
Received 23 February 2023, accepted 24 April 2023, date of publication 1 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3271992

READSUM: Retrieval-Augmented Adaptive
Transformer for Source Code Summarization
YUNSEOK CHOI 1, CHEOLWON NA 2, HYOJUN KIM 2, AND JEE-HYONG LEE 2
1Department of Platform Software, Sungkyunkwan University, Suwon 16419, South Korea
2Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Jee-Hyong Lee (john@skku.edu)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by
the Korean Government [Ministry of Science and ICT (MSIT)] through the Artificial Intelligence Graduate School Program
(Sungkyunkwan University) under Grant 2019-0-00421, in part by the Information and Communication Technology (ICT) Creative
Consilience Program under Grant IITP-2021-2020-0-01821, and in part by the Self-Directed Multi-Modal Intelligence for Solving
Unknown Open Domain Problems under Grant 2022-0-01045.

ABSTRACT Code summarization is the process of automatically generating brief and informative sum-
maries of source code to aid in software comprehension and maintenance. In this paper, we propose a novel
model called READSUM, REtrieval-augmented ADaptive transformer for source code SUMmarization, that
combines both abstractive and extractive approaches. Our proposed model generates code summaries in an
abstractive manner, taking into account both the structural and sequential information of the input code,
while also utilizing an extractive approach that leverages a retrieved summary of similar code to increase the
frequency of important keywords. To effectively blend the original code and the retrieved similar code at the
embedding layer stage, we obtain the augmented representation of the original code and the retrieved code
through multi-head self-attention. In addition, we develop a self-attention network that adaptively learns the
structural and sequential information for the representations in the encoder stage. Furthermore, we design a
fusion network to capture the relation between the original code and the retrieved summary at the decoder
stage. The fusion network effectively guides summary generation based on the retrieved summary. Finally,
READSUMextracts important keywords using an extractive approach and generates high-quality summaries
using an abstractive approach that considers both the structural and sequential information of the source
code. We demonstrate the superiority of READSUM through various experiments and an ablation study.
Additionally, we perform a human evaluation to assess the quality of the generated summary.

INDEX TERMS Abstract syntax tree, adaptive transformer, source code summarization, fusion network,
shortest path.

I. INTRODUCTION
Code summarization is the process of automatically gener-
ating a concise and human-readable description of a code
snippet’s functionality. It aims to provide developers with an
understanding of the code without having to read the entire
implementation. Well-written summaries make the code easy
for developers to understand as shown in Fig. 1. In order to
generate a good summary about a source code, it is necessary
to understand the structural and sequential meanings in the
code (abstractive approaches), and write the summary in an
easy-to-understand form (extractive approaches).

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

Previous approaches on automatic source code summa-
rization can be categorized into sequence-based, structure-
based, and hybrid approaches. Sequence-based approaches
generated summaries by capturing the sequential informa-
tion of source code [1], [2], [3], [4], [5], [6], [7]. They
tokenized source code into a sequence of code tokens, and
encoded them using seq2seq models. Meanwhile, structure-
based approaches used Abstract Syntax Tree (AST) to cap-
ture the structural information of code [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. They parsed the
source code into the AST and utilized graph models such
as Graph Neural Networks (GNNs). Some works flattened
the AST into the pre-order traversal sequence [18], [20],
[21], [22], [23]. Hybrid approaches utilized both the token

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 51155

https://orcid.org/0000-0002-9971-1501
https://orcid.org/0000-0002-9202-5074
https://orcid.org/0000-0002-9210-5357
https://orcid.org/0000-0001-7242-7677
https://orcid.org/0000-0002-2298-5037

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

FIGURE 1. An example of code summarization. To write a good code
summary, it is important to focus on the key aspects of the code.

sequences and the ASTs of codes [24], [25], [26]. They paral-
lelly processed token sequences and ASTs with independent
encoders, and tried to merge them in the decoder.

A. MOTIVATION
In order to generate good summaries, we need to consider
both structural and sequential information of code. However,
most existing methods modeled code from either a sequential
point of view or a graph (AST) point of view. Some have
attempted to consider both sequential and structural informa-
tion together, but they independently processed both types of
information and simply combined them.

The AST, structural information, are usually processed
by GNNs, and code tokens by transformers. Since GNNs
and transformers are attention-based networks, we can unify
them into a model. The graph attention network learns the
structural information using neighboring nodes in the AST
through message passing to a specific node as shown in
Fig. 2(a). It locally gives attentions to neighboring nodes as
shown in Fig. 2(d), and has difficulty in learning the global
context information of code. Fig. 2(e) shows the self-attention
in the vanilla transformer model that calculates attention
values between all tokens. It can well learn the global con-
textual information, but it is difficult to learn the dependency
between structurally related nodes because it equivalently
gives attentions to all tokens in the source code as shown in
Fig. 2(e).

We may say that the local scope of attention is related
to structural information processing and the global scope is
related to sequential information processing. By controlling
the scope of attention or adopting the grey scope of attention
as shown in Fig. 2(c) and Fig. 2(f), we can effectively
merge the structural and sequential information processing.
We propose a method of adaptive attention which combines
the advantages of two attention networks: graph attention
network reflecting structural information and self-attention
network reflecting sequential information. If we set the atten-
tion scope narrow, the model may learn with high attention
values to near nodes and low attention values to distant nodes.
If we set the attention scope wide, all the nodes will have
equivalent attentions. We control the scope of attentions by
adding biaseswhich are learnable parameters. Since the scope

is adjusted during training, each layer of the transformer
encoder can adjust it roles: extracting structural information
or sequential information. In our model, the lower layers
of the transformer model have narrow scopes to learn the
relationships on nodes that are structurally close, as if they
have the role of graph attention network. The middle layers
havemid-size scopes to learn both of structural and sequential
information. They may learn about blocks in a code and the
sequential information of them. Finally, the higher layers
learn global contextual information about the entire code with
large scopes of attention.

Also, some recent works have attempted to combine a
generative model with a retrieval method, which searched
for similar codes and summaries in the databases [15], [26],
[27]. These approaches aimed to improve the quality of the
summary by using extractive information which is additional
codes and summaries with high similarity to the original code.
However, they separately processed and simply concatenated
them. They did not consider the relation between the origi-
nal code and the similar code, or the relation between the orig-
inal code and the summary of the similar code.When learning
the code representation from the code encoder, it is necessary
to capture the features of the original code as well as those of
the similar code. Also, when generating the summary in the
decoder, it is necessary to have an organic fusion between the
two representations, not just using the code and the summary
of the similar code, and to properly reflect the keywords of
the similar code’s summary. We design an attention-based
augmentation to reflect the relevance between the original
code and the retrieved code, and a fusion network to extract
the important keywords of similar summary from the original
code. Finally, we improve the performance of summarization
by using dual copy mechanism from the original code tokens
and the retrieved similar summary tokens.

B. CONTRIBUTION
Our focuses are not only l̂ocal and global attentionb̂ut also
ŝequential and structural processingîn a unified manner in a
single Transformer. We consider both at the same time, not
separately.

First, we modify AST for effectively capturing the struc-
ture of code. It is hard to learn the AST structure effectively
because AST is a very sparse graph, a tree only connected
between parents and children. So we propose a dense AST
with the shortest path distance as edge weights between all
nodes. Then, we flatten the dense AST keeping edge infor-
mation. The flattened AST is a sequence with edges. In a
sequential viewpoint, the flattened AST has more sequential
information than code, because not only tokens in code but
also abstract grammar nodes in AST are also presented. In a
structural viewpoint, the flattened AST effectively represent
the structure of code because the edge weights between two
nodes are proportional to the distance between them in AST.

Since the flattened AST is a sequence with structural
information, we modify self-attention to process sequences
considering structural information in a single Transformer.

51156 VOLUME 11, 2023

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

FIGURE 2. Comparison of graph attention network, self-attention network and adaptive attention network. (a), (b) and (c) are the
process of message passing for one node in an AST by graph attention network, self-attention network and adaptive attention
network (our proposed method), respectively. (d) graph attention network learns local and structural information about
neighboring tokens, (e) self-attention network learns global and sequential information about all tokens, but (f) adaptive
attention network learns adaptively both structural and sequential information using distance information between tokens.

We propose the adaptive Transformer, controlling the range
of self-attention by the distance between two nodes. If two
nodes are close in AST, each needs to pay more attention to
the other. If far, less attention. Since more attention will be
paid to neighboring nodes, the adaptive attention will help
Transformer easily capture structural information.

Based on this idea, we calculate the self-attention based
on the distance of two nodes and a bias, a trainable param-
eter. The bias in the adaptive attention controls the scope
of neighborhood of each layer in Transformer. If the bias
is small, the range of neighborhood will be broadened, and
tokens will give similar attention to all the other nodes. Thus,
a layer with a small bias tends to capture global structure.
Conversely, if the bias is large, the range of neighborhood
will be narrowed, and a layer tends to capture local structure.

Our Contributions of this paper are as below.
• We effectively unify the sequential and structural infor-
mation into a structural sequence by flattening dense
AST with shortest path distance.

• We effectively process sequential and structural infor-
mation in a unified manner by a single Transformer.

• By adaptive self-attention, each layer can adaptively
capture local and global structural information.

• To the best of our knowledge, we are the first to process
the sequential and structural information of code in a
unified way.

II. RELATED WORK
A. CODE SUMMARIZATION
Many works on source code summarization were mod-
eled as sequence-based approaches. Iyer et al. [1] proposed
Code-NN, a Long Short Term Memory (LSTM) networks

with attention for code summarization and code retrieval
task. Allamanis et al. [2] used a neural convolutional atten-
tional model to consider highly-structured source code text.
Hu et al. [4] proposed TL-CodeSum to summarize the source
code with the API Knowledge. Also, Chen et al. [28] pro-
posed a novel multi-task approach to use API knowledge
for generating summaries from code. Wan et al. [24] used
a deep reinforcement learning framework to consider an
AST structure and code snippets. Liu et al. [29] proposed a
encoder-decoder model for automatically generating descrip-
tions for pull requests. Wei et al. [5] used a dual training
framework by training code summarization and code gener-
ation tasks. Also, Ye et al. [6] considered the probabilistic
correlation between the two tasks. Ahmad et al. [7] pro-
posed a Transformer model using a relative position. These
approaches focused on the sequential information of the
source code, so the structural information was little consid-
ered about the relation between code tokens.

Also, some works tried to capture the structural infor-
mation in the AST of code for source code summarization.
Hu et al. [8] proposed an RNN-based model using structural-
based traversal sequence as input, and Liang et al. [3] applied
a tree-based recursive neural network for representing the
syntax tree of code. Shi et al. [11] adopted Tree-LSTM,
which is designed to capture both the syntactic and seman-
tic structure of the source code. Harer et al. [12] proposed
Tree-Transformer to handle Tree-structured data. Bui et al.
[30] adopted self-supervised learning mechanism to build
source code model by predicting subtrees from the con-
text of the ASTs. Alon et al. [21] leveraged the unique
syntactic structure of programming languages by sampling
paths in the AST of a code snippet. Leclair et al. [14]

VOLUME 11, 2023 51157

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

FIGURE 3. Overview of our proposed model. READSUM consists of four phases: embedding layer for code augmentation, code &
summary transformer encoders, summary transformer decoder and dual copy mechanism.

proposed encoded AST using graph neural networks and
trained LSTM. Choi et al. [23] proposed a model that com-
bines a GNNmodel and a Transformer model using modified
AST. Shi et al. [16] tried to hierarchically split and reconstruct
ASTs using Recursive Neural Network for learning the rep-
resentation of the complete AST. Wu et al. [19] proposed a
Transformer model which incorporated multi-view structure
into attention mechanism. Guo et al. [31] proposed a Trans-
former model with two encoder architectures that considered
the structural embedding of the AST using both types of
source code and AST.

The retrieval-based method was used in Neural Machine
Translation (NMT) Zhang et al. [32] Xia et al. [33], but recent
works relied on both retrieved-based and generation-based
approaches for the source code summarization. Zhang et al.
[26] proposed retrieval-based approach using syntactic and
semantic similarity for source code summarization, and
Liu et al. [15] proposed a hybrid GNN using a retrieval aug-
mented graph method. Li et al. [27] leveraged the retrieve-
and-edit framework to improve the performance for code
summarization.

B. LARGE LANGUAGE MODEL FOR PROGRAM LANGUAGE
The success of pre-trained models based on the Trans-
former architecture in natural language generation has led
to the development of methods for extending these tech-
niques to programming language tasks. CodeBERT, a pre-
trained language model based on BERT [34], was proposed
by [35], and incorporates both programming language and
natural language representations in the pre-training stage.
To incorporate code structure into CodeBERT, guo et al [36]
proposed GraphCodeBERT, but these models have limited
effectiveness in programming language tasks since they rely
solely on the transformer encoder for PL-NL representa-
tion. In response, PLBART, a unified encoder-decoder model
based on BART [37], was proposed by [38] to support both
code understanding and generation tasks.

III. READSUM
We propose a novel model, READSUM, REtrieval-
augmented ADaptive transformer for source code
SUMmarization. Fig. 3 shows the overall architecture of
our proposed model, READSUM. Our model consists of
four phases that are embedding layer for code augmen-
tation, code & summary transformer encoders, summary
transformer decoder and dual copy mechanism.

To learn the relation between the original code and retrieval
code, we obtain augmented code representation using multi-
head self-attention between the original code’s AST sequence
and the retrieved similar code’s AST sequence at the embed-
ding stage. Then the augmented representation is adaptively
trained on structural and sequential information through
adaptive attention network in code transformer encoder, and
the retrieved similar summary representation is learned in
summary transformer encoder, respectively. To capture the
relevance between the augmented code representation and the
similar summary representation at the transformer decoder,
they are trained by combining two representations for fusion.
Finally, the dual copy mechanism is applied to directly reflect
the word of the original code and the retrieved similar sum-
mary in the process of generating the summary. The following
subsections describe the problem definition of code summa-
rization and each phase of the proposed method in detail.

A. PROBLEM DEFINITION
Suppose that we have a dataset of code and summary pairs.
We retrieve the most similar code C ′ and summary S ′ pair for
each input code C based on the Levenshtein distance. Then,
we parse the code C as AST N to learn structural informa-
tion as well as sequential information of the source code.
In order to adaptively learn both structural and sequential
information at the embedding stage, we obtain the shortest
path distance dij = φ(ni, nj) between all nodes in the AST
N = {n1, n2, . . .}. Finally, we flatten the AST into a pre-order
first sequence to train the transformer model.

51158 VOLUME 11, 2023

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

B. EMBEDDING LAYER FOR CODE AUGMENTATION
We embed information on the similar code representation to
the original code token representation. To obtain the rele-
vance of the similar code to the original code, we use multi-
head self-attention.

Let the original code token representations and the
retrieved similar code token representations obtained from
the word embedding layer be En and En′ , respectively.

Arel = MultiAtt(En,En′ ,En′) (1)

Enaug = En + zArel (2)

where MultiAttn is multi-head self-attention and z is the
similarity score between the original code and the retrieved
similar code. Arel is the representation that means the rele-
vance between the original code tokens and the similar code
tokens. The augmented code representation Enaug is obtained
by Equation 2 that combines the original code token represen-
tation with the similar code token representation and the sim-
ilarity score. The obtained augmented code representations
are used as the input on the code transformer encoder.

C. CODE & SUMMARY TRANSFORMER ENCODERS
READSUM has two transformer encoders: code transformer
encoder and summary transformer encoder. The structural
and sequential information are learned to represent the rela-
tion between the original and similar code in the code trans-
former encoder, and the sequential information of the similar
summary is learned in summary transformer encoder.

Our code transformer encoder consists of 6 modified
transformer encoder layers. Each layer of the code trans-
former encoder is composed of two layers: adaptive attention
network and feed-forward network. We design a modified
multi-head self-attention, adaptive attention network, which
adds a learnable bias term to self-attention to adaptively
capture structural and sequential information in the code. The
adaptive attention network is calculated as follows:

AdapAtt(Q,K ,V , d) = softmax(QK⊺
+ g(d))V (3)

g(x) =
1

√
2πa

exp(−
x2

2b2
) + c (4)

where AdapAtt is adaptive attention network, and d is the
shortest path matrix between the query Q and key K , the
bias term g(x) as a modified form of gaussian function, a,b
and c are learnable embedding scalars. Here, the query and
key is the same as the original code’s AST nodes in the code
transformer encoder.

Our summary transformer encoder also consists of 6 trans-
former encoder layers [39]. In the summary transformer
encoder, the retrieved similar summary representations are
learned reflecting the similar summary context to be used in
the transformer decoder.

D. SUMMARY TRANSFORMER DECODER
The transformer decoder aims to predict the target sum-
mary of the original code by fusion of the augmented

code representation (code transformer encoder) and the
retrieved similar summary representation (summary trans-
former encoder). The summary transformer decoder consists
of 6 modified transformer decoder layers [39]. Each layer
of the code transformer decoder is composed of three lay-
ers: masked multi-head self-attention, fusion network and
feed-forward network. We modify multi-head self-attention,
fusion network, to learn the context by adding the sim-
ilarity score between the original code and the retrieved
code. First, we obtain each representation: the represen-
tation between code transformer encoder and summary
transformer decoder, and the representation between sum-
mary transformer encoder and summary transformer decoder,
respectively. Then, the two representations are fused via the
following equation:

α1 = softmax(QK⊺
1) (5)

α2 = softmax(QK⊺
2) (6)

Att1(Q,K1,V2) = α1V1 (7)

Att2(Q,K2,V2) = α2V2 (8)

FusAtt =
Att1 + zAtt2

1 + z
(9)

where α1 is the attention score between the code transformer
encoder and the summary transformer decoder, α2 is the
attention score between the summary transformer encoder
and the summary transformer decoder, FusAtt is fusion net-
work, and z is the similarity score. The fusion network of each
transformer decoder layer learns that the code encoder repre-
sentations Att1 and summary encoder representation Att2 are
fused by reflecting the similarity between the original code
and the retrieved similar code.

E. DUAL COPY MECHANISM
Finally, the summary transformer decoder predicts the
t-th word using the extractive information as well as the
abstract information about the similar summary information.
We apply the modified copy mechanism [40], dual copy
mechanism, to directly generate the word both from the
original code tokens and from retrieved similar summary
tokens for the extractive information. The probability of the
word to be predicted at the t-th step is the sum of three
scores: the attention score of the code transformer encoder
α1, the attention score of the summary transformer encoder
α2, and the t-th word prediction probability pt from the final
representation of the summary transformer decoder ht . The
dual copy mechanism is as follows:

Pdual(w) = λ1α1 + λ2α2 + λ3pt (10)

λ1 = σ (W1ht) (11)

λ2 = σ (W2ht) (12)

λ3 = 1 − (λ1 + λ2) (13)

where σ is a sigmoid function, W1, W2 are linear layer
weight matrices for the code and summary copy probabilities.
READSUM predicts the words of target summary by using

VOLUME 11, 2023 51159

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

context representations of the original code and its similar
code (abstractive information), and selecting directly original
code tokens and its retrieved similar summary tokens (extrac-
tive information).

IV. EXPERIMENT RESULTS
A. SETUP
We evaluate using the benchmarks of the Java dataset [4]
and the Python dataset [24]. However, as mentioned in [41],
there are duplication issues in the Java dataset, and the base-
lines used different BLEU variants as the evaluation met-
ric. To ensure a fair comparison, we re-implement all the
baselines and conduct experiments on the same benchmark
datasets (including the deduplicated Java dataset). We also
evaluate the baselines with the same evaluation metrics
(including BLEU).

1) DATASET
We evaluate our proposed model on three datasets: the dupli-
cated Java dataset, the deduplicated Java dataset, and the
Python dataset. The duplicated Java dataset is split into
69,708/8,714/8,714 for train/valid/test. Since there are dupli-
cate codes in the test set of the Java dataset, we removed them
to create the deduplicated Java dataset split into 6,449 for test
set. The Python dataset is split into 55,538/18,505/18,502 for
the train/valid/test.

For obtaining ASTs of the Java and Python dataset, we use
the javalang1 and ast2 library, respectively. Also, we tokenize
the source code and the AST to subtokens as the form Camel-
Case and snake-case.
For a more detailed description of the datasets, please refer

to Table 1.

2) HYPERPARAMETER
We limit the maximum AST and summary length to 200 and
50, and we set the training epoch to 100. The vocabulary sizes
of code and summary are 50,000 and 30,000, respectively. For
training the model, we use Adam optimizer [42].

We set the environment for training READSUM as
follows: 4 NVIDIA 2080 Ti GPUs, Ubuntu 16.04, Python 3.9
and CUDA 10.2 version. The average training and inference
time for READSUM takes about 40 and 0.5 hours, respec-
tively. READSUM has about 87 million parameters.

The description of the dataset and hyper-parameter for the
experiment is shown in Table 2.

3) EVALUATION METRICS
We use 4 evaluation metrics, BLEU [43], METEOR [44],
ROUGE-L [45], and CIDEr [46] to measure the quality of
the generated summaries. We conduct all experiments with
BLEU with smoothing 4 based on the version of NLTK
(3.6.7) The details regarding the evaluation metrics is as
follows.

1https://github.com/c2nes/javalang
2https://github.com/python/cpython/blob/master/Lib/ast.py

TABLE 1. Statistics of Java dataset [4] and Python dataset [24]. For
obtaining their corresponding ASTs, we use the javalang and ast library,
respectively.

TABLE 2. Hyper-parameter of READSUM.

BLEU [43] is Bilingual Evaluation Understudy to evaluate
the quality of generated code summaries. The formula of
computing BLEU is as follows:

BLEU − N = BP · exp
N∑
n=1

ωn log pn

where pn is the geometric average of the modified n-gram
precisions, ωn is uniform weights 1/N and BP is the brevity
penalty.
METEOR [44] is used to measure the correlation between

the metric scores and human judgments of translation quality.
So unigram precision (P) and unigram recall (R) are com-
puted and combined via a harmonic-mean. The METEOR
score is computed as follows:

METEOR = (1 − γ · fragβ) ·
P · R

α · P+ (1 − α) · P

where frag is the fragmentation fraction. α, β, and γ are three
penalty parameters whose default values are 0.9, 3.0, and 0.5,
respectively.
ROUGE-L [45] is used to apply Longest Common

Subsequence in sumarization evaluation. ROUGE-L used
LCS-based F-measure to estimate the similarity between two
summaries X of length m and Y of length n, assuming X is
a reference summary sentence and Y is a candidate summary
sentence, as follows:

Rlcs =
LCS(X ,Y)

m
, Plcs =

LCS(X ,Y)
n

51160 VOLUME 11, 2023

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

TABLE 3. Comparison of READSUM with the baseline models on the duplicated Java datasets [4]. The improvements of READSUM over all baselines are
statistically significant with p < 0.05.

Flcs =
(1 + β2)RlcsPlcs
Rlcs + β2Plcs

where β = Plcs/Rlcs and Flcs is the value of ROUGE-L.
CIDEr [46] is used to consider the frequency of n-grams

for automatically computing consensus. CIDErn score for
n-grams of length n is computed using the average cosine
similarity between the candidate sentence and the reference
sentences, which accounts for both precision and recall:

CIDErn(ci, Si) =
1
m

∑
j

gn(ci) · gn(sij)
||gn(ci)||||gn(sij)||

CIDEr(ci, Si) =

N∑
n=1

ωnCIDErn(ci, Si)

where gn(ci) is a vector formed by gk (ci) corresponding to all
n-grams of length n, ||gn(ci)|| is the magnitude of the vector
gn(ci), and ωn is uniform weights 1/N .

4) BASELINES
We experiment with reproducible code summarization mod-
els as our baselines:

• Code-NN [1] is a code summarization model that uses
LSTM networks with an attention mechanism to gener-
ate summaries from code.

• RL+Hybrid2Seq [24] is a reinforcement learning-based
code summarization model that combines an LSTM
encoder with an AST-based LSTM to improve code
summarization.

• DeepCom [8] is a neural code generationmodel that uses
a structure-based traversal method to obtain a sequence
of tokens from an AST.

• TL-CodeSUM [4] is a transfer learning-based code sum-
marization model that introduces API information dur-
ing comment generation, even without prior knowledge
of the API.

• Astattgru [22] is an attention-based neural model for
code summarization that utilizes an AST structure to
generate summaries.

• NCS (code) [7] is the first model to use the Transformer
architecture and includes a copying mechanism for gen-
erating words from a vocabulary.

• NCS (AST) is an alternative version of the NCS model
that utilizes abstract syntax trees as input instead of code.

• Rencos [26] is a neural model based on a retrieval
method that uses a sequence-to-sequence approach with
a combination of syntax and semantic embeddings.

• CAST [16] is a neural model for code generation that
uses a graph-based attention mechanism to generate
code from natural language descriptions.

• CodeBERT [35] is a pre-trained language model for
code that uses a transformer-based neural network
architecture similar to BERT [34], optimized for pro-
gramming tasks.

• PLBART [38] is a pre-trained language model for pro-
gramming tasks that combines BART [37] with an
encoder-decoder architecture and is optimized for both
code understanding and generation.

We tried to re-implement and report on all available base-
line models for code summarization, but we were unable
to do so due to some unfairness issues and the absence
of open-source codes for some works. For example, [16]
and [24] removed code samples that were not parsed with
Antlr parser, so they cannot be evaluated with the same
datasets as other baselines. Some works performed prepro-
cessing specialized to a specific program language, and con-
ducted experiments on either the Java or the Python dataset.
So, the baselines for the Java and the Python are different.
We evaluate all reproducible baselines with the same evalua-
tion metrics on the same datasets to ensure fair comparisons
across all baselines as much as possible.

B. QUANTITATIVE RESULT
1) OVERALL RESULT
Table 3 shows the overall performance of the models on
both the duplicated Java benchmark dataset. The READSUM
model achieved state-of-the-art performance on all evalua-
tion metrics for the Java dataset. Compared to other models
such as Code-NN, DeepCom, TL-CodeSUM, and ASTattgru,
the NCS model based on the Transformer architecture

VOLUME 11, 2023 51161

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

TABLE 4. Comparison of READSUM with the baseline models on the deduplicated Java datasets. The improvements of READSUM over all baselines are
statistically significant with p < 0.05.

TABLE 5. Comparison of READSUM with the baseline models on Python dataset [24]. The improvements of READSUM over all baselines are statistically
significant with p < 0.05 except BLEU-4 of CodeBERT.

demonstrated much better performance, indicating the advan-
tage of using a transformer-based model to capture sequence
information for code summarization. Furthermore, the
Rencos model, which utilizes a retrieval method, showed
better performance than other baseline models. These results
highlight the effectiveness of transformer-based models and
retrieval methods in improving code summarization. Com-
pared to CAST [16], which used two types of code and
AST as input data, READSUM shows good performance
using AST tokens and retrieved summary tokens. Further-
more, READSUM is compared with Rencos [26], which is
one of the retrieval methods. Lastly, our approach is com-
pared with CodeBERT and PLBART, strong pre-trained pro-
gram language models. READSUM performs better than the
pre-trained models trained on large code data.

Table 4 shows the overall performance of the models
on the deduplicated Java dataset. The READSUM model
achieved state-of-the-art performance on all evaluation met-
rics for the Java dataset. Similar to the previous result,
READSUM achieved state-of-the-art performance on the
deduplicated Java dataset. Evaluating a test dataset that has
not been seen in the training dataset is a challenging task,
but READSUM demonstrated superior performance com-
pared to other sequence-to-sequence models. Furthermore,
READSUM outperformed large language models such as
CodeBERT and PLBART. The improvements of READSUM
over all baselines are statistically significant with p < 0.05.
READSUM demonstrates its ability to effectively capture

TABLE 6. Ablation study on each component of READSUM.

both the structural and sequence information of code to gen-
erate high-quality summaries.

Table 5 shows the performance of themodels on the Python
dataset. READSUM outperforms all the baselines except for
CodeBERT’s BLEU-4. We believe that CodeBERT has good
performance of BLEU score because it resembles the data
used for fine-tuning after pre-training. However, READSUM
had better overall performance than simply having a high
BLEU-4 score. Our READSUM showed that focusing on
the retrieved similar summary rather than the similar code
as retrieval information helps to predict more important and
similar words in generating the summary.

51162 VOLUME 11, 2023

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

FIGURE 4. Analysis of adaptive attention network. (a), (b) and (c) show the learned bias terms in 8 multi-heads for each of 2nd layer, 4th
layer, and 6th layer in code transformer encoder. The results show that the adaptive attention network is adaptively trained on the tokens
to focus within each multi-head self-attention.

TABLE 7. An qualitative example on the Java and Python dataset.

2) ABLATION STUDY
We perform an ablation study by validating the effectiveness
of each component of READSUM. The w/o AdapAtt is our
method that transformer encoder consists of vanilla multi-
head self-attention, thew/o FusAtt is our method that the sim-
ilarity score z is 1 in fusion network, and the w/o DualCopy is
our method with a copy mechanism that does only use AST
code tokens.

Table 6 shows the experiment results of the ablation study
for each of the three cases. Compared with the w/o Ada-
pAtt, READSUM slightly increases BLEU, METEOR, and
ROUGE-L scores for Java and Python datasets, respectively.
Since the general multi-head self-attention method calcu-
lates the same attention score between all tokens, it can
be seen that the performance is low due to insufficient
learning about the AST structure. We confirm that the

AST representation is learned both sequential and struc-
tural information by adaptive attention. Next, in the w/o
FusAtt, the scores of BLEU/METEOR/ROUGE-L on Java
are slightly increased, but the BLEU/METEOR/ROUGE-L
scores on Python dataset are significantly increased by
0.35/0.62/0.40, respectively. This is because the code rep-
resentation learned from the code transformer encoder and
the retrieved similar summary representation learned from
the summary transformer encoder are fused in the decoder
phase, and the similarity between the original code and
retrieved similar summary is important to reflect on the
decoder representation. Finally, in the w/o DualCopy, the
scores of BLEU/METEOR/ROUGE-L are increased by
0.39/0.43/0.25 in the Java dataset and 0.51/0.7/0.18 in
the Python dataset. The hidden state of transformer sum-
mary decoder is obtained by fusion of augmented code

VOLUME 11, 2023 51163

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

representation from code transformer encoder and similar
summary representation from summary transformer encoder.
So the dual copy mechanism generates a summary with high
quality by considering both the abstractive method in which
the relation between the augmented code representations
and the similar summary representations are fused, and the
extractive method in which original code tokens and retrieved
similar summary tokens are directly extracted.

C. QUALITATIVE RESULT
1) ANALYSIS ON ADAPTIVE ATTENTION
We analyze how adaptive attention learns structural and
sequential information in our proposed model. Fig. IV-B1
shows the learned Gaussian function in 8 multi-heads in 2nd
layer, 4th layer and 6th layer of code transformer encoder.
In the 2nd layer of the transformer encoder, the Gaussian
function value becomes larger for tokens with relatively close
shortest paths, so that the attention value becomes larger
as shown in Fig. IV-B1(a). In 4th layer, the attention val-
ues in all multi-heads are calculated equally for all shortest
paths, so adaptive attention network learns to focus on the
sequential information of the AST as shown in Fig. IV-B1(b).
In Fig. IV-B1(c), some bias terms in multi-heads (Red and
Orange) learn information about itself by increasing attention
to its own token whose shortest path is 0. In other multi-heads
(Other colors), it learns to have the same attention value for
all shortest paths. Therefore, we show that adaptive attention
network is adaptively trained to focus on which information
within each multi-head self-attention.

2) COMPARISON WITH THE BASELINES
We show one example generated from READSUM, NCS,
Rencos, CodeBERT and PLBART on the Java dataset and
Python dataset as shown in Table 7. In an example of the
Java dataset, NCS and Rencos generate sentences of the
form ‘‘create project within’’. Furthermore, CodeBERT and
PLBART generate summaries that do not necessarily follow
the format of the Retrieved Summary, instead producing very
general sentence forms. These models, having learned many
different types of sentences during pre-training, can generate
natural summaries, but may not reflect important keywords or
other specific information found in the source code. However,
READSUM generates the sentence similar to the ground
truth, because it copies the word ‘‘cluster’’ in original code
tokens and the words ‘‘in’’ and ‘‘project’’ in the retrieved
similar summary tokens through the dual copy mechanism.

V. CONCLUSION
We proposed a novel model for code summarization,
READSUM, REtrieval-augmented ADaptive transformer
for source code SUMmarization. READSUM effectively
combined an abstractive approach learning both the struc-
tural and sequential information of the source code, and an
extractive approach for increasing the frequency of important
keywords. For adaptively learning structural and sequential
information, we modified the self-attention network in the
transformer encoder by adding a bias term as a learnable

Gaussian function with the distance between tokens. Also,
We demonstrated through analysis of the adaptive attention
network that our self-attention is learned adaptively for each
layer. Finally, we improved the performance of summariza-
tion by using dual copy mechanism from the original code
tokens and the retrieved similar summary words. We showed
the superiority of READSUM for source code summarization
through various experiments and human evaluation.

REFERENCES
[1] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, ‘‘Summarizing source

code using a neural attention model,’’ in Proc. Annu. Meeting Assoc.
Comput. Linguistics, vol. 1, Berlin, Germany, 2016, pp. 2073–2083.

[2] M. Allamanis, H. Peng, and C. Sutton, ‘‘A convolutional attention network
for extreme summarization of source code,’’ in Proc. 33rd Int. Conf. Mach.
Learn. B. M. Florina and K. Q. Weinberger, Eds. New York, NY, USA,
Jun. 2016, pp. 2091–2100.

[3] Y. Liang and K. Q. Zhu, ‘‘Automatic generation of text descriptive com-
ments for code blocks,’’ in Proc. 32nd AAAI Conf. Artif. Intell. (AAAI),
30th Innov. Appl. Artif. Intell. (IAAI), 8th AAAI Symp. Educ. Adv. Artif.
Intell., A. S. McIlraith and Q. K.Weinberger, Eds. NewOrleans, LA, USA,
Feb. 2018, pp. 5229–5236.

[4] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, ‘‘Summarizing source
code with transferred API knowledge,’’ in Proc. 27th Int. Joint Conf. Artif.
Intell., Stockholm, Sweden, Jul. 2018, pp. 2269–2275.

[5] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, ‘‘Code generation as a dual
task of code summarization,’’ in Proc. Adv. Neural Inf. Process. Syst.,
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. A. Buc, E. B. Fox, and
R. Garnett, Eds. Vancouver, BC, Canada, 2019, pp. 6559–6569.

[6] W. Ye, R. Xie, J. Zhang, T. Hu, X. Wang, and S. Zhang, ‘‘Leveraging code
generation to improve code retrieval and summarization via dual learning,’’
in Proc. Web Conf., Y. Huang, I. King, T. Liu, and M. van Steen. Taipei,
Taiwan, Apr. 2020, pp. 2309–2319.

[7] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, ‘‘A transformer-
based approach for source code summarization,’’ in Proc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 4998–5007.

[8] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, ‘‘Deep code comment generation,’’
in Proc. 26th Conf. Program Comprehension, May 2018, pp. 200–210.

[9] P. Fernandes, M. Allamanis, and M. Brockschmidt, ‘‘Structured neural
summarization,’’ in Proc. 7th Int. Conf. Learn. Represent., New Orleans,
LA, USA, May 2019, pp. 1–18.

[10] K. Zhang, W. Wang, H. Zhang, G. Li, and Z. Jin, ‘‘Learning to rep-
resent programs with heterogeneous graphs,’’ in Proc. 30th IEEE/ACM
Int. Conf. Program Comprehension, Vancouver, BC, Canada, May 2022,
pp. 378–389.

[11] Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto, and T. Matsumura,
‘‘Automatic source code summarization with extended tree-LSTM,’’ 2019,
arXiv:1906.08094.

[12] J. Harer, C. Reale, and P. Chin, ‘‘Tree-transformer: A transformer-based
method for correction of tree-structured data,’’ 2019, arXiv:1908.00449.

[13] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, ‘‘A novel
neural source code representation based on abstract syntax tree,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 783–794.

[14] A. LeClair, S. Haque, L. Wu, and C. McMillan, ‘‘Improved code summa-
rization via a graph neural network,’’ 2020, arXiv:2004.02843.

[15] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, ‘‘Retrieval-augmented
generation for code summarization via hybrid GNN,’’ in Proc. 9th Int.
Conf. Learn. Represent., 2021, pp. 1–16.

[16] E. Shi, Y. Wang, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun, ‘‘CAST:
Enhancing code summarization with hierarchical splitting and reconstruc-
tion of abstract syntax trees,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process., Punta Cana, Dominican Republic, 2021, pp. 4053–4062.

[17] C. Lin, Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu, ‘‘Improving code
summarization with block-wise abstract syntax tree splitting,’’ in Proc.
IEEE/ACM 29th Int. Conf. Program Comprehension (ICPC), May 2021,
pp. 184–195.

[18] Y. Wang and H. Li, ‘‘Code completion by modeling flattened abstract
syntax trees as graphs,’’ in Proc. AAAI, 2021, pp. 14015–14023.

[19] H. Wu, H. Zhao, and M. Zhang, ‘‘Code summarization with structure-
induced transformer,’’ in Proc. Findings Assoc. Comput. Linguistics, 2021,
pp. 1078–1090.

51164 VOLUME 11, 2023

Y. Choi et al.: READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization

[20] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, ‘‘code2vec: Learning
distributed representations of code,’’ 2018, arXiv:1803.09473.

[21] U. Alon, S. Brody, O. Levy, and E. Yahav, ‘‘code2seq: Generating
sequences from structured representations of code,’’ in Proc. 7th Int. Conf.
Learn. Represent., New Orleans, LA, USA, May 2019, pp. 1–22.

[22] A. LeClair, S. Jiang, and C. Mcmillan, ‘‘A neural model for generating
natural language summaries of program subroutines,’’ in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 795–806.

[23] Y. Choi, J. Bak, C. Na, and J.-H. Lee, ‘‘Learning sequential and structural
information for source code summarization,’’ in Proc. Findings Assoc.
Comput. Linguistics, 2021, pp. 2842–2851.

[24] Y.Wan, Z. Zhao,M. Yang, G. Xu, H. Ying, J.Wu, and P. S. Yu, ‘‘Improving
automatic source code summarization via deep reinforcement learning,’’
in Proc. 33rd ACM/IEEE Int. Conf. Automated Softw. Eng., Sep. 2018,
pp. 397–407.

[25] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, ‘‘Retrieve and refine: Exemplar-
based neural comment generation,’’ in Proc. 34th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2019, pp. 349–360.

[26] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, ‘‘Retrieval-based neural
source code summarization,’’ in Proc. ACM/IEEE 42nd Int. Conf. Softw.
Eng., Jun. 2020, pp. 1385–1397.

[27] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, ‘‘EditSum: A retrieve-and-edit
framework for source code summarization,’’ in Proc. 36th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2021, pp. 155–166.

[28] F. Chen, M. Kim, and J. Choo, ‘‘Novel natural language summarization
of program code via leveraging multiple input representations,’’ in Proc.
Findings Assoc. Comput. Linguistics, Punta Cana, Dominican Republic,
2021, pp. 2510–2520.

[29] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, ‘‘Automatic generation of pull
request descriptions,’’ inProc. 34th IEEE/ACM Int. Conf. Automated Softw.
Eng. (ASE), Nov. 2019, pp. 176–188.

[30] N. D. Q. Bui, Y. Yu, and L. Jiang, ‘‘InferCode: Self-supervised learning
of code representations by predicting subtrees,’’ in Proc. IEEE/ACM 43rd
Int. Conf. Softw. Eng. (ICSE), May 2021, pp. 1186–1197.

[31] J. Guo, J. Liu, Y. Wan, L. Li, and P. Zhou, ‘‘Modeling hierarchical syntax
structure with triplet position for source code summarization,’’ in Proc.
60th Annu. Meeting Assoc. Comput. Linguistics, Dublin, Ireland, 2022,
pp. 486–500.

[32] J. Zhang, M. Utiyama, E. Sumita, G. Neubig, and S. Nakamura, ‘‘Guiding
neural machine translation with retrieved translation pieces,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, New Orleans,
Louisiana, 2018, pp. 1325–1335.

[33] M. Xia, G. Huang, L. Liu, and S. Shi, ‘‘Graph based translationmemory for
neural machine translation,’’ in Proc. 33rd AAAI Conf. Artif. Intell. (AAAI),
31st Innov. Appl. Artif. Intell. Conf. (IAAI), 9th AAAI Symp. Educ. Adv.
Artif. Intell., Honolulu, HI, USA, 2019, pp. 7297–7304.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., vol. 1, Jun. 2019, pp. 4171–4186.

[35] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, ‘‘CodeBERT: A pre-trained model for
programming and natural languages,’’ in Proc. Findings Assoc. Comput.
Linguistics, 2020, pp. 1536–1547.

[36] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, ‘‘GraphCodeBERT: Pre-
training code representations with data flow,’’ 2020, arXiv:2009.08366.

[37] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, ‘‘BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,’’ in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics,
Jul. 2020, pp. 7871–7880.

[38] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, ‘‘Unified pre-
training for program understanding and generation,’’ in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Human Lang. Technol., 2021,
pp. 2655–2668.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, N. Aidan
Gomez, L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in
Proc. Annu. Conf. Neural Inf. Process. Syst., I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, R. Garnett,
Eds. Long Beach, CA, USA, 2017, pp. 5998–6008.

[40] A. See, P. J. Liu, and C. D.Manning, ‘‘Get to the point: Summarizationwith
pointer-generator networks,’’ in Proc. 55th Annu. Meeting Assoc. Comput.
Linguistics, vol. 1, Vancouver, BC, Canada, Jul. 2017, pp. 1073–1083.

[41] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang, and H. Sun,
‘‘On the evaluation of neural code summarization,’’ in Proc. 44th Int. Conf.
Softw. Eng., New York, NY, USA, May 2022, pp. 1597–1608.

[42] P. D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. 3rd Int. Conf. Learn. Represent., Y. Bengio and Y. LeCun, Eds. San
Diego, CA, USA, May 2015, pp. 1–15.

[43] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, ‘‘BLEU: A method for
automatic evaluation of machine translation,’’ in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics, Philadelphia, PA, USA, 2001, pp. 311–318.

[44] S. Banerjee and A. Lavie, ‘‘METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments,’’ in Proc.
ACL Workshop Intrinsic Extrinsic Eval. Measures Mach. Transl. Summa-
rization, Ann Arbor, Michigan, 2005, pp. 65–72.

[45] C.-Y. Lin and E. Hovy, ‘‘Manual and automatic evaluation of sum-
maries,’’ in Proc. Workshop Autom. Summarization, Barcelona, Spain,
2004, pp. 74–81.

[46] R. Vedantam, C. L. Zitnick, and D. Parikh, ‘‘CIDEr: Consensus-based
image description evaluation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 4566–4575.

YUNSEOK CHOI received the B.S. degree in
computer engineering from Sungkyunkwan Uni-
versity, Suwon, South Korea, in 2015, where he
is currently pursuing the Ph.D. degree supervised
by Prof. Jee-Hyong Lee. His research interests
include natural language processing and code
intelligence.

CHEOLWON NA received the B.S. degree in com-
puter engineering from Kunsan National Univer-
sity, Kunsan, South Korea, in 2020. He is currently
pursuing the Ph.D. degree with Sungkyunkwan
University, Suwon, South Korea, supervised by
Prof. Jee-Hyong Lee. His research interests
include natural language processing and code
intelligence.

HYOJUN KIM received the B.S. degree in com-
puter engineering from Kyunghee University,
Suwon, South Korea, in 2020. He is currently
pursuing the master’s degree with Sungkyunkwan
University, Suwon, supervised by Prof. Jee-Hyong
Lee. His research interests include natural lan-
guage processing and code intelligence.

JEE-HYONG LEE received the B.S., M.S., and
Ph.D. degrees in computer science from the Korea
Advanced Institute of Science and Technology,
Daejeon, South Korea, in 1993, 1995, and 1999,
respectively. From 2000 to 2002, he was an Inter-
national Fellow with SRI International, USA.
In 2002, he joined Sungkyunkwan University,
Suwon, South Korea, as a Faculty Member. His
research interests include fuzzy theory and appli-
cations, intelligent systems, and machine learning.

VOLUME 11, 2023 51165

