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ABSTRACT Fault detection based on k-nearest neighbor (FD-kNN) is one of the most widespread fault
detection techniques for industrial processes under complexworking conditions, owing to its characteristic of
localmodeling. However, its state separation ability tends toworsenwhen the operating data is heterogeneous
distribution. To tackle this challenge, a weighted k-nearest neighbor fault detection method based on
multistep index and dynamic neighbor scale is proposed. The multistep nearest neighbor index is defined to
evaluate the state separation ability, and a weighted k-nearest neighbor fault detection framework is formed
by the assigned weights obtained from kernel principal component analysis. On the basis above, a dynamic
neighborhood scale correction method and a dynamic threshold setting strategy are proposed to deal with the
heterogeneous distribution of operating data and track the abrupt change of the operation state. 10 common
faults of wind turbines with complex operation conditions are used to verify the effectiveness of the proposed
method.

INDEX TERMS Complex working condition, fault detection, k-nearest neighbor, multistep index, dynamic
neighborhood scale, dynamic threshold.

I. INTRODUCTION
Fault detection has received widespread attention in the oper-
ation and maintenance of industrial processes due to avoid
further faults deterioration [1]. In recent years, fault detection
methods can be divided into data-based [2], model-based [3],
and knowledge-based methods [4], among which data-based
methods have the advantage of not relying on priori models
and relevant domain expert knowledge. In addition, with the
rapid development of information collection, transmission
technology, and dataminingmethods, data-driven fault detec-
tion technology has been widely applied [5], [6].

Data-driven fault detection method contains signal pro-
cessing [7], [8], statistical analysis [9], [10], and artificial
intelligence methods [11], [12], [13]. In [7], a blind source
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separation method for sparse component analysis is pro-
posed, which can accurately estimate the number of signal
sources and further recover signal characteristics from mixed
observation signals. In [8], the power spectral density of
the relative axial acceleration of the bearing and the nacelle
are developed for six fault conditions of different severity.
In [9], a three-layer Bayesian network structure based on
fault trees is proposed to simplify the Bayesian network
structure for fault diagnosis of wind turbines. In [10], a PCA-
based multi-criteria feature selection algorithm for the state
feature selection of wind turbines is proposed, and then a
fault detection model through artificial neural networks is
established. In addition, artificial intelligence methods rep-
resented by deep learning have obtained significant achieve-
ments in the fault detection field in recent years. In [11],
a new Multiple-Order Graphical Deep Extreme Learn-
ing Machine (MGDELM) algorithm for unsupervised fault
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diagnosis of rolling bearing is proposed to juggle the
manifold structure information with multiple-order simi-
larity from the massive unlabeled industrial data. In [12],
a self-adaptation graph attention network via meta-learning
(SGANM) is proposed. In [13], a novel self-training semi-
supervised deep learning (SSDL) approach is proposed to
train a fault diagnosis model with few labeled and abundant
unlabeled samples.

A. RELATED WORK
The data-driven fault detection methods have obtained
successful achievements in various fields. However, the
operating data under complex operating conditions and
multi-modes usually have the characteristics of nonlinearity,
multi-center, inconsistent covariance structure, etc. [14], such
as semiconductor etching process [15], penicillin fermenta-
tion process [16], and wind turbine pitch system operation
process [17], etc. The traditional solution for the above prob-
lems is to divide the operating conditions/modes and establish
a distributed fault detection model to deal with the complex
operating conditions/modes [18], [19], [20]. In addition, the
working conditions division methods still have the disadvan-
tages of blindness, randomness, and poor timeliness.

The fault detection method based on k-nearest neigh-
bors (FD-kNN) was proposed byHe in [15], which can better
deal with the nonlinear problems as the k-nearest neighbor
algorithm is a nonlinear classifier. The anomaly identifica-
tion by kNN only relies on similar operating states among
offline data, which can realize the function of local modeling
for online samples without setting up a distributed model.
Therefore, FD-kNN is more suitable for the fault detection
of complex working conditions.

To improve the FD-kNN, He proposed a PC-kNN method
in [21] which adopted Principal Component Analysis (PCA)
for feature extraction and measured the nearest neigh-
bor distance by principal component features. Therefore,
PC-kNN reduces the feature dimension and improves detec-
tion efficiency. In [22], Zhou proposed a k-nearest neigh-
bor fault detection method based on distance-preserving
projection to achieve distance-preserving in space. In [23],
a weighted k-nearest neighbor fault detection method based
on a dynamic feature matrix is proposed, which considers
the Spatio-temporal correlation of features and the distance
weights of different features. Forthe multi-condition process,
literature [24] proposed a fault detection based on the sparse
residual distance statistical index to obtain the sparse residual
space through a similar operating state distance. Then, the
sparse residual k-nearest neighbor distance is calculated to
construct the fault detection statistic. In [25], the neighbor
mean is used to calculate the sample estimated score and
obtain the residual through the estimated score. This method
can eliminate the influence of data structure on process
fault detection. In [26], a fault-symptom table is established
through the variable contribution analysis in the calculation
of the nearest neighbor distance, which realizes the identifi-
cation of abnormal variables.

B. OUR CONTRIBUTIONS
The above-mentioned research on fault detection methods
based on k-nearest neighbors has made certain improvements
in feature extraction, distance measurement, fault root trac-
ing, etc. However, the operating data in the actual engineer-
ing process has an obvious characteristic of heterogeneous
distribution. The traditional nearest neighbor scale is mostly
determined by the trial and error method. Since the distri-
bution diversity of neighbors, thus the coverage degree of
the normal state and the separation ability of the abnormal
state based on the FD-kNN have specific differences. The
performance of FD-kNN for anomaly identification is limited
by the fixed neighbor scale, that is also one of the critical
factors for the false alarm rate (FAR) and the missing alarm
rate (MAR).

This paper develops a weighted k-nearest neighbor fault
detection method based on the separation index and dynamic
neighborhood scale (MI-DNS-WkNN) to solve the above
problems. According to the fault detection principle of
FD-kNN, a weighted k-nearest neighbor fault detection
framework is established. A separation degree index based
on multistep nearest neighbor distance is defined, and on
this basis, a dynamic neighborhood scale correction method
is proposed to deal with the heterogeneous distribution
of operating data. A dynamic threshold-setting method is
introduced to track the sudden change in the operation
state.

The rest of this paper is organized as follows. Section II
outlines the principle of FD-kNN. In Section III, we solve
the fixed neighbor scale and threshold problem and provide a
dynamic FD-kNN method based on the multistep index and
dynamic neighborhood scale. In Section IV, by comparing
with the simulation results of existing schemes, we prove
the advantages of our scheme. We conclude the paper in
Section V.

II. PRINCIPLE OF FD-kNN
The fault detection process of FD-kNN is independent and
only determined by the knearest neighbor distance of online
samples among offline samples, which is suitable for the
process fault detection problem of complex working condi-
tions. FD-kNN separates normal operation data from fault
data based on the following theories [15]:

1) The normal state data is similar to the historical normal
state data;

2) There is a certain deviation between the fault state data
and the historical normal state data.

The FD-kNN fault detection method includes two stages:
offline modeling and online detection.

A. OFFLINE MODELING
Step 1: For all samples in the training set, find their k-nearest
neighbor samples.

Step 2: The kNN distance is calculated for each sample,
and the kNN distance D2

i for sample i is defined as the sum
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of the distances from sample i to its k nearest neighbors:

D2
i =

k∑
j=1

d2ij (1)

where d2ij isthe Euclidean Distance from sample xi to its
jth nearest neighbor.

Step 3: Determine the abnormal state discrimination
threshold.

A common threshold setting method is to determine the
threshold D2

α with given confidence α according to the
coverage rate of D2

i in the training sample set.

B. ONLINE DETECTION
Step 1: For the online sample xt, find its k nearest neighbor
samples from the training data set.

Step 2: Calculate the kNN distance D2
t of xt.

Step 3: Compare the magnitude relationship between D2
t

and the threshold D2
α . If D

2
t ≤ D2

α , it is a normal operation
state, otherwise, it is a fault state.

The scale of nearest neighbor k is the most important
parameter in FD-kNN. Basically, if the k value is larger, the
influence of noise on fault detection is smaller, but the bound-
ary between normal and faulty states will be less obvious.
A common approach is to try several different k values on
offline data and then choose the k value that corresponds to
the best cross-validation result. However, in practice, not only
for different data sets, but even for the offline state of different
operating conditions, the influence of the k value on it is also
different, so the optimal k value among samples is various as
well. The offline and online samples independently determine
their optimal k value, which can determine the local range
more effectively, thereby improving the ability to separate the
normal state and the abnormal state.

III. MI-DNS-WkNN
In this paper, the dynamic neighbor scale and the dynamic
threshold are used to deal with the difference in data sparsity
under different working conditions, to improve the separation
ability of FD-kNN for fault states, thereby reducing the false
alarm rate and the missing alarm rate. The proposed method
defines the multistep neighbors to evaluate the separation
ability of abnormal states. On this basis, an iterative partition
method of neighbor clusters and a fusion strategy of dynamic
thresholds are proposed. The details of the proposed method
are described as follows.

A. FEATURE EXTRACTION AND WEIGHTING STRATEGY
Kernel Principal Component Analysis (KPCA) is applied to
reduce computational complexity. KPCA performs feature
extraction on the standardized offline samples to achieve
feature dimensionality reduction. The principal component
score is used as the feature weight. Therefore, the near-
est neighbors calculation in the algorithm proposed in this
paper is the weighted feature after dimensionality reduction.
The weighted Euclidean Distance is calculated as follows

[27]:

D2
P =

k∑
i=1

p∑
j=1

wjd2ij (2)

where d2ij is the Euclidean Distance from the sample x to its
ith nearest neighbor of feature j, p is the feature dimension
extracted by KPCA, and wj is the jth eigenvalue of the kernel
matrix in KPCA.

B. DYNAMIC NEIGHBORHOOD METHOD BASED ON
MULTISTEP NEIGHBORS
This paper proposes a k-value division method for offline
samples based on multistep neighbors. It is aimed to assign
different k values to the samples in different sparse spaces,
and to reduce the volatility of the neighbor distances of sam-
ples, thereby improving the separation ability for different
states. The specific method of sample k-value division is as
follows.

Firstly, the concept of multistep neighbors is defined,
assuming that the number of offline samples is n and the
number of neighbors is k . Define the sum from the first to the
kth nearest neighbor of sample xi as the first-step neighbor,
and the sum from (k+1)th to the 2kth nearest neighbor as the
second-step neighbor. Then the multistep nearest neighbor
distances can be expressed as follows:

Di12 =

k∑
j=1

(
xi − xj

)2 (3)

Di22 =

2k∑
j=k+1

(
xi − xj

)2 (4)

On this basis, the separation index based on multistep
neighbors is defined as follows:

SEP =

n∑
i=1

2k∑
j=k+1

(
xi − xj

)2
k∑
j=1

(
xi − xj

)2 (5)

The separation degree is advanced based on the similar-
ity between the online state and nearest offline state. If the
second-step neighbor with the highest similarity can be sep-
arated from the first-step neighbor, the abnormal state with
stronger dissimilarity will be separated better.

According to the default k value, the weighted k nearest
neighbor distances of all offline samples are calculated and
arranged in descending order, and the mean and variance of
the nearest neighbor distances are also calculated.

ED =
1
n

[∑n

i=1

∑ki

j=1
d(i, j)2

]
(6)

σD =
1
n

[∑n

i=1
(D(i) − ED)2

]
(7)

in which, the mean value ED represents the average level
of the neighbor distance of each sample, which is used to
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guide the updated direction of the k value in the iterative
process, and the variance value σD represents the volatility of
the offline sample neighbor distance, which is an important
index used to evaluate the effectiveness of iteration.

The k values of offline samples are corrected based on ED
and SEP, the correction rules are shown in (8):

knew =


max
∀knew

SEP(i),

knew ∈ {knew |kmin ≤ knew ≤ kmax }

∩{knew
∣∣∣∣Dknew(i) − ED

∣∣ < |Dk (i) − ED|}

remain, other conditions.

(8)

The above correction rules can be regarded as a two-step
process. For sample xi, the first step is to find all k values
that meet the constraints

∣∣Dknew(i) − ED
∣∣ < |Dk (i) − ED|

within the preset range [kmin, kmax]. The purpose is to make
the neighbor distance Dknew(i) under the new k value tend to
themeanED and reduce the volatility of the neighbor distance
distribution. Then, the k value that satisfies the constraints of
the first step and maximizes the SEP(i) is selected as the new
k value for xi. If no k value meets the above conditions, the
original k value remains unchanged.

The k values of all samples are updated and the mean
values are recalculated to complete the iteration. The stopping
criterion is the variance no longer decreases or reaches the
maximum iterations. Since the convergence direction of the
kvalue is affected by the initial value, an iterative calculation
is performed for all k values within the preset [kmin, kmax]
range in the offline process. The optimal k value is the value
corresponding to the largest separation degree.

For online samples, the selection of the k value is deter-
mined by the most similar samples in the offline samples,
that is, it is equal to the k value corresponding to the nearest
neighbor sample.

C. DYNAMIC THRESHOLD SETTING METHOD
The identification of each online sample is independent in
the fault detection process of FD-kNN, that is, whether the
online state is abnormal or not only depends on its neigh-
borhood state. This theoretical basis makes it possible to
set the dynamic threshold. This paper proposes a dynamic
threshold-setting method linked to the scale of neighbors and
the neighborhood state. The static component is determined
by the overall offline sample distribution, and the dynamic
component is determined by the local neighborhood state of
the online sample. The specific setting method is as follows:

1) STATIC COMPONENT FOR THRESHOLD
For the preset confidence coefficient α, take it as the tolerance
for noise data, that is, the static component for threshold T1
can cover (1-α)% of the offline normal operating samples:

T1 = DRank (⌊0.05n⌋) (9)

where DRank is the descending order of the neighbor distance
of offline samples, n is the number of offline samples, ⌊ ⌋ is
the rounding function.

2) DYNAMIC COMPONENT FOR THRESHOLD
The dynamic component of the threshold is used to track
the changes in complex operating conditions. This paper
proposes a dynamic component-determining method for the
threshold associated with the neighborhood scale. For the
online sample xi(i = 1, 2, . . . , n), find its nearest neighbor
samples kxji(j = 1, 2, . . . , ki), calculate the mean value of the
neighbor distances of kxi in the offline process as the dynamic
threshold component of xi, that is:

T2(i) = (1/ki)
ki∑
j=1

D2
kj (j)] (10)

where ki is the neighborhood scale of the online sample xi,
and kj is the neighborhood scale of the jth nearest neighbor
of xi.

3) THRESHOLD FUSION
The threshold static component of the overall distribution
and the threshold dynamic component of the current state is
fusion as the final threshold TD of xi. Since the amplitudes of
the static component and dynamic component are both based
on the amplitude of the online state, and the influence on noise
in the static component is considered, therefore, the static and
dynamic components are superimposed as follows:

TD(i) = [DRank (⌊0.05n⌋) + (1/ki)
k∑
j=1

D2
kj(j)]/2 (11)

In summary, the flowchart of the MI-DNS-WkNN fault
detection method proposed in this paper is shown in Fig. 1.

FIGURE 1. Flow chart of MI-DNS-WkNN.

49186 VOLUME 11, 2023



X. Qian et al.: Weighted kNN FD Based on Multistep Index and DNS Under Complex Working Conditions

IV. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS
A. EXPERIMENT DESCRIPTION
In this paper, 10 common fault data of megawatt-scale wind
turbines are selected for simulation experiments, to verify the
effectiveness of the proposed method for the fault detection
process under complex operating conditions. The results are
compared with FD-kNN [15], PC-kNN [22], FD-KPCA [28],
and Kmeans-GMM [20].

Wind turbines are affected by the intermittency and
randomness of wind. The operating states are frequently
switched and affected by mechanical, electrical, and other
factors, resulting in complex and changeable operation
modes. According to the power characteristics of wind tur-
bines, the operation process is divided into four stages: start-
up and grid connection stage, maximum wind energy capture
stage, constant power control stage, and over-wind speed
cut-out stage.

In this paper, 10 common faults of NREL-5MW offshore
wind turbines are selected. NREL 5 MW, a three-blade off-
shore WT with horizontal variable speed, is designed based
on theMultibridM5000WT and Repower 5MWT [29], [30].
The parameters of NREL 5 MW offshore WT are shown in
Table 1.

TABLE 1. Parameters of NERL 5MW offshore WT.

Fifteen sensors are used to monitor the wind speed vw,
generator speed wg, generator torque τg, rotor speed wr , gen-
erating power pe, pitch angle βi of the blade i, root torqueMi
of blade i, the azimuth angle of low-speed side φ, horizontal
acceleration Xacc of tower top, vertical acceleration Yacc, and
deviation error 4. Fig. 2 shows the locations of the sensors.
The fault frequency of critical components in offshore WT

is high due to its harsh working environment. The common
fault types include sensor faults and actuator faults. In this
paper, six sensor faults and four actuator faults are involved.
Sensor faults contain small deviation (fault 6), proportion
error (fault 1, fault 3, and fault 5), and numerical deviation
(fault 2 and fault 4) between the measured value and the real
value. Actuator faults include pitch system faults (fault 7 and
fault 8), generator torque fault (fault 9), and yaw system fault
(fault 10). The fault description and risk degree are shown in
Table 2 [31].

In this experiment, 500 normal samples before the failure
and 700 samples after the failure are collected for each fault as

TABLE 2. Fault description and risk degree.

FIGURE 2. Locations of sensors.

test data, and 10,000 groups of samples are randomly selected
as training data from all the remaining normal operation data.

The effectiveness of the proposed method is verified by
comparing the false alarm rate in the normal operating state
and the missing alarm rate in the abnormal state. The false
alarm rate (FAR) and the missing alarm rate (MAR) are
calculated as follows [32]:

FAR =
FP

FP+ TN
(12)

MAR =
FN

TP+ FN
(13)

Among them, FP (false positives) and TN (true negatives)
represent the number of identifying normal states as abnormal
states and normal states, respectively. FN (false negatives)
and TP (true positives) represent the number of identifying
abnormal states as normal and abnormal states, respectively.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) OFFLINE STATE
The dimension of offline normal samples is 10000 (number
of samples) × 15 (number of monitoring features). KPCA is
adopted to reduce the computational complexity and assign
weights to the features. The KPCA parameters are set as
85 % cumulative contribution; the Gaussian kernel function
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width is 20; the confidence coefficient is 99 %. The results of
feature extraction and the weights of corresponding features
are shown in Fig. 3.

FIGURE 3. KPCA feature extraction results and corresponding weights.

Fig. 3 illustrates that the first 10 eigenvalues can reach the
set cumulative contribution ratio. Therefore, these 10 eigen-
values are selected for subsequent offline calculation and
normalized as the feature weights.

Each iteration is performed through the preset initial k
value range [kmin, kmax].The results show that when the initial
value is 7 can achieve the maximum separation degree. The
corresponding iteration results are shown in Fig. 4, in which
Fig. 4 (a) is the distribution of the neighbor distance when
the fixed k value is 7; Fig. 4 (b) is the distribution of the
neighbor distance after the iterative correction of the dynamic
neighborhood; Fig. 4 (c) is the changing trend of variance
and separation degree with iterative correction; Fig. 4 (d) is
the optimal neighborhood scale distribution corresponding to
each sample after iteration.

Fig. 4 shows that the fluctuation degree of the neighbor
distance distribution of the offline samples is significantly
reduced by modifying the neighborhood scale, and a similar
conclusion can be obtained from the changing trend of the
variance during the iterative process. The separation degree
of the samples also increases as the variance decreases, which
verifies the effectiveness of the neighborhood scale correction
method proposed in this paper.

There are still some cases with higher neighbor distances,
which might be noise points or relatively sparse operating
conditions. These cases will be processed through the sub-
sequent dynamic threshold setting.

2) ONLINE PHASE
To verify the effectiveness of the method proposed in this
paper, the experimental results are compared with a nonlin-
ear process fault detection method FD-KPCA, the method
Kmeans-GMMwhich considers the working conditions divi-
sion, and the other two fault detection methods based on
k- nearest neighbors FD-kNN and PC-kNN.

It should be noted that different from the bias verification
between the predicted value and the actual value in the tra-
ditional data-based fault detection method, the bias in the

kNN-based fault detection methods refers to the difference
between the k-nearest neighbor distance of the online sample
in the offline samples and the k-nearest neighbor distributions
of offline samples.

The parameter settings of the comparison method are
shown in Table 3. The hyper-parameters in the proposed
algorithm include the initial value of the neighbor size; the
range of k value [kmin, kmax]; the maximum iterations g, and
the confidence level α.
In the above parameters, the initial value of the neighbor

size is the same as the fixed neighborhood size in other
k-nearest neighbor-based methods, which is obtained from
the trial and error method. If the range of k is too small, the
approximate state is insufficient to describe the inherent char-
acteristics of the operating state. If the range of k is too large,
it may cover offline samples that are quite different from the
current state, resulting in an increase in the discriminant index
and the false alarm. Therefore, the range of k is usually taken
as 3∼10 according to experience. The iteration number is
used to control the number of corrections to the neighborhood
size of the sample. The confidence level is used to control
the noise tolerance, in this paper, the confidence level of all
methods is unified to 5%. In addition, the clusters number of
Kmeans-GMM is obtained by clustering validity function.

The false alarm rate of the first 500 samples and themissing
alarm rate of the last 700 samples are counted, and the results
are shown in Table 4 and Table 5, respectively.
The MAR is used to describe the separation ability of fault

detection methods for different states (normal state and fault
state). From the statistical results in Table 4, it is obvious
that all methods can accurately detect fault 4, which is due
to the obvious data bias caused by the stuck fault. For the
other 9 faults, the proposed method achieved the lowest MAR
compared with the other 4 fault detection methods. It is ver-
ified that the strategy of dynamic neighborhood scale based
on the separation degree proposed in this paper can effectively
separate the fault state from the normal state.

The FAR is used to describe the tolerance for sudden
changes or noise in normal operating conditions. From the
statistics of the FAR shown in Table 5, it can be seen that
for most of the faults, the method proposed in this paper can
obtain the lowest FAR compared with the other 4 methods.
That is because the threshold setting of traditional methods
usually set the fixed threshold according to the distribution
characteristics of offline samples, while the dynamic thresh-
old setting method proposed in this paper is suitable for FD-
kNN, that is, it only depends on the local similar operating
states. When the nearest neighbor distance of similar work-
ing states is large, the threshold of online samples is also
increased accordingly, which reduces the false alarm caused
by the sudden change of the operation state.

Take the detailed detection process of fault 5 (generator
power sensor fault) and fault 8 (pitch system actuator fault)
as an example to compare the performance of different fault
detection methods more clearly, as shown in Fig. 5 and
Fig. 6.
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FIGURE 4. Results of offline sample neighborhood scale after correction.

TABLE 3. Parameter settings of the comparison methods.

TABLE 4. Comparison of the missing alarm rate.

From Fig.5 and Fig.6, it is obvious that the performance
for fault detection of FD-KPCA is unsatisfactory, that is

because the changes in complex working conditions of wind
turbines are not considered. The fault detection effect of
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TABLE 5. Comparison of the false alarm rate.

FIGURE 5. Fault 5 (generator power sensor fault) detection process.

the method based on the division of working conditions is
better than FD-KPCA but worse than the methods based on
kNN, this is due to the stronger local modeling capability
of kNN-based methods and thus is more suitable for the
fault detection process of wind turbines with complex and
changing working conditions. Furthermore, compared with
the other two similar kNN-based fault detection methods,
the MI-DNS-WkNN proposed in this paper can separate the

different states with a threshold of lower amplitude, which
verified that the dynamic neighborhood scale modified by
the separation index can effectively improve the separation
ability of FD-kNN for normal state and abnormal state.

In addition, it can be seen from the enlarged part of
the normal operating state that the dynamic threshold pro-
posed in this paper can effectively follow the change of
the wind turbine operating state, and effectively reduce the
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FIGURE 6. Fault 8 (pitch system actuator fault) detection process.

false alarm caused by the abrupt change of the working
condition.

V. CONCLUSION
In this paper, a weighted k-nearest neighbor fault detection
method based on multistep index and dynamic neighborhood
scale is proposed. The main innovations include the defi-
nition of the multistep neighbor index, the dynamic neigh-
borhood strategy, and the setting of the dynamic threshold.
The common faults of wind turbines with complex operating
conditions are used to verify the effectiveness of the proposed
method, and the experimental results show that:

(1) The proposed correction method of dynamic neighbor-
hood scale can effectively reduce the fluctuation degree of the
neighbor distance;

(2) The improved FD-kNN with dynamic neighborhood
scale mechanism can effectively separate the abnormal state
from the normal state, thereby reducing the MAR;

(3) The proposed dynamic threshold strategy can effec-
tively track the change of the operating state, and reduce
the FAR caused by the abrupt change of operating
state.

The further research parts include fusion mechanism mod-
els and interpretive analysis of detection processes.
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