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ABSTRACT Explainable AI (XAI) is a methodology that complements the black box of artificial intel-
ligence, and its necessity has recently been highlighted in various fields. The purpose of this research is
to identify studies in the field of pharmacovigilance using XAI. Though there have been many previous
attempts to select papers, with a total of 781 papers being confirmed, only 25 of them manually met the
selection criteria. This study presents an intuitive review of the potential of XAI technologies in the field
of pharmacovigilance. In the included studies, clinical data, registry data, and knowledge data were used to
investigate drug treatment, side effects, and interaction studies based on tree models, neural network models,
and graphmodels. Finally, key challenges for several research issues for the use of XAI in pharmacovigilance
were identified. Although artificial intelligence (AI) is actively used in drug surveillance and patient safety,
gathering adverse drug reaction information, extracting drug-drug interactions, and predicting effects, XAI
is not normally utilized. Therefore, the potential challenges involved in its use alongside future prospects
should be continuously discussed.

INDEX TERMS Machine learning, pharmacovigilance, explainable artificial intelligence.

I. INTRODUCTION
The World Health Organization defines pharmacovigilance
(PV) as the science and activities related to the detection,
assessment, understanding, and prevention of adverse effects
or other drug-related problems [1].

Recent artificial intelligence-based technologies can be an
efficient complement to traditional PV methods, which can
be costly and time-consuming and can result in adverse drug
reactions (ADRs) that go unreported to healthcare profession-
als.

Artificial intelligence (AI) can improve PV, but its use in
PV is still in the early stages of research. Various machine
learning (ML) techniques, together with natural language
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processing and data mining, can be applied to electronic
health records, claims databases and social media data to
improve the characterization of known drug side effects and
reactions, and to detect new signals [2], [3].

AI-based technologies have been criticized for their inex-
plicable algorithms, despite their high predictive power.
In critical decision areas such as healthcare, the reasoning
behind a decision is as important as the decision itself, which
is why there is growing interest in and research and develop-
ment around Explainable Artificial Intelligence (XAI).

XAI was developed to improve the transparency of AI
systems and generate explanations for them, and seeks to
increase trust and understanding by assessing the strengths
and limitations of existing models [4], [5], [6]. Approaches
that extract information from a model’s decision-making
process, such as post-hoc explanations, can provide useful
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information for practitioners and users interested in case-
by-case explanations rather than the internal workings of a
model [7].

XAI increases the explainability and transparency of AI
algorithms bymaking it possible to interpret the variables that
influence decisions, complex internal features, and learned
decision paths within a decision process [8], [9]. I.R. Ward
et al. successfully quantified the importance of features using
an XAI algorithm, further demonstrating the potential contri-
bution of XAI to PV monitoring [10].

The importance of PV in medicine is relevant to all species
affected by medical interventions, and ensuring medical
safety requires attention and research into approaches such as
drug safety reporting and the exchange of reliable and timely
information on PV activities [11]. The global pharmacovigi-
lance and drug safety softwaremarket size was valued at USD
6.9 billion in 2021 and is estimated to expand at a compound
annual growth rate (CAGR) of 10.5% between 2022 and 2030
(Source: www.grandviewresearch.com).

The aim of this study was to review the literature on the use
of XAI in PV by identifying publications related to ML/AI
and drugs and the rationale for the reported findings. From
the perspective of AI and XAI usage, these studies were
analyzed, and the findings were summarized, in which the
use of XAI in the field of PV is referred to as ‘‘PV XAI’’.
The main contributions are highlighted and discussed below:

- This study is clearly an early attempt to review XAI
research in PV. Unlike other fields, we found that XAI
research in PV is at an early stage of development,
limited to a few articles and some methodologies.

- Nevertheless, we have identified the positive potential
of PV XAI for drug therapy, ADRs, polypharmacy and
drug repurposing.

- While safety issues in real-world healthcare settings
may limit the growth of the field, we expect PV XAI
research to expand as it has in other areas, and we
encourage collaboration and ongoing research discus-
sions with experts in the field.

II. LITERATURE SURVEY
In this study, the trend of XAI in the field of PV was exam-
ined. However, the trend was also explored broadly to more
diverse aspects, including interpretable artificial intelligence.
Although there is a clear difference between Explainable
AI (knowledge about what different nodes represent and
their importance to model performance) and Interpretable AI
(ability to determine cause and effect in a machine learning
model), based on the same aim, they were comprehensively
reviewed.

There has been a surge in XAI studies in drug-related
applications since 2019, with relatively few studies
from 2013 to 2018 (Fig. 1). The limited number of publi-
cations indicates a demand for more research on XAI in PV
applications.

FIGURE 1. Growth of PV articles from 2013 to 2021. ‘‘Drug’’ [All Fields]
AND [‘‘eXplainable’’ [All Fields] OR ‘‘Interpretable’’ [All Fields] OR
‘‘Transparent’’ [All Fields] AND ‘‘Artificial intelligence’’ [MeSH] OR
‘‘Machine learning’’ [MeSH] OR ‘‘Deep learning’’ [MeSH] OR ‘‘XAI.

The selection of appropriate search terms for the explo-
ration of XAI-related research in PV was not easy; we
started manually with broad keywords. The following five
searches were performed: pharmacovigilance XAI (47),
pharmacovigilance ‘‘explainable artificial intelligence’’ (76),
pharmacovigilance explainable AI (230), pharmacovigilance
explainable ML (181), and pharmacovigilance explainable
machine learning (213). These search terms were used in
a Google Scholar search on 22 June 2022, and the num-
bers in parentheses are the number of articles returned from
each search. Retrieved articles were first screened for titles
and abstracts to exclude duplicates, then articles were added
through a first full-text review for relevance and a second
full-text review based on a selective methodology, resulting
in a final selection of 25 unique publications (Fig. 2, Supple-
mentary Table 1).

III. RESULTS
This highlight focuses on PV and reviews of recently devel-
oped machine-learning models to predict the explanatory
potential and effectiveness of XAI (Fig. 3).

A. ASPECTS OF ARTIFICIAL INTELLIGENCE USE IN
PHARMACOVIGILANCE
1) DATASET
a: CLINICAL DATA
PV involves the collection and analysis of data from patient
records or other sources to identify causal relationships
between medicines and adverse drug reactions. While the
potential for monitoring and preventing adverse drug reac-
tions through clinical data is great, exploiting it can be
time-consuming because clinical data is highly heteroge-
neous in structure and domain, and is often managed in
multiple files. In addition, specific expertise is required to
make sense of clinical information and often requires an
understanding of appropriate related prescriptions, which in
most cases requires a long preparation time with clinical
researchers [36].
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FIGURE 2. The PRISMA diagram depicts the number of records identified, included and excluded, and the reasons
for exclusions in PV-XAI.

FIGURE 3. Graphical summary of recent studies on pharmacovigilance using XAI.

b: REGISTRY DATA
Data registries are used to evaluate and improve outcomes
for populations defined by a condition, disease, or specific
type of exposure. Data registries use observational research

methods to collect and harmonize data on the treatment, out-
comes, and well-being of patients receiving care over time.
They also allow large data sets to be aggregated and analyzed
for trends or patterns in treatment and outcomes [37].
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TABLE 1. Summary of the characteristics of publications included in the analysis.
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TABLE 1. (Continued.) Summary of the characteristics of publications included in the analysis.

c: KNOWLEDGE DATA
With the development of graph mining, knowledge-based
data is emerging as a source of drug research, especially in
the pre-marketing phase. Data on drug chemistry [38], drug
targets [39], drug side effects [40], biological pathways [41],
protein interactions [42], and drug interactions [43] are the
most popular knowledge-based datasets used in PV research.
H. Kwak et al. reported that integrating the graph structure of
knowledge bases with real-world data (RWD) improves the
causal interpretability of adverse drug event (ADE) detec-
tion [44]. These databases are also accessible through open
platforms to be utilized in pharmacovigilance research (Sup-
plementary Table 2).

2) MODELS
a: TREE-BASED MODELS
Tree-based algorithms are conceptually simple but powerful
ML methods that are effective on small and large datasets
to solve linear and nonlinear modelling problems. Several
tree-based ML algorithms were used in this study, includ-
ing regression trees and ensemble learning, such as random
forest, extreme gradient boosting (XGBoost) and adaptive
boosting (AdaBoost) [45].

Tree-based ML models with XAI techniques can act as an
‘early warning system’ for per-patient disease-related adverse
outcomes and harmful drugs in a PVmonitoring system.With
appropriate infrastructure and additional clinical data, these
algorithms could provide an autonomous method for moni-
toring adverse outcomes from medications at the population
level, providing a valuable addition to the existing statistical
techniques, such as mean decrease of impurity (MDI) and
mean decrease in accuracy (MDA), which are currently used
and would be the next step in progressing towards a real-time
PV monitoring system.

b: NEURAL NETWORK MODELS
Deep neural networks (DNNs) are the foundation of mod-
ern AI models and are used in many AI projects, including
computer vision, speech recognition and robotics. They are
based on the idea that the computation of a neuron involves a
weighted sum of input values, where the weighted sum cor-
responds to the combination of these neuronal values and the
value scaling performed by the synapses. Rather than simply
outputting a weighted sum, the neuron performs a functional
operation on the combined inputs within the neuron. To take
advantage of this, researchers need to understand the key
design considerations of DNNs and be able to evaluate the
usefulness of different DNN design techniques for efficient
processing [46].

c: GRAPH-BASED NEURAL NETWORK
In 2005, Gori et al. proposed a new neural network model
capable of handling graph data structures: graph neural net-
works (GNNs). A pioneering study of deep learning meth-
ods in non-Euclidean spaces, GNNs generate random state
embedding vectors, and the states of nodes are continuously
updated according to the information propagationmechanism
of the graph. Updates are made based on the state information
of neighbouring nodes at a previous time [47]. GNNs are an
alternative way to consider additional neighbourhood infor-
mation in addition to the given data itself.

3) XAI METHODS
It was found that recent papers can be classified into three
types of databases, namely clinical [13], [18], [27], [33],
registry [10], [12], [20], [24], [25], [29], [34], and knowledge
[14], [15], [16], [17], [19], [21], [22], [23], [26], [28], [30],
[31], [32], [35]. Additionally, based on review papers of
existing XAI models [48], [49], the XAI algorithms used
were divided into the following four categories: surrogate
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TABLE 2. Publicly available medicine data platform.
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models, feature importance, attention based, and knowledge
distillation and graph based explanations.

a: SURROGATE MODEL
SHapley Additive exPlanations (SHAP) [50] explain individ-
ual predictions using the game-theoretic Shapley value [51].
This approach uses the concept of coalitions to compute the
Shapley value of features for predicting instances generated
by the black-box model. The average marginal contribution
of the features in all possible coalitions is the Shapley value.

The main advantage of an explanatory technique such
as SHAP is that it has solid roots in game theory, which
ensures that the explanation of a prediction instance is
fairly distributed across the features. However, SHAP is a
slow and computationally expensive explainability technique
because it requires Shapley values to be computed for dif-
ferent features in a prediction instance, making it impracti-
cal to compute global explanations with multiple prediction
instances [52].

The local interpretable model-agnostic explanations
(LIME) tool explains the model prediction using the most
important contributors. It locally approximates the prediction
by perturbing the input around the interest class until a linear
approximation is obtained [53] and helps the decision maker
to justify the behaviour of the model.

In some studies, there is a model that takes an individual’s
health information (e.g., medication history) as an input and
predicts that an individual will have an adverse outcome from
acute coronary syndrome (ACS). XAI was used to detect
the contribution of specific drugs to the prediction of ACS.
The post-doc use of SHAP and LIME successfully identified
both important and relatively less important features [10].
Additionally, there are studies using text analysis to detect
adverse drug reactions (ADRs) [15]. In ADR surveillance,
the problem of class imbalance often has a negative impact
on the outcome. A variant of weighted-CRF was proposed to
solve the data imbalance, and LIME was applied to interpret
the model results according to either the presence or absence
of a weighted loss function.

Layer-wise relevance propagation (LRP) [54] is an
explanatory technique applicable tomodels structured as neu-
ral networks, where inputs can be images, videos or text.
LRP works by propagating the prediction backwards in the
neural network using specifically designed local propagation
rules. The propagation procedure implemented by LRP is
subject to a conservation property, where what has been
received by a neuron must be redistributed to the lower
layer in equal amounts. Li et al. [20] proposed a CNN to
continuously predict the cytotoxicity of compounds against
a leukaemic lymphoblast CCRF-CEM cell line, and applied
the LRP technology to a compound that had an important
effect on predicting the biological properties of a compound.
An attempt was made to identify the important parts of the
structure. Compared to previous methods, such as chemical
descriptors, it was confirmed that the structural formula of

a compound can provide sufficient information for machine
learning-based prediction of anticancer efficacy.

b: FEATURE IMPORTANCE
Permutation importance is often used to calculate feature
importance: randomly rearrange the values of features and
observe the predicted change in themodel to determine which
features contribute to model predictions. The importance
weight is based on the predicted distance between the per-
turbed and original values of a feature. The importance of
a feature can be interpreted as a weight and applied to all
features [27]. The importance of a feature is measured by
calculating the increase in the model’s prediction error after
permuting the feature. A feature is considered important if
shuffling its values increases the model error because the
model relies on that feature for prediction. A feature is con-
sidered unimportant if shuffling its values does not change
the model error because the model ignores the feature for
prediction. In particular, the permutation feature importance
measure for random forests was introduced by Breiman and
measures the increase in the model’s prediction error after
permuting feature values to disrupt the relationship between
features and the actual outcome [55].

c: ATTENTION MECHANISM
The core concept of the attentionmechanism is that the model
is designed to pay attention only to the inputs that are most
relevant to the predictive task [56]. The attention mechanism
has been mainly proposed for natural language processing,
including machine translation, and has been found to con-
tribute to improving interpretability as well as technological
evolution in the field of visualization [57].

Zhang et al. [12] considered that explainability is important
so that stakeholders can trust the deep learning model in phar-
macovigilance. Their research provides explainability and
transparency by utilizing the attention mechanism for multi-
tasking. Other studies have evaluated more clinically valid
explanations for predicting drug side effects [13]. When the
attention-based architecture and SHAP (a post-hoc surrogate
model) were used together, it enabled appropriate local and
global explanations complementary to each other; addition-
ally, the SHAP method was evaluated as a more suitable for
a real-time clinical explanation. Liu and Xie [35] developed
their novel model, TranSynergy, for a synergistic drug com-
bination prediction. As a knowledge-based and self-attention
transformer model, TransSynergy has been demonstrated to
improve predictability of synergistic drug combinations as
well as improve interpretability. He et al. [21] used tra-
ditional machine learning methods such as boosting and
Bayesian, as well as five deep learning prediction models
including graph attention network and Attentive FP, to dis-
cover new drug candidates for the treatment of breast cancer.
Attentive FP proposed by Bahdanau et al. [56] is a state-
of-the-art graph-based neural network model for predicting
molecular properties. It was confirmed that this model can
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focus on highly relevant parts of the input by applying the
graph attention mechanism and can interpret the learned
contents.

d: KNOWLEDGE DISTILLATION & GRAPH BASED
EXPLANATIONS
Presently, in the field of deep learning, ‘‘knowledge distilla-
tion’’ refers to extracting knowledge from a trained model,
as seen by the dictionary meaning of ‘‘knowledge’’ and ‘‘dis-
tillation’’. Several studies have been proposed to exploit this
extracted knowledge. Knowledge distillation in deep learn-
ing can be summarized as a series of processes in which
knowledge distilled from a large model (teacher model) is
transferred to a small model (student network) [59]. Knowl-
edge extraction is a form of model-specific XAI that extracts
knowledge from a large, complex model to a more simplified
model, and for many years model compression [60], tree
regularization [61], and a combination of model compression
and dimensionality reduction [62]. As distillation research
has been fragmented, new possibilities have been identified
with the development of artificial intelligence interpretabil-
ity [63]. The rule extraction method, which is similar to
knowledge extraction, is a useful XAI method and can be
practically applied in the digital medical field [63].

B. ASPECTS OF XAI USE IN PHARMACOVIGILANCE
1) USING XAI TO PREDICT DRUG TREATMENT
The XAI system should be useful for supporting treat-
ment decisions because it suggests a descriptive and visual
approach to drug treatment decisions that can help doctors
understand and apply recommendations confidently. These
results suggest that, even in unguided clinical situations, the
XAI system can promote accurate medication prescriptions
by doctors [10].

By developing a post-interpretable framework based on
an ensemble predictive model to interpret the importance
of clinical features and genotypes in predicting daily drug
doses, models with fewer variables can be built, and the
complexity of the final predictive model can be reduced.
Furthermore, it helps clinicians prescribe correct doses
to patients using more effective clinical parameters [27].
In recent years, many studies have been conducted to deter-
mine an optimal model for accurately predicting drug treat-
ments [10], [21], [27], [29], [30], [31], [32].

For medications associated with Alzheimer’s disease, low
to moderate doses of antipsychotics, moderate to high doses
of antidepressants, and moderate to high doses of cardiovas-
cular drugs have been identified as major features associated
with Alzheimer’s disease using SHAP [24]. Additionally,
an interactive visualization tool has been designed and devel-
oped to assist domain users in GNN-based drug repurpos-
ing; in this, it was demonstrated how XAI can be used to
examine treatments for Alzheimer’s Disease (AD) [19]. In the
field of cancer research, to gain a deeper understanding of
the established models, SHAP was utilized to calculate the

contribution of important structural fragments for breast can-
cer [21]. Additionally, the LRP techniquewas implemented to
interpret the network and visualize the chemical groups pre-
dicted by a model that contributes to the toxicity of anticancer
drugs with human-readable representations [20].

2) USING XAI TO DETECT ADVERSE DRUG REACTIONS
ADRs are statistically characterized in randomized clini-
cal trials and post-marketing PV; however, their molecular
mechanisms remain unknown in most cases. In addition
to clinical trials, many elements of knowledge on drug
ingredients are available in open-access knowledge graphs,
such as their properties, interactions, and involvement in
pathways [13]. Rapidly advancing AI technologies can
facilitate data-driven estimation when screening multiple
variables and capture non-linear relationships to accurately
predict clinical outcomes. In recent years, many studies
have been conducted to identify an optimal model for accu-
rately predicting ADRs and taking effective preventive mea-
sures [17], [18], [25], [26], [27], [28].

3) USING XAI TO EXPLORE POLYPHARMACY
Drug combinations have demonstrated a significant poten-
tial for cancer treatment, as they relieve drug resistance and
improve therapeutic efficacy. The rapidly increasing number
of anticancer drugs has elicited costly and time-consuming
experimental investigations of all drug combinations. How-
ever, computer technologies may improve the efficiency
of drug combination screening. Despite recent advances in
applying ML to predict synergistic drug combinations, much
room for improvement remains. The XAI method can decon-
volute genes contributing to synergistic drug combinations
and improve model interpretability [35].

4) EXTRA TASKS: DRUG REPURPOSING, ETC
XAI has been studied for various purposes, such as phar-
macodynamics and safety [32], deducing effective properties
in the same context [9], drug repurposing [19], and drug
classification [13], [28], [33].

IV. OVERALL FINDINGS OF XAI USE IN
PHARMACOVIGILANCE
A. BENEFITS OF EXPLAINABLE PHARMACOVIGILANCE
PV XAI can provide clinicians and patients with a more
comprehensible support system to ensure interpretability and
explainability of AI models [64]. It can also simplify the
model evaluation process while increasing the transparency
and traceability of the model. There is great potential in
systematically monitoring and managing XAI-based mod-
els and continuously collaborating with clinicians to enable
fine-tuning to advance the system, enabling more efficient
and accurate delivery of clinical decision support. The trans-
parency of PV XAI can also manage regulations, risks and
other requirements to alleviate PV model governance costs,
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minimize manual inspection overhead and costly errors, and
reduce the risk of unintentional bias.

B. OPEN PROBLEMS, CHALLENGES, AND NEEDS OF
EXPLAINABLE PHARMACOVIGILANCE
XAIs should be developed to enable clinicians to explain
decisions in models so that patients can perceive and under-
stand the explanations [65]. The field should consider devel-
oping a platform to support communication and linkage with
more stable visualizations. This will enable clinicians to sup-
port clinical decisions that can build trust with patients and
caregivers.

In order to develop a PV XAI model, collaboration with
experts in related fields is very important but difficult; how-
ever, continuous consideration is required. An appropriate
engineering basis for understanding the model used as well
as a clinical understanding should be developed.

On the other hand, as models become more and more
complex, the flaws of explainability must be accommodated.
PV XAI cannot cover all aspects of pharmacovigilance.
Therefore, all the life-cycle processes for data-method-result
interpretation need to be considered that can balance and
reduce bias in the results.

V. CONCLUSION
In this study, we reviewed PV XAI papers and discussed
recent research trends and the need for XAI research. Unlike
other areas where XAI and AI are developing together,
PV XAI research is still in its infancy. There are not many
papers on PV XAI and the methodology is limited to a few
models. However, studies are slowly beginning to show the
potential of XAI research for medication monitoring and
patient safety, collecting ADR and ADE information, extract-
ing drug-drug interactions, and predicting drug treatment
effects.

As in other areas, as awareness of XAI methods grows,
we expect to see AI used in pharmacovigilance and patient
safety in many more ways in the coming years than those
identified in this review, and the positive potential of XAI
for drug therapy, ADRs and interactions is very promising.
However, it is clear that the growth of this field may be
limited by the lack of validated and established uses of XAI in
real-world healthcare settings, and this is an area that requires
further investigation. Therefore, the challenges and future
prospects of XAIs in pharmacovigilance should be discussed
with continued interest.
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