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ABSTRACT Variable precision reduction (VPR) and positive region reduction (PRR) are common
definitions in attribute reduction. The compacted decision table is an extension of a decision table. In this
paper, we propose another extension, called the weighted decision table. In both types of decision tables,
VPR is defined, and the corresponding discernibility matrices for the PRR are proposed. Then, algorithms
for obtaining the PRR from the discernibility matrices are presented. In both types of decision tables, the
relationship between VPR and PRR is established by comparing the corresponding discernibility matrices.
If the precision of the VPR meets the given conditions, then the PRR algorithms can be used to obtain the
results after modifying some decision values in the decision tables. An analysis of the modification process
of the decision values and the compression process of decision tables is used to propose a new algorithm for
VPR in decision tables that ensures credibility. The effectiveness of the proposed algorithm was evaluated
by an experimental comparison with existing VPR algorithms.

INDEX TERMS Variable precision reduction, positive region reduction, decision table, compacted decision
table, weighted decision table.

I. INTRODUCTION
As the number of data features increases, the cost of analyzing
and processing multi-dimensional data increases, and hence
the research on attribute reduction has become a popular topic
in recent years. Attribute reduction is an important task in
rough sets [1] which were proposed by Pawlak in the 1980s
and are used to handle problems involving uncertainty [2].
In recent years, the research on rough sets has combined
rough sets with fuzzy sets [3], [4], [5] evidence theory [6], [7]
information entropy [8], [9], [10], [11] and other fields, and
has made great progress. Attribute reduction removes redun-
dant features and retains the subset with theminimumnumber
of attributes to improve the efficiency of the algorithm. In its
initial stages, attribute reduction research mainly focused on
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the definitions of positive region reduction (PRR) [12], [13],
[14], [15] and absolute reduction [16]. As rough set research
has further developed, some concepts such as variable pre-
cision reduction (VPR) [17], [18], [19] and assignment
reduction [20] have been proposed according to practical
needs, and they have been successfully applied in power
systems [21] bioinformatics [22] text categorization [23] and
industrial applications [24].

In recent years, attribute reduction methods have been
used in granular computing [25], [26] formal concept anal-
ysis [27], three-way decision analysis [28], [29] and many
other fields. Attribute reduction in classical rough sets
has been studied thoroughly. The indiscernibility relations
between any object have been constructed to study the rela-
tionship between the positive region and indiscernibility rela-
tion sets in depth [30], [31], [32]. Because some information
in information tables will be missing, as the binary rela-
tion is equivalence, the reduction method research is limited.
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To improve the practicability of the reduction algorithm, the
equivalence relation has been extended to non-equivalent
binary relations such as tolerance relations [33], [34], [35]
and similarity relations [17], [36], [37] and the definition of
reduction was extended again after the theory of rough sets
was generalized. Reduction methods based on information
view [38] or the discernibility matrix [13], [14], [15], [18] and
heuristic methods based on attribute importance [37] have
been proposed. In addition, considering the dynamic changes
of objects in a universe, incremental attribute reduction [39],
[40] has also made new progress.

On the basis of decision tables, compacted decision
tables [41] are described, and the weighted decision table,
which is obtained after the decision table has been com-
pressed, is proposed. In both types of decision table, the
relationship between VPR and PRR is studied from the point
of view of discernibility matrix construction, and an opti-
mization algorithm for VPR is proposed for each type of
decision table. Based on the above research, the construction
processes of transforming the decision table into each type
of decision table are compared, and the VPR in the decision
table is transformed into the PRR in the weighted decision
table for calculation, thus improving the efficiency of the
VPR algorithm.The core of the VPR algorithm, which is
based on a discernibility matrix, is to construct the discerni-
bility matrix. However, the time complexity of constructing
the discernibility matrix in existing reduction algorithms is
O(n2). The main contribution of this paper is to develop the
PRR algorithm for decision tables. The research framework
is shown in Figure 1.

The structure of the paper is as follows. Section II intro-
duces the basic concepts of the positive region and variable
precision in decision tables. In Section III, the compacted
decision table is introduced, the weighted decision table is
proposed, and VPR for both types of decision tables is pro-
posed. In Section IV, in the compacted decision table and the
weighted decision table, the PRR corresponding discernibil-
ity matrices are proposed, and then the corresponding algo-
rithms are proposed. Based on the discernibility matrix, the
relationship between VPR and PRR is analyzed in two types
of decision tables. In Section V, the optimization algorithms
of VPR are proposed for two types of decision tables, and
the optimization algorithm of VPR in decision tables is also
proposed. The Section VI verifies the proposed algorithms
through experiments. Finally, the conclusion summarizes the
paper.

II. PRELIMINARIES
The tuple S = (U ,A T , {Va | a ∈ AT } , {f (x, a) | x ∈ U ,

a ∈ AT }) is an information table, where U is a universe set,
AT is a finite nonempty set of attributes, Va is a nonempty set
of values for a ∈ AT , and f (x, a) : U → AT is a function,
where f (x, a) takes a value on attribute a.
When A is an nonempty subset of AT , f (x,A) is denoted as

a value on attribute set A. An equivalence relation is defined
by RA = {(x, y) | (x, y) ∈ U ×U , f (x, a) = f (y, a), ∀a ∈ A},

where f (x, a) and f (y, a) are the attribute values of x and y on
a, respectively. Class [x]A is the equivalence class determined
with respect to A and is denoted by [x]A = {y | (x, y) ∈ RA}
or can also be denoted by [x]A ={y | (x, y) ∈ Ra, a ∈ A}.
For the tuple S, if AT = C ∪ D, and C ∩ D = ∅,C is the

condition attribute set, D is the decision attribute set. Then,
tuple S is called a decision table, brieflywritten as (U ,C∪D).
Definition 1 ([1], [2]): Let X ⊆ U ,B ⊆ C , and x ∈ U .

Then, the lower and upper approximations of X are defined as

RB(X ) = {x | [x]B ⊆ X} , (1)

RB(X ) = {x | [x]B ∩ X ̸= ∅} (2)

Definition 2 ([1], [2]): Let (U ,C∪D) be a decision table.
Then, U/RD = {D1,D2, . . . ,Dt } is the quotient set deter-
mined by D. The positive region is defined as

PosC D =

r⋃
i=1

RC (Di) (3)

For a decision table (U ,C ∪ D), if PosC D = U ,
then the decision table is called consistent; otherwise, it is
inconsistent.
Definition 3: Given X ⊆ U , for each x ∈ U , the charac-

teristic function λX (x) is defined as follows:

λX (x) =

{
1, x ∈ X
0, x /∈ X

(4)

Lemma 1 [18]: For X ⊆ U and [xi]R ⊆ U , [xi]R is an
equivalence class on the equivalence relation R. Then,WRλX
is as follows:

WRλX =

[
|[x1]R ∩ X |

|[x1]R|
,
|[x2]R ∩ X |

|[x2]R|
, . . . ,

|[xn]R ∩ X |

|[xn]R|

]T
(5)

where T denotes the transpose. The Boolean column vector
λX = (λX (x1), λX (x2), . . . ,λX (xn))T for xi ∈ U . In addition,
WR is denoted as

WR =



λR (x1, x1)
|[x1]R|

λR (x1, x2)
|[x1]R|

· · ·
λR (x1, xn)

|[x1]R|
λR (x2, x1)

|[x2]R|
λR (x2, x2)

|[x2]R|
· · ·

λR (x2, xn)
|[x2]R|

...
...

. . .
...

λR (xn, x1)
|[x2]R|

λR (xn, x2)
|[x2]R|

· · ·
λR (xn, xn)

|[x2]R|


(6)

Definition 4 [18]: Let R be an equivalence relation on U
and β ∈ (0, 1]. Then, the β-approximation of X is defined as

Rβ (X ) = {x | P (X | [x]R) ≥ β} (7)

where P (X | [x]R) =
|[x]R∩X |

|[x]R|
.

Using the β-approximation and the quotient set, a fuzzy
matrix can be constructed.
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FIGURE 1. Research framework.

Theorem 1: For a decision table (U ,C ∪ D), where
β ∈ (0, 1], for x ∈ U , we have (µCD(x))β =(
λ(RC )(β)(D1)

(x), λ(RC )(β)(D2)
(x), . . . ,λ(RC )(β)(Dt )(x)

)
.

According to the above definition of a fuzzy matrix, VPR
can be defined in the decision table as follows.
Definition 5 ([17], [18]): Let (U ,C ∪ D) be a decision

table, β ∈ (0, 1], and B ⊆ C . Then, B is called the VPR
of C if it satisfies the following conditions:

1) ∀x ∈ U , (µCD(x))β = (µBD(x))β
2) ∃x ∈ U , for any B′

̸= ∅, and B′
⊆ B, (µCD(x))β ̸=

(µB′D(x))β

To summarize, the definition of VPR and its discernibility
matrix in a decision table were introduced in this section.
Objective data can be described by decision tables. However,
changes in some data sets may cause the form of the decision
tables to also change. In this paper, the research framework is
shown in Figure 1.

III. VPR IN COMPACTED AND WEIGHTED
DECISION TABLES
On the basis of retaining all decision table information,
this section describes how the number of objects (rows) in
the decision table is compressed to change the form of the
decision table, thus forming two types of decision tables.
Compacted decision tables are formed by summing the num-
ber of identical decision attribute values in any equivalence
class and then adding the number in the decision tables [41].
By contrast, the weighted decision table is formed by

TABLE 1. Example decision table.

determining the decision attribute values of any two objects
in any equivalence class and adding weights.
Definition 6 [41]: Let (U ,C ∪D) be a decision table, and

let U/RC = {[x1]C , [x2]C , . . . , [xm]C } be the quotient set
determined by condition set C , where U =

⋃m
j=1

[
xj

]
C . Set

U/RD = {D1,D2, . . . ,Dt } is the quotient set determined by
decision set D, and the decision values are vdi ∈ VD. Then,(
U ′,C ∪ D′

)
is a compacted decision table, where U ′

=

{x1, x2, . . . , xm} and f (xk , di) = |
{
x | f (x, d) = vdi for

x ∈ [xk ]C } |. Operator |·| is used to denote the cardinality of
a set.

The following is an example to illustrate the transformation
of a decision table into a compressed decision table. Given
(U ,C ∪ D) (Table 1), the compacted table

(
U ′,C ∪ D′

)
(Table 2) is obtained by calculating the number of identical
decision values in any equivalence class.
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TABLE 2. Compacted decision table.

TABLE 3. Weighted decision table.

The process of the weighted decision table construction is
as follows. In any equivalence class, for the objects with the
same decision value, only one object is retained and the other
object(s) are deleted, and the number of identical decision
values is used to determine the weight, forming the weighted
decision table.
Definition 7: Let (U ,C ∪D) be a decision table. For each

x ′′
∈ U ′′, which satisfies x ′′

∈ [x]C , we have f (x ′′,W ) =∣∣{x ′′
| x ′′

∈ [x]C ∩ Di, x ∈ U
}∣∣, where Di ∈ U/RD, Then,(

U ′′,C ∪ D′′,W
)
is defined as a weighted decision table.

In the weighted decision table, if x ′′

1 ∈ [x ′′]C and x ′′

2 ∈

[x ′′]C , then f (x ′′

1 ,D) ̸= f (x ′′

2 ,D). Obviously,
∣∣U ′′

∣∣ ≥ |U/RC |.
The following is an example to illustrate the transformation

of a decision table into a weighted decision table. Given
(U ,C ∪D) (Table 1), the weighted decision table is obtained
by Definition 7.

In compacted and weighted decision tables, the definitions
of VPR are as follows.
Definition 8: Let

(
U ′,C ∪ D′

)
be a compacted decision

table. For β ∈ (0, 1], (µCD′ (x))β is defined as

(µCD′ (x))β =

( f (x, d1)∑
di∈D′ f (x, di)

,
f (x, d2)∑
di∈D′ f (x, di)

, . . . ,

f (x, dt)∑
di∈D′ f (x, di)

)
β

(8)

where f (x, di) is the number of objects with decision value
vdi in [x]C , and t is the number of decision values in the
compacted decision table.

For example, in Table 2, u1 ∈ U ′ because f (x, d1) =

3, f (x, d2) = 1, and f (x, d3) = 1, and hence (µCD′ (u1))β =(
3
5 ,

1
5 ,

1
5

)
β
.

Definition 9: Let
(
U ′,C ∪ D′

)
be a compacted decision

table, where β ∈ (0, 1], and B ⊆ C . Then, B is called the
VPR of C if it satisfies the following conditions:

1) ∀x ∈ U , (µCD′ (x))β = (µBD′ (x))β
2) ∃x ∈ U , for any B′

̸= ∅ and B′
⊆ B, (µCD′ (x))β ̸=

(µB′D′ (x))β

Similarly, to define VPR in a weighted decision table,
(µCD′′ (x))β is defined in a weighted decision table as follows.
Definition 10: Let

(
U ′′,C ∪ D′′,W

)
be a weighted deci-

sion table, and U/RD′′ =
{
D′′

1,D′′
2, . . . ,D′′

t
}
, where W is

the weight. β ∈ (0, 1]. Then, (µCD′′ (x))β is defined as

(µCD′′ (x))β =

(∑
x∈[x]C∩D′′

1
f (x,W )∑

xi∈[x]C f (xi,W )
,

∑
x∈[x]C∩D′′

2
f (x,W )∑

xi∈[x]C f (xi,W )
,

. . . ,

∑
x∈[x]C∩D′′

t
f (x,W )∑

xi∈[x]C f (xi,W )

)
β

(9)

Definition 11: Let
(
U ′′,C ∪ D′′,W

)
be a weighted deci-

sion table. Then,B ⊆ C,B is called theVPR ofC if it satisfies
the following conditions:

1) ∀x ∈ U , (µCD′′ (x))β = (µBD′′ (x))β
2) ∃x ∈ U , for any B′

̸= ∅ and B′
⊆ B, (µCD′′ (x))β ̸=

(µB′D′′ (x))β
Compacted and weighted decision tables are similar in that

both reduce the number of objects (rows) in a decision table.
The difference is that the cardinality of any equivalence class
in the compacted decision table is 1, whereas an equivalence
class may have several objects in the weighted decision table.

IV. ATTRIBUTE REDUCTION IN COMPACTED AND
WEIGHTED DECISION TABLES
Because the form of the compacted and weighted decision
tables have changed, the method for calculating the positive
region changes accordingly. In this section, the corresponding
discernibility matrices for the PRR in both types of decision
tables are proposed. In addition, these discernibility matrices
are derived so that the PPR algorithms for both types of
decision tables can be developed.

A. PRR IN COMPACTED DECISION TABLES
For x ∈ PosC D′, x has only one decision value in the
compacted decision table. Therefore, the positive region is
calculated as follows.
Definition 12: Let

(
U ′,C ∪ D′

)
be a compacted decision

table. The positive region is defined as follows:

PosC D′
=

{
x |

f (x, dh)∑
dk∈D′ f (x, dk)

= 1

}
(10)

Given
(
U ′,C ∪ D′

)
, where x ∈ U ′, if there exists only one

di such that f (x, di) ̸= 0, and f (x, dx) = 0(i ̸= k), then
x ∈ PosCD′. Otherwise, x /∈ PosCD′.
Using Definition 12, the corresponding matrix M ′

=

(m′
ij)n×n is proposed as follows:

m′
ij =


{
a | a ∈ C,

(
xi, xj

)
/∈ Ra

}
,

if
f (xi, dh)∑

dk∈D′ f (xi, dk)
= 1,

(
xi, xj

)
/∈ RD′

∅, otherwise

(11)

where n is the number of objects.
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In matrixM ′, for (xi, xj) /∈ RD′ , becasuse xi ∈ PosCD′, then
there exists dk such that f (xj, dk ) ̸= 0 and f (xi, dk ) = 0.
Lemma 2: Let

(
U ′,C ∪ D′

)
be a compacted decision

table. If f (xi,dh)∑
dk∈D′ f (xi,dk )

= 1 and
(
xi, xj

)
/∈ RD′ , then m′

ij ̸= ∅.

Proof: For xi ∈ U , there exists dh ∈ D′,
f (xi,dh)∑

dk∈D′ f (xi,dk )
=

1. If
(
xi, xj

)
/∈ RD′, then

(
xi, xj

)
/∈ RC . Thus, ∃a ∈ C such that(

xi, xj
)

/∈ Ra, and therefore m′
ij ̸= ∅.

The following theorem can be obtained from Lemma 2.
Theorem 2: Let

(
U ′,C ∪ D′

)
be a compacted decision

table. If B ⊆ C , then PosC D′
= PosB D′ if and only if

m′
ij ∩ B ̸= ∅ for m′

ij ̸= ∅.

Proof: (⇒) For [xi]C ⊆ U ′, if f (xi,dh)∑
dk∈D′ f (xi,dk )

= 1 and(
xi, xj

)
/∈ RD′, then m′

ij ̸= ∅ by Lemma 2, which means(
xi, xj

)
/∈ RC . Because PosC D′

= PosB D′, for [xi]B ⊆

U ′,
f (xi,dh)∑

dk∈D′ f (xi,dk )
= 1. Hence, ∃l ∈ B such that

(
xi, xj

)
/∈ Rl .

Therefore, m′
ij ∩ B ̸= ∅.

(⇐) Because B ⊆ C , we have PosBD′
⊆ PosC D′.

We now show that PosC D′
⊆ PosB D′. This implies that if

xi ∈ PosC D′, then xi ∈ PosB D′.
For xi ∈ PosC D′, there exists f (xi,dh)∑

dk∈D′ f (xi,dk )
= 1. Using

proof by contradiction, suppose that xj /∈ [xi]D. Then, m′
ij ̸=

∅, and then m′
ij ∩ B ̸= ∅ by the condition. Let l ∈ mij ∩ B.

Then,
(
xi, xj

)
/∈ Rl and xj /∈ [xi]B. That is, [xi]B ⊆ [xi]D.

Therefore, xi ∈ PosBD′ holds.
From Theorem 2, we have the following corollary.
Corollary 1: Let

(
U ′,C ∪ D′

)
be a compacted decision

table, and let B ̸= ∅ and B ⊆ C . Set B is a reduct of C if
and only if it is a minimal subset satisfying m′

ij ∩ B ̸= ∅ for
m′
ij ̸= ∅.
According to Corollary 1, for a compacted decision table,

the corresponding discernibility matrix for PRR is con-
structed as described in Algorithm 1.

Algorithm 1 Discernibility Matrix Construction for PRR

Input: compacted decision table
(
U ′,C ∪ D′

)
Output: matrixM ′

1: m′
ij = ∅,B = ∅;

2: for all x in U ′ do
3: compute PosC D′;
4: end for
5: for all x in PosC D′ do
6: for all x in U ′ do
7: if (xi, xi) /∈ RD′ then
8: m′

ij = m′
ij ∪ ai, ai ∈ C;

9: end if
10: end for
11: end for // the discernibility matrix is constructed
12: return M ′;

The form of the decision table has been changed in the
compacted decision table. Hence, the discernibility matrix
is constructed to obtain the reduction results by calculat-
ing f (x, d).

B. PRR IN WEIGHTED DECISION TABLES
The weighted decision table is another form of decision table,
and we calculate the positive region according to the weight.
Simultaneously, the weight is used to construct the discerni-
bility matrix. The positive region in the weighted decision
table is defined as follows.
Definition 13: Let

(
U ′′,C ∪ D′′,W

)
be a weighted deci-

sion table, where W is the weight and U/RD′′ ={
D′′

1,D
′′

2, . . . ,D
′′
t
}
. The positive region is defined as

PosC D′′
=

{
x | x ∈ U ′′,

f (x,W )∑
xi∈[x]C f (xi,W )

= 1

}
(12)

According to Definition 13, the corresponding discernibil-
ity matrixM ′′

= (m′′
ij)n×n is expressed as follows:

m′′
ij =


{
a | a ∈ C,

(
xi, xj

)
/∈ Ra

}
,

f (xi,W )∑
x∈[xi]C f (x,W )

= 1and
(
xi, xj

)
/∈ RD′′

∅, otherwise
(13)

where n is the number of objects.
Lemma 3: Let

(
U ′′,C ∪ D′′,W

)
be a weighted decision

table. If f (xi,W )∑
x∈[xi]C f (x,W ) = 1 and

(
xi, xj

)
/∈ RD′′ , thenm′′

ij ̸= ∅.

The proof is similar to that of Lemma 2.
The following can be obtained from Lemma 3.
Theorem 3: Let

(
U ′′,C ∪ D′′,W

)
be a weighted decision

table, if B ⊆ C , then PosC D′′
= PosB D′′ if and only if it is a

minimal subset satisfying m′′
ij ∩ B ̸= ∅ for m′′

ij ̸= ∅.
The proof is similar to that of Theorem 2.
From Theorem 3, we have the following corollary.
Corollary 2: Let

(
U ′′,C ∪ D′′,W

)
be a weighted decision

table, and let B ̸= ∅ and B ⊆ C . Set B is a reduct of C if
and only if it is a minimal subset satisfying m′′

ij ∩ B ̸= ∅ for
m′′
ij ̸= ∅.
According to Corollary 2, the corresponding discernibility

matrix of the PPR is constructed for the weighted decision
table as described in Algorithm 2.

The method of transforming from the conjunctive normal
form (CNF) to the disjunctive normal form (DNF) is an NP-
hard problem. To improve efficiency, a binary programming
algorithm can be used to quickly obtain the result [25]. The
pseudocode of this algorithm is given in Algorithm 3.

Algorithm 1 is suitable for the compacted decision table,
and Algorithm 2 is suitable for the weighted decision table.
In the process of constructing the discernibility matrix, the
former obtains the positive region by calculating the f (x, d),
whereas the latter obtains the positive region by calculating
the weight.

C. RELATIONSHIP BETWEEN VPR AND PRR
Using Definitions 9 and 11, this section analyzes the rela-
tionship between VPR and PRR in decision tables from the
perspective of constructing discernibilitymatrix.Moreover, it
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Algorithm 2 Discernibility Matrix Construction Algorithm
for PPR
Input: weighted decision table

(
U ′′,C ∪ D′′,W

)
.

Output: matrixM ′′.
1: m′′

ij = ∅,B = ∅;
2: for all x in U ′′ do
3: compute PosC D′′;
4: end for
5: for all x in PosC D′′ do
6: for all x in U ′′ do
7: if

(
xi, xj

)
/∈ RD′′ then

8: m′′
ij = m′′

ij ∪ ai, ai ∈ C
9: end if

10: end for
11: end for // the discernibility matrix is constructed
12: returnM ′′;

Algorithm 3 Obtain the Reduct of a Discernibility Matrix
Input: matrixM .
Output: reduct of C .
1: for all mij in M do //mij ∈ M
2: if mij ⊆ mpq then //mij,mpq ∈ M
3: mpq be deleted;
4: end if
5: Tmin =

{
mij

}
; //Tmin be the minimal element set;

6: end for
7: for mij in Tmin do
8: if a ∈ mij then
9: a = 1;
10: else
11: a = 0;
12: end if
13: end for
14: minimize

∑
a∈mij a > 0 such that mij ∈ Tmin;

15: return B; // A reduct of C

proves that VPR with β = 1 is the PRR in both types of
decision tables.
Theorem 4: Let

(
U ′,C ∪ D′

)
be a compacted decision

table. If B ⊆ C , then PosC D′
= Pos BD′ if and only if

(µCD′ (x))1 = (µBD′ (x))1 for ∀x ∈ U .
Proof: (⇒) If PosC D′

= PosB D′, x ∈ U . Then,
[x]C ⊆ [x]D′ if and only if [x]B ⊆ [x]D′ . That is, for [x]B and
[x]C , there exist only dk ∈ VD′ such that, f (x, dk) ̸= 0 and
f (x, di) = 0(i ̸= k). Thus, (µCD′ (x))1 = (µBD′ (x))1.
(⇐) Note that (µCD′ (x))1 = (µBD′ (x))1. There are two

cases: if f (x,dk )∑
di∈D

′ f (x,di)
= 1 for [x]C and f (x,dk )∑

di∈D
′ f (x,di)

= 1 for

[x]B, then [x]C ⊆ [x]D′ if and only if [x]B ⊆ [x]D′ . Thus,
PosC D′

= PosB D′. ∀dk ∈ VD′ . If f (x,dk )∑
di∈D

′ f (x,di)
= 0 for [x]C

and [x]B, x /∈ PosC D′ and x /∈ PosB D′ by Definition 12.
Therefore, PosC D′

= PosBD′.
It can also be shown that a VPR with β = 1 is equivalent to

the PRR in the compacted decision table. Next, the relation

between VPR with β = 1 and the PRR is constructed in the
weighted decision table.
Theorem 5: Let

(
U ′′,C ∪ D′′,W

)
be a weighted decision

table. If B ⊆ C , then PosC D′′
= PosB D′′ if and only if

(µCD′′ (x))1 = (µBD′′ (x))1.
The proof is similar to that of Theorem 4.
Using the discernibility matrix, Theorems 4 and 5 show

that the result of VPR with β = 1 is the result of PRR. The
time complexity of VPR for constructing the discernibility
matrix is O(|U |

2
|C|), but the time complexity of PRR is

O(|PosC D||U ||U/D||C|), which is lower.

V. PROPOSED VPR ALGORITHMS
When calculating VPR, the decision values or weights of
some objects in equivalence classes that meet the condition β

> 0.5 are modified. For both types of decision tables, because
the relationship between VPR and PRR is established based
on the discernibility matrix, the PPR can be used for the cal-
culation to optimize the calculation of VPR. The construction
processes of transforming the decision table into each type
of decision table are compared, a new VPR algorithm for
decision table is hence proposed to improve the efficiency of
the VPR algorithm.

A. PROPOSED VPR ALGORITHM FOR COMPACTED
DECISION TABLES
By establishing the relation between VPR and PRR, an opti-
mized algorithm for obtaining the VPR in a compacted deci-
sion table is proposed in this subsection. If β > 0.5, then a
new compacted decision table is formed by updating some
decision values in the compacted decision table.
Definition 14: Let

(
U ′,C ∪ D′

)
be a compacted decision

table. For x ∈ U ′, if f (x,dh)∑
dk∈D′ f (x,dk )

≥ β(β > 0.5), let

f (x, dk) = 0 when dk ̸= dh. Then
(
U ′,C ∪ Dnew

′
)
is a new

compacted decision table, where V new
D′ is a nonempty set of

values for Dnew′.
Note that for (U ′,C ∪ D′), because of the possibility that

f (x, dk ) = 0 for ∀x, the range V new
D′ may change.

Theorem 6: Let
(
U ′,C ∪ D′

)
be a compacted deci-

sion table for each µCD′ (x), where (µCD′ (x))β =(
f (x,d1)∑

dk∈D′ f (x,dk )
,

f (x,d2)∑
dk∈D′ f (x,dk )

, . . . ,
f (x,dt )∑

dk∈D′ f (x,dk )

)
β

. For β >

0.5, if
(
U ′,C ∪ Dnew

′
)
is a new compacted decision table,

where
(
µnew
CD′ (x)

)
1 =

(
f (x,d1)∑

dk∈Dnew
′ f (x,dk )

,
f (x,d2)∑

dk∈Dnew
′ f (x,dk )

,

. . . ,
f (x,dt )∑

dk∈Dnew
′ f (x,dk )

)
1
for each x ∈ U . Then, (µCD′ (x))β =(

µnew
CD′ (x)

)
1.

Proof: There are two cases: For (µCD′ (x))β in
a compacted decision table, if there exist dh ∈ D′

such that f (x,dh)∑
dk∈D′ f (x,dk )

≥ β, then f (x,di)∑
dk∈D′ f (x,dk )

<

β (di ̸= dh). In
(
U ′,C ∪ Dnew

′
)
, because f (x, dh) ̸= 0 and
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Algorithm 4 Optimization Algorithm for VPR

Input: compacted decision table
(
U ′,C ∪ D′

)
, β > 0.5.

Output: matrixM ′.
1: m′

ij = ∅,B = ∅;
2: for all x in U ′ do
3: if f (x,dh)∑

dk∈VD
f (x,dk )

≥ β then

4: f (x, di) = 0 (di ̸= dh);
5: end if
6: end for
7: compute PosC D′;
8: for all x in PosC D′ do
9: for all x in U ′ do

10: if
(
xi, xj

)
/∈ RD′ then

11: m′
ij = m′

ij ∪ ai, ai ∈ C ;
12: end if
13: end for
14: end for // the discernibility matrix is constructed
15: return M ′;
16: run Algorithm 3;
17: return B;

f (x, di) = 0 (di ̸= dh), we have f (x,dh)∑
dk∈Dnew

′
f (x,dk )

= 1 and

f (x,di)∑
dk∈Dnew

′
f (x,dk )

= 0 (di ̸= dh). Thus, (µCD′ (x))β =(
µnew
CD′ (x)

)
1.

For f (x,dh)∑
dk∈D′ f (x,dk )

in (µCD′ (x))β , if each
f (x,dh)∑

dk∈D′ f (x,dk )
<

β, then f (x,dh)∑
dk∈Dnew

′ f (x,dk )
= 0 in

(
µnew
CD′ (x)

)
1. Therefore,

(µCD′ (x))β =
(
µnew
CD′ (x)

)
1.

According to Theorem 4, VPR with β = 1 can be trans-
formed into PPR for calculation in a compacted decision
table. The new algorithm for constructing the VPR discerni-
bility matrix in the compacted decision table is given in
Algorithm 4.

An example based on Table 2 is given to illustrate the
feasibility of the proposed Algorithm 4 given β = 0.65.

1) In Table 2, for [u2]C ,
f (u2,d2)

f (u2,d1)+f (u2,d2)+f (u2,d3)
=

2
0+2+1 ≥ β. Hence, let f (u2, d3) = 0 such that
f (u2, d2) = 3. For [u1]C , because

f (u1,d1)
f (u1,d1)+f (u1,d2)+f (u1,d3)

=
3

3+1+1 < β, no decision
values in [u1]C are modified. Similarly, [u3]C does not
meet the condition for modifying the decision value,
so they are not modified. The new compacted decision
table is given in Table 4.

2) In Table 4, PosC D′
= {u2, u3}.

3) The corresponding matrixM ′ is as follows:[
{a1, a2} ∅ {a3}
C {a3} ∅

]
4) The result is {a1, a2} or {a1, a3}.

TABLE 4. New compacted decision table.

B. PROPOSED VPR ALGORITHM FOR WEIGHTED
DECISION TABLES
Similar to the VPR optimization method for a compacted
decision table, in the VPR optimization method for a
weighted decision table, the VPR is calculated by modifying
the weights of some objects and using the PPR. The new
weighted decision table is defined as follows.
Definition 15: Let

(
U ′′,C ∪ D′′,W

)
be a weighted deci-

sion table. If f (x,W )∑
xi∈[x]C

f (xi,W )
≥ β(β > 0.5), for [x]C ⊆ U ′′,

let f (x,W ) =
∑

xi∈[x]C f (xi,W ). Further, let any information
of xi be deleted when f (xi,W )∑

x∈[xi]C f (x,W ) < β. For [x]C ⊆ U ′′,

if f (x,W )∑
xi∈[x]C

f (xi,W )
< β, let any information of xi be unchanged.

Then, (Unew′′

,C ∪ Dnew
′′

,W ′′) is the new weighted decision
table.

Note that for (U ′,C∪D′′,W ), whereD′′
i ∈ U/RD′′ , f (x, d)

may not exist for each x because of the process for modifying
the decision values.
Theorem 7: Let

(
U ′′,C ∪ D′′,W

)
be a weighted deci-

sion table, ∀[x]C ⊆ U ′′, where (µCD′′ (x))β =(∑
x∈[x]C∩D′′

1
f (x,W )∑

xi∈[x]C
f (xi,W )

,

∑
x∈[x]C∩D′′

2
f (x,W )∑

xi∈[x]C
f (xi,W )

, . . . ,

∑
x∈[x]C∩D′′

t
f (x,W )∑

xi∈[x]C
f (xi,W )

)
β
.

For β > 0.5, if (Unew′′

,C ∪ Dnew
′′

,W ′′
)
is a new weighted

decision table, where each x ′′
∈ Unew′′

corresponds to
x ∈ U ′′, then (µCD′′ (x))β =

(
µnew
CD′′

(
x ′′

))
1 , where(

µnew
CD′′

(
x ′′

))
1 =

(∑
x′′∈[x′′]C∩Dnew

′′

1
f (x ′′,W ′′)∑

y∈[x′′]C
f (y,W ′′)

,∑
x′′∈[x′′]C∩Dnew

′′

2
f (x ′′,W ′′)∑

y∈[x′′]C
f (y,W ′′)

, . . . ,

∑
x′′∈[x′′]C∩Dnew

′′

t
f (x ′′,W ′′)∑

y∈[x′′]C
f (y,W ′′)

)
1
.

Proof: There are two cases: For (µCD′′ (x))β and D′′
i ∈

U/RD′′ , if
∑

x∈[x]C∩D′′
i
f (x,W )∑

xi∈[x]C
f (xi,W )

≥ β, and β > 0.5, then∑
x∈[x]C∩D′′

j
f (x,W )∑

xi∈[x]C
f (xi,W )

< β(j ̸= i). For x ′′ in Unew′′

, which

corresponds to x ∈ U ′′,

∑
x′′∈[x′′]C∩Dnew

′′

i
f (x ′′,W ′′)∑

y∈[x′′]C
f (y,W ′′)

= 1 and∑
x′′∈[x′′]C∩Dnew

′′

j
f (x ′′,W ′′)∑

y∈[x′′]C
f (y,W ′′)

= 0(j ̸= i). Thus, (µCD′′ (x))β =(
µnew
CD′′ (x ′′)

)
1.

For each D′′
i ∈ U/RD′′ , if

∑
x∈[x]C

∩D′′
i f (x,W )∑

xi∈[x]C
f (xi,W )

< β, x ′′ in

Unew′′

corresponds to x ∈ U ′′, then

∑
x′′∈[x′′]C∩Dnew

′′

i
f (x ′′,W ′′)∑

y∈[x′′]C
f (y,W ′′)

=

0 in
(
µnew
CD′′ (x ′′)

)
1. Therefore, (uCD′′ (x))β =

(
µnew
CD′′ (x)

)
1.
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Algorithm 5 Optimized VPR Calculation

Input: weighted decision table
(
U ′′,C ∪ D′′,W

)
, β > 0.5.

Output: matrixM ′′.
1: m′′

ij = ∅,B = ∅;
2: for all x in U ′′ do
3: if

∑
x∈[x]C

∩D′′if (x,W )∑
xi∈[x]C

f (xi,W )
≥ β then

4: f (x,W ) =
∑

xi∈[x]c f (xi,W );
5: xj be deleted; //i ̸= j;
6: end if
7: end for //(U ′′,C ∪ D′′,W ) is updated as (Unew′′,C ∪

Dnew′′,W ′′)
8: compute PosC Dnew′′;
9: for all x in PosC Dnew′′ do

10: for all x in U ′′ do
11: if

(
xi, xj

)
/∈ RD′′ then

12: m′′
ij = m′′

ij ∪ ai; //ai ∈ C ;
13: end if
14: end for
15: end for // the discernibility matrix is constructed
16: returnM ′′;
17: run Algorithm 3;
18: return B;

TABLE 5. New weighted decision table.

Using Theorems 5 and 7, the new algorithm for construct-
ing the VPR discernibility matrix for a weighted decision
table is given in Algorithm 5.

An example based on Table 3 is given to illustrate the
feasibility of the proposed Algorithm 5, where [u1]C =

{u1, u2, u3},[u4]C = {u4, u5}, and[u6]C = {u6}, given β =

0.65.
1) For [u4]C in Table 3, f (u5,w)

f (u4,w)+f (u5,w)
=

2
3 ≥

β, let f (u4, d) = 1. For [u1]C , because
f (u1,W )

f (u1,W )+f (u2,W )+f (u3,W )
=

3
3+1+1 < β, no deci-

sion values in [u1]C are modified. Therefore, the new
weighted decision table (Table 5) is updated.

2) In Table 5, PosC D′
= {u5, u6}.

3) The corresponding matrixM ′ is as follows:[
{a1, a2} {a1, a2} {a1, a2} ∅ {a3}
C C C {a3} ∅

]
4) The result is {a1, a2} or {a1, a3}.
The main reason for setting β > 0.5 is the high confi-

dence of the reduction. In a VPR process, when the precision
is greater than 0.5, the new compacted/weighted decision
table is formed after modifying some decision values of the

Algorithm 6 New VPR Algorithm for Decision Tables
Input: decision table (U ,C ∪ D), β > 0.5.
Output: A reduct of C .
1: mij = ∅,B = ∅;
2: for all x in U do
3: if |[x]C∩Di|

|[x]C |
> β then

4: modify all the decision values of xi//xi in [x]C ;
5: end if
6: end for
7: while |U | > 0 do
8: for all x in U do
9: any information of xi be deleted; //xi = x
10: end for
11: end while // the weighted decision table is constructed
12: run Algorithm 2;
13: run Algorithm 3;
14: return B;

TABLE 6. Description of the datasets.

compacted/weighted decision table. It has been proved that
VPR with β > 0.5 in the two types of decision tables is
equal to the VPR with β = 1. Subsequently, it was proved
that VPR with β = 1 is the PRR based on the discernibility
matrix. Therefore, after changing the form of the decision
table, optimized VPR algorithms were proposed.

For VPR in a decision table, considering the number of
modified decision values and the number of objects in equiv-
alence class, in contrast to the time complexity of the process
of constructing the weighted decision table, the time com-
plexity of constructing di is O(|U/D|)(U/C) (|[x]C |) when
constructing the compacted decision table. Therefore, the
method of transforming the decision table into a weighted
decision table is adopted after modifying the decision val-
ues, and the VPR is calculated using Algorithms 2 and 3.
Compared with the existing VPR algorithms [17], [19]
the time complexity of discernibility matrix construction is
O

(
|U |

2
|C|

)
, whereas the time complexity of Algorithm 6 to

construct the discernibility matrix is O
(
|PosC D′′

||U ′′
||C|

)
,

then |PosC D′′
||U ′′

| < |U |
2. Hence, Algorithm 6 has rela-

tively high computational efficiency.

VI. EXPERIMENTAL ANALYSIS
To evaluate the performance of the algorithms, we selected
10 datasets from the UCI datasets and compared the proposed
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FIGURE 2. Runtime results for two discernibility matrix construction algorithms on compacted decision
tables.

FIGURE 3. Runtime results for two discernibility matrix construction algorithms on weighted decision tables.

algorithms with existing algorithms VPR-DM [17] and KNR-
DM [19]. Three classifiers including fine Gaussian naïve
Bayes (NB), decision trees (DT), and support vector classifi-
cation (SVC) were used to test the classification accuracy for
different reduction results, in which ten-fold cross-validation
was used. All experiments were coded in Python 3.7 and were
tested on a Lenovo R7000 PC (early 2020s) with an AMD
Ryzen 5 CPU at 3.0 GHz and Radeon Graphics 4600H GPU.

Table 6 summarizes the details of the selected datasets,
in which |U | indicates the number of objects, |C| indicates
the number of condition attributes, and |U/D| indicates the
number of classes. To ensure high confidence, the precision
should be greater than 0.5 in the experiment.

The compacted and weighted decision tables were con-
structed for each dataset. Figures 2 and 3 show the runtimes
for constructing the discernibility matrices using VPR and
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TABLE 7. Number of rows of the discernibility matrix results.

TABLE 8. Reduction length results of the algorithms.

the optimized algorithms for both types of decision tables.
Figure 2 compares the runtimes for VPR and Algorithm 4
at different precisions for the compacted decision tables. For
example, when β = 0.65, the number of objects in compacted
decision tables are 131, 691, respectively, for A.S.N. dataset
and B.A. dataset. It should be noted that the heuristic VPR
algorithms may be efficient, but the focus of this paper is
to study the reduction algorithms based on the discernibility
matrix.

Figure 3 compares the runtimes of the VPR and
Algorithm 5 at different precisions on the weighted decision
tables. Obviously, the runtimes of Algorithms 4 and 5 are
shorter than those of the VPR algorithms for both types of
decision tables.

Three algorithms, VPR-DM, KNR-DM, and Algorithm 6,
were compared with respect to parameter |U | for different
precisions. The results are listed in Table 7. The numbers of
rows of the discernability matrices constructed by Algorithm
6 are smaller than those of the other algorithms. The lengths
of the reducts of the three algorithms are presented in Table 8.
Because all three algorithms are based on the discernibility
matrix, the reduct results are obtained by binary program-
ming, and hence the reduction lengths differ.

In terms of runtime (Figure 4), Algorithm 6 is obviously
faster than VPR-DM and KNR-DM. For example, on the
A.S.N. dataset, when β = 0.65, the runtimes are 12.72 s,
11.28 s, and 1.556 s, respectively, for VPR-DM, KNR-DM,
and Algorithm 6. When β = 0.95, the runtimes are 12.72 s,
11.69 s, and 1.48 s, respectively. When the precision is
smaller, the positive region is larger. For example, on the
Ecoli dataset, when β = 0.65 and |PosC D′′

| = 29, size of
the constructed discernibility matrix is 29 × 39, and when
β = 0.95 and |PosC D′′

| = 15, its size is 15 × 55. When the

number of modified decision values in the data set is small,
Algorithm 6 has a slight performance advantage. However,
when the number of modified decision values is large, the
performance advantage of Algorithm 6 is clear. Although
there is little difference in the lengths of the reducts of the
three algorithms, the run time of Algorithm 6 is shorter than
that of the other algorithms, which is consistent with the time
complexity analysis.

We evaluated the reduction quality using the fine Gaussian
NB, DT, and SVC classifiers. The training accuracies (as a
percentage) and runtimes (in milliseconds) of the reduction
results obtained by Algorithm 6 at different precisions are
shown Figures. 5-7, in which the solid lines represent the
training time and the dashed lines represent classification
accuracy. The original datasets are the datasets before reduc-
tion. It can be observed that higher precisions lead to higher
classification accuracies for the reduction results.

When the precision of Algorithm 6 is higher, the clas-
sification accuracy is not much different from that of the
original dataset and the training time is reduced. For example,
for the DT classifier on the D.I.U. dataset, when β = 0.95,
the training accuracy is 87.5%, whereas it is 81.25% on the
original dataset. Moreover, the training time on the data after
reduction is 3.2 ms, whereas the training time on the original
dataset is 4.5 ms.

When the precision is 0.65, the accuracies of the classifiers
on the reduction results are lower. For example, on the E.E.
dataset, the training accuracy of the fine Gaussian NB is
73.02%, whereas it is 80.51% for the original dataset; the
training accuracy of the DT classifier is 69.85%, whereas
it is 72.9% for the original dataset; the training accuracy of
the SVC classifier is 59.85%, whereas it is 72.89% for the
original dataset.
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FIGURE 4. Runtime results for three algorithms.

FIGURE 5. Classification accuracy and runtime results for the reduction
results at different precisions using the fine Gaussian NB classifier.

FIGURE 6. Classification accuracy and runtime results for the reduction
results at different precisions for the DT classifier.

FIGURE 7. Classification accuracy and runtime results for the reduction
results at different precisions for the SVC classifier.

The experiment first compared the VPR algorithms
with their optimized algorithms on both types of decision
tables, then the proposed VPR algorithm (Algorithm 6) was

compared with existing algorithms based on the discernibil-
ity matrix. The experimental results show that Algorithm 6
has better operating efficiency, especially when the datasets
are large. Moreover, the reduction results of Algorithm 6 at
different precisions were compared using different classifiers
to verify that the proposed algorithm is feasible.

VII. CONCLUSION
Compacted and weighted decision tables are two extended
forms of the decision table. The relationship between VPR
and PRRwas established for both types of decision table, and
the VPR algorithm was optimized by modifying the decision
values of objects that satisfy the given condition and then
using the PRR algorithm for the calculation. Furthermore,
by comparing the modification process of the decision values
in both types of decision tables, a new VPR algorithm was
proposed that updates the decision table into a weighted deci-
sion table and uses PRR to calculate the VPR. Finally, this
proposed algorithm was verified by experiments. In future,
we will attempt to remove the restriction of equivalence
relation and further study problems such as VPR.
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