably, the design of a controller using the
APF method requires a linear combination of independent
potential functions for formation tracking and collision avoid-
ance of quadrotors. In this scenario, the time derivatives
of the potential functions share the same control input for
Lyapunov-based control design. Consequently, it becomes
challenging to ensure the stability of the safety formation
tracking system when designing a controller.

Motivated by these observations, the objective of this study
is to develop a state-transformation-based leader-follower
safety formation control design for range-constrained
quadrotors. First, we propose a state-transformation-based
control method to prevent the position-tracking performance
degradation that is typically encountered in hierarchical
strategies, which neglect the external disturbances in the
position model and transient response of attitude tracking.
Using the state transformation technique, the control system
is designed recursively without dividing it into two sub-
systems as in the hierarchical strategy. Consequently, the
position-tracking performance can be improved by consider-
ing the attitude angle errors and external disturbances in the

position model. Second, to design a controller that guarantees
both formation tracking and collision avoidance, we propose
a safe formation control system based on a unified error
function. A modified command-filtered backstepping (CFB)
and neural networks are used to compensate for unknown
nonlinear effects of multiple quadrotors. Finally, the stability
of the closed-loop safety formation system is proven using
the Lyapunov stability theorem.

The main contributions of this study are twofold:
First, compared with the existing hierarchical control
strategies [10], [11], [12], [13], [14], [15], [16], [17], [18],
we develops a novel state-transformation-based forma-
tion control method to relax the assumption that the
desired roll and pitch angles are the same as the actual
angles of the quadrotor. In this manner, the controller
for the position and attitude dynamics can be uni-
fied in a recursive design, unlike the existing studies
[10], [11], [12], [13], [14], [15], [16], [17], [18] that hierar-
chically divide the position and attitude dynamics. Conse-
quently, the proposed design approach can consider external
disturbances in the position model and transient response
of attitude tracking, thereby enhancing the formation track-
ing performance with low torque inputs and resulting in
increased operation time for practical application. Second,
a unified error-based design for the safety formation track-
ing of range-constrained multiple quadrotors is presented
to overcome the problem of sharing the same input of the
APF methods [19], [20], [21], [22], [23]. Using the unified
error, an adaptive formation controller is designed to ensure
formation safety, including collision avoidance between the
leader and followers within the limited measurement range.
Furthermore, the modified CFB approach is used to compen-
sate for unknown nonlinear effects of multiple quadrotors by
using neural-network-based compensating signals.

The remaining paper is organized as follows. Section II
describes the model and the control objectives. Section III
presents the novel state-transformation-based unified design
for leader-follower safety formation control. Section IV
presents the simulation results to verify the performance of
the proposed method. Section V presents the concluding
remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. QUADROTOR MODEL
The rigid-body model of the jth quadrotor is described as
follows [25]:

mjp̈j = Rj(qj)u(Fj) + dj − mjGj (1)

Jjq̈j = Cj(q̇j) + τj + τd,j (2)

where pj = [xj, yj, zj]⊤ is the position vector of the center of
the mass in the inertial frame, qj = [φj, θj, ψj]⊤ is the attitude
angle vector describing the orientation of the body-fixed
frame, mj is the total mass of the quadrotor, Gj = [0, 0, g]⊤

is the gravitational acceleration vector, dj and τd,j denote the
disturbance vectors including unstructured uncertainty and
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FIGURE 1. Leader-follower configuration.

wind, Fj is the total thrust force exerted by the four rotors, and
τj = [τ1,j, τ2,j, τ3,j]⊤ is the torque vector in the body-fixed
frame. u(Fj) is the output of the saturation function, which is
described by

u(Fj) =


Fm,j, Fj < Fm,j
Fj, Fm,j ≤ Fj
FM ,j, Fj > FM ,j

(3)

where Fm,j and FM ,j are the known lower and upper bounds
of Fj, respectively. The vectors Rj and Cj, and matrix Jj are
defined as

Rj(qj)∗ =

sinψj sinφj + cosψj sin θj cosφj
sinψj sin θj cosφj − cosψj sinφj

cos θj cosφj


Jj∗ =

Jx,j 0 0
0 Jy,j 0
0 0 Jz,j

 ,Cj(q̇j) =

(Jx,j − Jz,j)θ̇jψ̇j
(Jz,j − Jx,j)φ̇jψ̇j
(Jx,j − Jy,j)φ̇jθ̇j


where Jx,j, Jy,j, and Jz,j represent the inertia with respect to
the body-fixed frame. In these expressions, mj is assumed to
be known, but Cj, Jj, dj, and τd,j are unknown.
Assumption 1: The disturbance vectors dj and τd,j are

bounded such that ∥dj∥ ≤ d̄j and ∥τd,j∥ ≤ τ̄d,j where d̄j and
τ̄d,j are unknown constants.
Remark 1: The constraint that the total thrust force Fj of

quadrotors must be positive is represented using the satura-
tion function u(Fj) in (1). The values of Fm,j and FM ,j are
selected as 0 < Fm,j < FM ,j when Fj > 0.

B. LEADER-FOLLOWER MODEL
The leader-follower model, shown in Fig. 1, is used to design
formation controllers for multiple quadrotors. The relative
distance lij, angles of incidence αij and bearing βij can be

expressed using the coordinates of the quadrotors as follows:

lij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

αij = arctan
(

zi − zj√
(xi − xj)2 + (yi − yj)2

)

βij = ψi − arctan
(
yi − yj
xi − xj

)
(4)

where subscript i denotes the leader of follower j. The relative
distance lij and angle of incidence αij can be measured by
follower j. The bearing angle βij can be obtained indirectly
from the angle ϕij measured by follower j, i.e., βij = ϕij +

ψi − ψj. From Fig. 1, the following equations are obtained:

xi − xj = lij cosαij cos(ψi − βij)

yi − yj = lij cosαij sin(ψi − βij)

zi − zj = lij sinαij. (5)

From (5), the time derivative of (4) is derived as

l̇ij = sinαij(żi − żj)

+ cosαij cos(ψi − βij)(ẋi − ẋj)

+ cosαij sin(ψi − βij)(ẏi − ẏj)

α̇ij =
cosαij
lij

(żi − żj)

−
sinαij
lij

cos(ψi − βij)(ẋi − ẋj)

−
sinαij
lij

sin(ψi − βij)(ẏi − ẏj)

β̇ij = ψ̇i +
1

lij cosαij
sin(ψi − βij)(ẋi − ẋj)

−
1

lij cosαij
cos(ψi − βij)(ẏi − ẏj). (6)

C. RADIAL BASIS FUNCTION NEURAL NETWORK
According to the universal approximation theory [26],
an unknown nonlinear function fn,j can be approximated by
the radial basis function neural network (RBFNN) [27] as
follows:

fn,j = W⊤
n,j8n,j(χn,j) + εn,j (7)

where Wn,j is the optimal weight of the RBFNN, εn,j is the
reconstruction error, and 8n,j = [8n,1,j, . . . , 8n,Nj,j]

⊤ is
the Gaussian function defined by 8n,h,j = exp(−(χn,j −

cn,h,j)⊤(χn,j − cn,h,j)/(2ς2n,h,j)) for h = 1, . . . ,Nj; χn,j is
the input of the RBFNN, Nj is the number of hidden layer
nodes, and cn,h,j and ςn,h,j denote the center and width of
the Gaussian function, respectively. Notably, the Gaussian
function 8n,j is bounded such that ∥8n,j∥ ≤

√
Nj.

Property 1: The optimal weight Wn,j and reconstruction
error εn,j are bounded such that ∥Wn,j∥F ≤ W n,j and ∥εn,j∥ ≤

ε̄n,j, respectively, where W n,j and ε̄n,j are positive constants
and ∥ · ∥F denotes the Frobenius norm.
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D. CONTROL OBJECTIVES
Themain objective of this study is to design the control inputs
Fj and τj for maintaining the desired safety formation of
multiple quadrotors under range constraints. To achieve this
objective, the following safety formation conditions must be
satisfied:

1) ra,j < lij(t) < rc,j, ∀t ≥ 0;
2) limt→∞ |ld,ij − lij| ≤ µ0, limt→∞ |αd,ij − αij| ≤ µ1,

and limt→∞ |βd,ij − βij| ≤ µ1;

where µ0 and µ1 are arbitrary small constants, ra,j is the
minimum avoidance range, rc,j is the maximummeasurement
range, and ld,ij, αd,ij, and βd,ij denote the desired distance and
angles of incidence and bearing, respectively.
Assumption 2: The desired distance ld,ij and angles of

incidence αd,ij and bearing βd,ij are constants and bounded
such that ld,ij ∈ (ra,j, rc,j − ra,j), αd,ij ∈ (−π/2, π/2),
and βd,ij ∈ [−π/2, π/2]. Additionally, the initial distance
lij(0) and the height zi of the leader robot are given to satisfy
lij(0) ∈ (ra,j, rc,j) and zi(t) > ld,ij| sinβd,ij| + ra,j, ∀t ≥ 0,
respectively.

III. MAIN RESULTS
In this section, a state-transformation-based unified control
design approach is developed to achieve the formation control
objectives without separating the outer and inner loop subsys-
tems. A novel state transformation technique is introduced
to solve the underactuation and nonlinear input coupling
problems. A unified formation error is derived to ensure
safe formation tracking. Finally, the formation controller is
designed using the modified CFB.

A. STATE TRANSFORMATION
The position model in (1) has three outputs (xj, yj, zj) and one
control input Fj. Moreover, the control input is complexly
coupled with trigonometric functions. To address these prob-
lems, the state variables φj and θj are transformed as follows:

cosφj =
1√

1 + φ̄2j

, sinφj =
φ̄j√

1 + φ̄2j

cos θj =
1√

1 + θ̄2j

, sin θj =
θ̄j√

1 + θ̄2j

(8)

where φ̄j and θ̄j are the transformed state variables defined as
φ̄j = tanφj and θ̄j = tan θj, respectively.

Substituting (8) into (1) yields

p̈j = R̄j(q̄j)
u(Fj)

mj
√
1 + φ̄2j

√
1 + θ̄2j

+
dj
mj

− Gj (9)

where

R̄j(q̄j) =


φ̄j

√
1 + θ̄2j sinψj + θ̄j cosψj

θ̄j sinψj − φ̄j

√
1 + θ̄2j cosψj

1


q̄j = [φ̄j, θ̄j, ψj]⊤.

Remark 2: The position model of the quadrotor is an
underactuated system with one control input Fj and three out-
puts: xj, yj, and zj. Additionally, the position model combines
state variables φj and θj with trigonometrical functions (see
Rj(qj)u(Fj) given in (1)), whichmakes it challenging to design
a recursive control system that unifies the position and atti-
tude dynamics. To address this problem, most of the existing
studies [10], [11], [12], [13], [14], [15], [16], [17], [18] have
used a hierarchical design strategy. This strategy is aimed
at deriving the desired roll φd,j and pitch θd,j angles under
the assumption that φj = φd,j and θj = θj,d . However, this
assumption fails to account for attitude angle errors and exter-
nal disturbances in a real environment, resulting in degraded
control performance. To overcome this problem, we intro-
duce the state transformation (8) to transform the position
model into the form shown in (9), where transformed state
variables φ̄j and θ̄j are outside the trigonometric functions (see
R̄j(q̄j) in (9)). This configuration allows the transformed state
variables to be used as virtual controls, enabling the design
of a recursive control system that considers the attitude errors
and external disturbances in the position model.

B. FORMATION CONTROLLER DESIGN
Define the unified formation errors for leader-follower for-
mation tracking with collision avoidance as

e1,j =

e11,je12,j
e13,j

 =

ln
( hij+δij
hij(1−δij)

)
αd,ij − αij
βd,ij − βij


e2,j = q̄j − [η̄⊤

1,j, ψd,j]
⊤

e3,j = q̇j − η̄2,j

(12)

where

hij =
rc,j − ld,ij
ld,ij − ra,j

, δij =
ld,ij − lij
ld,ij − ra,j

.

ϒ−1
1,j =

ρij cosαij cos(ψi − βij) −lij sinαij cos(ψi − βij) lij cosαij sin(ψi − βij)
ρij cosαij sin(ψi − βij) −lij sinαij sin(ψi − βij) −lij cosαij cos(ψi − βij)

ρij sinαij lij cosαij 0

 (10)

ϒ−1
2,j =

cos2 φj 0 0
0 cos2 θj 0
0 0 1

 . (11)

43502 VOLUME 11, 2023



B. S. Park, S. J. Yoo: State-Transformation-Based Recursive Design Strategy for Leader-Follower Safety

The vectors η̄1,j = [η̄11,j, η̄12,j]⊤ and η̄2,j = [η̄21,j, η̄22,j, η̄23,j]⊤

are the filtered virtual control laws obtained by the first-order
filters such that ˙̄ηn,j = γn,j(ηn,j − η̄n,j), where n = 1, 2,
γn,j are positive constants, and η1,j = [η11,j, η12,j]⊤ and
η2,j = [η21,j, η22,j, η23,j]⊤ denote the virtual control vectors.
The desired yaw angle ψd,j is a constant.
Remark 3: If the error e11,j of (12) is bounded at all times,

it can be shown that −hij < δij(t) < 1 holds for all
t ≥ 0, given that hij > 0 is ensured from Assumption 2.
Using the definition of δij, we can deduce that the condition
−hij < δij(t) < 1 implies ra,j < lij(t) < rc,j. Thus, the
boundedness of e11,j ensures collision avoidance within the
limited measurement range for the follower j.
Define the compensated tracking errors for the modified

CFB as follows:

s1,j = Ej − ξ1,j

s2,j = e2,j − ξ2,j

s3,j = e3,j (13)

where Ej = [E11,j,E12,j,E13,j]⊤ = ė1,j +31,je1,j and31,j is
a positive-definite matrix. The compensating signals ξn,j for
n = 1, 2 are derived from

ξ̇n,j = −kn,jξn,j + Ŵ⊤
n,j8n,j(χn,j), ξn,j(0) = 0 (14)

where kn,j and Ŵn,j represent the positive design parameters
the estimates of optimal weightsWn,j of the RBFNNs, respec-
tively.

The update rules of Ŵn,j for n = 1, 2 are selected as
follows:

˙̂W n,j = 0n,j(8n,j(χn,j)s⊤n,j − σn,jŴn,j) (15)

where 0n,j ∈ RNj×Nj and σn,j ∈ R are positive design param-
eters, χ1,j = [lij, ρij, αij, βij, q̄⊤

j , ṗ
⊤
j , ṗ

⊤
i , η

⊤

1,j, η̄
⊤

1,j, ė
⊤

1,j,

s⊤1,j, ψj, ψi, ψ̇i,Fj]
⊤ and χ2,j = [q⊤

j , η
⊤

2,j, η̄
⊤

2,j]
⊤.

Remark 4: The conventional CFB is typically used to
compensate for the error between the virtual control and
its filtered signal in the compensating signal (e.g, ξ̇n,j =

−kn,jξn,j + η̄n,j − ηn,j). To prove closed-loop stability using
this method, it is necessary to bound the time derivative of the
virtual control, which imposes certain constraints (see Lem-
mas 1 and 2 in [29] for details). In contrast, themodified CFB
uses the outputs of the RBFNNs to define the compensating
signals, as shown in (14). Unlike the conventional CFB, the
modified CFB does not require the bounds of differentiated
virtual controls to analyze closed-loop stability. As a result,
the compensating signals using RBFNNs can relax the con-
straints of the conventional CFB.

The time derivative of (13) along with (2), (6), (9), and (12)
is expressed as follows:

ṡ1,j = ϒ1,j

(
R̄(q̄j)

u(Fj)

mj
√
1 + φ̄2j

√
1 + θ̄2j

− Gj − p̈i +
dj
mj

)
+ ϒ̇1,j(ṗj − ṗi) − [0, 0, ψ̈i]⊤

+31,jė1,j − ξ̇1,j (16)

ṡ2,j = ϒ2,jq̇j − [ ˙̄η⊤

1,j, 0]
⊤

− ξ̇2,j (17)

ṡ3,j = J−1
j (Cj(q̇j) + τj + τd,j) − ˙̄η2,j (18)

where

ϒ1,j =


cosαij cos(ψi−βij)

ρij

cosαij sin(ψi−βij)
ρij

sinαij
ρij

−
sinαij cos(ψi−βij)

lij
−

sinαij sin(ψi−βij)
lij

cosαij
lij

sin(ψi−βij)
lij cosαij

−
cos(ψi−βij)
lij cosαij

0


ϒ2,j =

sec2 φj 0 0
0 sec2 θj 0
0 0 1


ρij =

(1 − δij)(hij + δij)(ld,ij − ra,j)2

rc,j − ra,j
.

The inverse matrices of ϒ1,j and ϒ2,j exist, as shown at the
top of the page.

The following function is defined to facilitate the controller
design:

△(Fj) = u(Fj) − Fj. (19)

From (12), it is obtained that

q̄j = e2,j + [η̄⊤

1,j, ψd,j]
⊤

− [η⊤

1,j, 0]
⊤

+ [η⊤

1,j, 0]
⊤

q̇j = e3,j + η̄2,j − η2,j + η2,j (20)

where η1,j and η2,j are the virtual control laws.
Then, the virtual and actual controls are designed as

follows:

η11,j =
1

ζ3,j

√
1 + θ̄2j

(ζ1,j sinψj − ζ2,j cosψj) (21)

η12,j =
1
ζ3,j

(ζ1,j cosψj + ζ2,j sinψj) (22)

η2,j = ϒ−1
2,j (−k2,je2,j + [ ˙̄η⊤

1,j, 0]
⊤

− ϒ⊤

3,jϒ
⊤

1j s1,j) (23)

Fj = mjζ3,j
√
1 + φ̄2j

√
1 + θ̄2j (24)

τj = −k3,je3,j − Ŵ⊤

3,j83,j − ϒ⊤

2,js2,j (25)

where kn,j, n = 1, 2, 3 are positive design parameters,
Ŵ3,j denotes the estimate for the optimal weight W3,j of the
RBFNN, and ζ1,j, ζ2,j, and ζ3,j are given byζ1,jζ2,j

ζ3,j

 = Gj + p̈i − ϒ−1
1,j (k1,jEj − [0, 0, ψ̈i]⊤) − ϒ3,jξ2,j

(26)

with

ϒ3,j =


ζ3,j

√
1 + θ̄2j sinψj ζ3,j cosψj 0

−ζ3,j

√
1 + θ̄2j cosψj ζ3,j sinψj 0

0 0 0

 .
The update rule of Ŵ3,j is selected as follows:

˙̂W 3,j = 03,j(83,j(χ3,j)s⊤3,j − σ3,jŴ3,j) (27)
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where 03,j ∈ RNj×Nj and σ3,j ∈ R are positive design
parameters, and χ3,j = [q̇⊤

j ,
˙̄η⊤

2,j, s
⊤

3,j, τ
⊤
j ]⊤.

Remark 5: The singularity problem occurs when ζ3,j =

0 in (21) and (22). To address this problem, the design param-
eter k1,j is chosen as follows:

k1,j =

 k̄1,j + 1, if k̄1,j =
g+ z̈i

ρijE11,j sinαij + lijE12,j cosαij
k̄1,j, otherwise

(28)

where the design parameter k̄1,j is chosen to satisfy k̄1,j >
1/2. From the definition of ζ3,j, we have

ζ3,j = g+ z̈i − k1,j(ρijE11,j sinαij + lijE12,j cosαij).

If k̄1,j ̸= (g + z̈i)/(ρijE11,j sinαij + lijE12,j cosαij), then
k1,j = k̄1,j and thus ζ3,j ̸= 0. If k̄1,j = (g +

z̈i)/(ρijE11,j sinαij + lijE12,j cosαij), then k1,j = k̄1,j + 1 and
ζ3,j = −(ρijE11,j sinαij + lijE12,j cosαij). In (28), because
the design parameter k̄1,j is chosen as a positive constant,
k̄1,j = (g + z̈i)/(ρijE11,j sinαij + lijE12,j cosαij) means that
ρijE11,j sinαij + lijE12,j cosαij ̸= 0 and thus, ζ3,j ̸= 0.
Therefore, the singularity problem can be eliminated.
Remark 6: Thrust saturation degrades the performance of

the closed-loop control system and may cause it to lose
stability in a severe environment [30]. For this issue, the
compensating signal using the RBFNN is designed to com-
pensate for the difference 1(Fj) between the control input
and saturated control input. The effect of the difference1(Fj)
is included in the unknown function f1,j (see (15)), which is
estimated by the RBFNN in the dynamics (14) of the com-
pensating signal ξ1,j. Notably, the upper bound of the thrust
saturation is determined by manufacturer’s specifications and
structural limitations of the quadrotor. Therefore, the quadro-
tors’ performance on preserved connectivity and collision
avoidance can be maintained within the range allowed by
the specifications. If a small upper bound of the thrust sat-
uration exists beyond the range of the specifications, it may
not be feasible to achieve formation tracking with collision
avoidance. In such a scenario, the desired formation should
be appropriately specified to avoid any instability, even with
a small upper bound on the thrust saturation.

C. STABILITY ANALYSIS
Substituting (19) and the actual control input Fj in (24) into
(16) yields

ṡ1,j = ϒ1,j

(
R̄(q̄j)ζ3,j + R̄(q̄j)

1(Fj)

mj
√
1 + φ̄2j

√
1 + θ̄2j

−Gj − p̈i +
dj
mj

)
+ ϒ̇1,j(ṗj − ṗi)

− [0, 0, ψ̈i]⊤ +31,jė1,j − ξ̇1,j. (29)

Using the virtual control laws (21) and (22), we have

R̄(q̄j)ζ3,j = ϒ3,j[η⊤

1,j, 0]
⊤

+ [0, 0, ζ3,j]⊤

+ ϒ3,j[η̄⊤

1,j − η⊤

1,j, 0]
⊤

+ ϒ3,je2,j

= [ζ1,j, ζ2,j, ζ3,j]⊤ + ϒ3,j[η̄⊤

1,j − η⊤

1,j, 0]
⊤

+ ϒ3,je2,j. (30)

Substituting (14), (26), and (30) into (29) yields

ṡ1,j = −k1,js1,j + ϒ1,jϒ3,js2,j − Ŵ⊤

1,j81,j

+ f1,j −
d̄2j

2m2
j ϵj
ϒ⊤

1,jϒ1,js1,j + ϒ1,j
dj
mj

(31)

where

f1,j = ϒ̇1,j(ṗj − ṗi) + ϒ1ϒ3[η̄⊤

1,j − η⊤

1,j, 0]
⊤

+31,jė1,j

+ ϒ1,jR̄(q̄j)
△(Fj)

mj
√
1 + φ̄2j

√
1 + θ̄2j

+
d̄2j

2m2
j ϵj
ϒ⊤

1,jϒ1,js1,j.

From (17) and (20), we obtain

ṡ2,j = ϒ2,j(e3,j + η̄2,j − η2,j + η2,j) − [ ˙̄η⊤

1,j, 0]
⊤

− ξ̇2,j.

By applying the compensating signal (14) and the virtual
control law (23) to the above equation, we obtain

ṡ2,j = −k2,js2,j + ϒ2,js3,j − ϒ⊤

3,jϒ
⊤

1,js1,j − Ŵ⊤

2,j82,j

+ f2,j (32)

where f2,j = ϒ2,j(η̄2,j − η2,j).
Substituting the actual control input (25) into (18) yields

Jjṡ3,j = −k3,js3,j − Ŵ⊤

3,j83,j − ϒ⊤

2,js2,j

+ τd,j + f3,j −
τ̄ 2d,j

2ϵj
s3,j (33)

where

f3,j = Cj(q̇j) − Jj ˙̄η2,j +
τ̄ 2d,j

2ϵj
s3,j.

The following theorem provides the main result of this
paper.
Theorem 1: If the control inputs given in (25) with the

update rules provided in (15) and (27) are applied to the
leader-follower model (6) satisfying Assumptions 1–2, then
there exist design parameters for achieving the control objec-
tives for any initial conditions. Furthermore, the proposed
approach ensures that the formation errors can be made arbi-
trarily small, thereby guaranteeing the desired safety forma-
tion of multiple quadrotors.
Proof: Consider the following Lyapunov function

candidate:

V =
1
2

( 2∑
n=1

s⊤n,jsn,j + s⊤3,jJjs3,j +
3∑

n=1

tr(W̃⊤
n,j0

−1
n,j W̃n,j)

)
where W̃n,j = Wn,j − Ŵn,j and tr(·) denotes a trace of matrix.
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The time derivative of V along with (31), (32), and (33) is
expressed as

V̇ = s⊤1,j

(
− k1,js1,j + ϒ1,jϒ3,js2,j + f1,j − Ŵ⊤

1,j81,j

−
d̄2j

2m2
j ϵj
ϒ⊤

1,jϒ1,js1,j + ϒ1,j
dj
mj

)
+ s⊤2,j(−k2,js2,j + ϒ2,js3,j − ϒ⊤

3,jϒ
⊤

1,js1,j

+ f2,j − Ŵ⊤

2,j82,j)

+ s⊤3,j

(
− k3,js3,j + f3,j − Ŵ⊤

3,j83,j − ϒ⊤

2,js2,j

+ τd,j −
τ̄ 2d,j

2ϵj
s3,j

)
−

3∑
n=1

tr(W̃⊤
n,j0

−1
n,j

˙̂W n,j). (34)

According to Assumption 1 and Young’s inequality, it is
obtained that

s⊤1,jϒ1,j
dj
mj

≤
d̄2j

2m2
j ϵj

s⊤1,jϒ
⊤

1,jϒ1,js1,j +
ϵj

2

s⊤3,jτd,j ≤
τ̄ 2d,j

2ϵj
s⊤3,js3,j +

ϵj

2
(35)

where ϵj is a positive constant.
From (7), the unknown nonlinear functions fn,j, n =

1, 2, 3 can be approximated by the RBFNNs as follows:

fn,j = W⊤
n,j8n,j + εn,j. (36)

Substituting (15), (27), (35), and (36) into (34) yields

V̇ ≤ −k̄1,js⊤1,js1,j − k2,js⊤2,js2,j − k3,js⊤3,js3,j

+ s⊤1,jε1,j + s⊤2,jε2,j + s⊤3,jε3,j

+

3∑
n=1

σn,jtr(W̃⊤
n,jŴn,j) + ϵj. (37)

According to Assumption 1 and Young’s inequality, (37) can
be expressed as follows:

V̇ ≤ −

(
k̄1,j −

1
2

)
s⊤1,js1,j −

(
k2,j −

1
2

)
s⊤2,js2,j

−

(
k3,j −

1
2

)
s⊤3,js3,j −

3∑
n=1

σn,j

2
∥W̃n,j∥

2
F

+
1
2

3∑
n=1

(ε̄2n,j + σn,jW
2
n,j) + ϵj. (38)

Choosing k̄1,j = 0.5 + k∗

1,j, k2,j = 0.5 + k∗

2,j, and k3,j =

0.5 + k∗

3,j with positive constants k∗
n,j for n = 1, 2, 3 yields

V̇ ≤ −2c0V + c1, (39)

where c0 = min{k∗

1,j, k
∗

2,j, k
∗

3,jλJ−1
j
, λσ1,j01,j , λσ2,j02,j ,

λσ3,j03,j} and c1 =
∑3

n=1(ε̄
2
n,j + σn,jW

2
n,j)/2+ ϵj. λ(·) denotes

FIGURE 2. Connection between quadrotors.

the minimum eigenvalue of the matrix (·). Integrating both
sides of (39) yields

V (t) ≤

(
V (0) −

c1
2c0

)
exp(−2c0t) +

c1
2c0

(40)

Therefore, V (t) ≤ max{V (0), c1/(2c0)} is ensured. Since
V (0) and c1/(2c0) are bounded, sn,j and W̃n,j for n =

1, 2, 3 are in L∞. The optimal weights Wn,j and Gaussian
functions 8n,j of RBFNNs for n = 1, 2, 3 are bounded by
Property 1 and the definitions of 8n,j, respectively. Then,
from (14), the compensating signals ξn,j for n = 1, 2, 3 are
bounded. Because s1,j and ξ1,j are bounded, it holds that
e11,j ∈ L∞. Therefore, it is ensured that ra,j < lij(t) < rc,j
for t ≥ 0.
From Property 1, (13), (14), and (40), the following

inequalities are obtained:

∥Ŵ1,j∥F ≤ W 1,j +

√
c1

c0λ0−1
1,j

∥ξ1,j∥ ≤
∥Ŵ1,j∥F∥81,j∥

λk1,j
≤

√
Nj

λk1,j

(
W 1,j +

√
c1

c0λ0−1
1,j

)

∥e1,j∥ ≤
1

λ31,j

(
∥ξ1,j∥ +

√
c1
c0

)
≤ µ1

|ld,ij − lij| ≤ µ0

|αd,ij − αij| ≤ µ1, |βd,ij − βij| ≤ µ1

where

µ0 = min
{∣∣∣∣ (rc,j − ld,ij)(e−µ1 − 1)

1 + hije−µ1

∣∣∣∣,∣∣∣∣ (rc,j − ld,ij)(eµ1 − 1)
1 + hijeµ1

∣∣∣∣}
µ1 =

1
λ31,j

(√
Nj

λk1,j

(
W 1,j +

√
c1

c0λ0−1
1,j

)
+

√
c1
c0

)
.

Here, λ
0−1
1,j
, λk1,j , and λ31,j denote the minimum eigenval-

ues of 0−1
1,j , k1,j, and 31,j, respectively. Therefore, design

parameters exist to achieve the control objectives. In addi-
tion, µ0 and µ1 can be made arbitrarily small by increasing
λk1,j , λ31,j , and c0, and thus the desired safety formation of
multiple quadrotors is achieved. This completes the proof of
Theorem 1. ■
Remark 7: In this paper, the inertia matrix Jj of the quadro-

tor is assumed to be unknown. The effects of model uncer-
tainties that may be present in the inertia matrix Jj can be
considered in the unknown nonlinear function f3,j (see (33)).
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FIGURE 3. Simulation results for Section IV-A (a) trajectory (b) distance error (c) incidence angle error (d) bearing angle error.

TABLE 1. RMS values at steady-state response under various design
parameters.

The function approximation technique using the RBFNN is
employed to compensate for the unknown nonlinear function
f3,j. Then, we use the output of the RBFNN to design the con-
trol torque τj, as shown in (25). This implies that the proposed
controller can be implemented even when the inertia matrix
is fully unknown, ensuring the robustness of the proposed
method in the presence of uncertainty in the inertia matrix.
However, if the inertia matrix is not diagonal, and we cannot
guarantee the positive-definiteness of the inertia matrix, then
the controller should be redesigned using adaptive control or
robust control techniques to account for the uncertain inertia
matrix. While this problem is not the primary focus of our
study, it is a topic worth investigating in future research.
Remark 8: Compared with the existing work using unified

formation errors for nonholonomic mobile robots [28], the
nonlinear quadrotors (i.e., (1) and (2)) considered in this
study have the difficulty in designing the formation controller
because of highly nonlinear couplings and fewer control

TABLE 2. RMS values for formation errors and control inputs.

inputs, as stated in Remark 2. In other words, the previous
approach [28] for nonholonomic mobile robots cannot be
directly extended to the quadrotor model. To address this
problem, we propose the state-transformation-based design
strategy using the unified formation error to guarantee for-
mation tracking and collision avoidance of uncertain multiple
quadrotors.

IV. SIMULATION RESULTS
In this section, two cases are simulated to verify the effective-
ness of the proposed method using MATLAB on a computer
with an AMD Ryzen 5 2600 processor operating at 3.4GHz.
Three quadrotors with one leader (i = 0) and two followers
(j = 1, 2) are considered, as shown in Fig. 2. The model
parameters of the followers are taken from [31] as follows:
mj = 4.34 kg, Jx,j = 0.082 kg·m2, Jy,j = 0.0845 kg·m2,
Jz,j = 0.1377 kg·m2, and g = 9.8 m/s2. The disturbance
vectors are considered as dj = [sin(t), sin(t), cos(t)]⊤ and
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FIGURE 4. Relative distance for Section IV-A (a) follower 1 (b) follower 2.

FIGURE 5. Euler angles for Section IV-A (a) follower 1 (b) follower 2.

FIGURE 6. Control inputs for Section IV-A (a) follower 1 (b) follower 2.

τd,j = [sin(π t), sin(π t), cos(π t)]⊤. For the RBFNNs, the
number of hidden layer nodes and width of the Gaussian
function are chosen as Nj = 3 and ςn,h,j = 1, respectively.

A. VERIFICATION OF THEORETICAL RESULTS
The trajectory of the leader is generated by p0 =

[20 cos(π t/10) m, 20 sin(π t/10) m, 18 − 9 cos(π t/10) m]⊤

and ψ0 = 0 rad. The initial position vectors of followers
are selected as p1(0) = [15 m, 5 m, 0 m]⊤ and p2(0) =

[15 m, 0 m, 0 m]⊤. The desired distance and angles of inci-
dence and bearing are set as ld,01 = ld,02 = 6 m, ψd,1 =

0 rad, ψd,2 = 0 rad, αd,01 = π/3 rad, αd,02 = −π/3 rad,
βd,01 = π/3 rad, and βd,02 = −π/3 rad. The measurement
and avoidance ranges are set to rc,j = 15 m and ra,j = 2 m.
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FIGURE 7. Simulation comparison results for Section IV-B (a) trajectory of the proposed method (b) trajectory of the
RB-SMC method (c) control inputs of the follower 1 using proposed method (d) control inputs of the follower 1 using
RB-SMC method (e) control inputs of the follower 2 using proposed method (f) control inputs of the follower 2 using
RB-SMC method.

The lower and upper bounds of Fj are Fm,j = 20 N and
FM ,j = 100 N. The design parameters are chosen as k̄1,j =

k2,j = 3, k3,j = 2, γn,j = 100, 31,j = diag[1.5, 1.5, 1.5],
0n,j = diag[3, 3, 3], and σn,j = 0.1 where n = 1, 2, 3.
The simulation results are shown in Figs. 3–6. Fig. 3 shows

the trajectories of multiple quadrotors and the formation
tracking errors. The distance, incidence angle, and bearing
angle errors are bounded and converge to nearly zero. Fig. 4
depicts the relative distances between the leader and follow-
ers. The relative distances for all followers are within the
range ra,j < lij < rc,j. Therefore, the theoretical results of

Theorem 1 are verified from Figs. 3 and 4. The Euler angles
of the followers are displayed in Fig. 5. The Euler angles
vary by close to±60◦. Thus, the proposed method is effective
in a wide operating range, unlike the linear control methods.
Fig. 6 shows the control inputs of the followers. The thrust
forces are saturated within t = 1 s due to initial errors, and the
torques are not large. To measure the computation time, the
tic and toc functions of MATLAB are used. The average time
required for the computation per step of each quadrotor is
t = 0.0013 s. To analyze the change in formation errors based
on design parameters, a simulation is conducted using several
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design parameters. The root-mean-square (RMS) values of
the formation error vector e1,j at the steady-state response
are calculated and presented in Table 1, where the formation
errors for t ≥ 8 s are defined for the steady-state response.
The results indicate that the increase in the design parameters
decreases formation errors, as stated in Theorem 1. Overall,
the proposed method is effective in achieving the desired
safety formation despite the saturation of thrust forces.

B. COMPARISON RESULTS
Comparative analyses are performed to demonstrate the supe-
riority of the proposed method over the robust backstepping
sliding mode control (RB-SMC) method [32], which uses
the hierarchical strategy. In the RB-SMC method, the virtual
references for formation tracking are generated using xr,j =

ld,ij cosαd,ij cos(ψi−βd,ij), yr,j = ld,ij cosαd,ij sin(ψi−βd,ij),
and zr,j = ld,ij sinαd,ij because only a single quadrotor is
considered. The trajectory of the leader is given by p0 =

[5 cos(π t/10), 4 sin(π t/10), 10 + 5 sin(π t/60)]⊤ and ψ0 =

0. The initial position vectors of followers are selected as
p1(0) = [5, 5, 0]⊤ and p2(0) = [5,−5, 0]⊤. The parameters
related to the desired safety formation are set to be identical
to those presented in Section IV-A. To show the effectiveness
of the control inputs, the design parameters are set such that
both methods have the same errors. The RMS values are used
to compare the formation errors and control inputs.

Fig. 7 displays the comparison results, where the tran-
sient responses of control inputs are compared in Figs. 7(c)-
(f). Both methods achieve the desired formation, but the
RB-SMC method requires greater torque inputs than the
proposed method. This phenomenon occurs because the
hierarchical-strategy-based control method requires higher
gains for attitude controllers than the proposed method.
Table 2 provides the detailed results for the formation errors
and control inputs, further supporting the conclusion that the
proposed method is more energy-efficient than the control
methods based on the hierarchical strategy.

V. CONCLUSION
In this study, a unified state-transformation-based design
strategy was presented for adaptive leader-follower safety
formation control of range-constrained uncertain quadrotors
with unknown disturbances and thrust saturation. A novel
state-transformation-based control method was developed to
solve the underactuation and nonlinear input coupling prob-
lems of quadrotors and a recursive design was obtained using
the Euler angles directly without dividing the outer and inner
loop subsystems. The proposed approach ensured a forma-
tion tracking performance similar to that of the hierarchical
design strategywith lower torque inputs, which helps increase
the operation time of quadrotors. Additionally, the unified
error-based design ensured safe formation tracking without
the input coupling problem of existing APF-based designs,
and allowed a wide operating range of the Euler angles.
The closed-loop stability of the proposed control system
was analyzed in the Lyapunov sense and the comparative

simulation results were provided. In this paper, the yaw
angle of the leader was only transmitted to followers using
a wireless communication device. Thus, further extensions
to the leader-follower safety formation control problem in
the presence of communication delay can be investigated for
future research.
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