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ABSTRACT Accurate detection and parameter estimation of frequency hopping (FH) signals remain chal-
lenging in FH signal-based transmission systems. This study proposes a scheme combining time-frequency
analysis (TFA) and deep learning (DL)-based image processing algorithms to alleviate the degradation of
detection accuracy and estimation performance caused by complex electromagnetic interference (EMI).
A short-time Fourier transform (STFT) was used to obtain the signal spectrogram, which reflects the signal
energy in a concentration-dependent manner. Then, a CenterNet-based deep network was employed to iden-
tify each FH hop’s shape and position, reducing the computational burden via a lightweight neural network
while maintaining high recognition accuracy. Inverse mapping from the coordinates to the spectrogram was
used to perform parameter estimation in the time-frequency (TF) domain. The estimation error was reduced
by precisely locating the centroid of the signal energy using CenterNet. The simulation results demonstrate
that the proposed scheme can accurately estimate the FH signal at a low signal-to-noise ratio (SNR) with
complex EMI. Furthermore, appropriately determining the optimal parameters of CenterNet to ensure the
estimator performance provides a novel approach for integrating DL into signal detection and estimation in
complex EMI environments.

INDEX TERMS FH signal, TFA, CenterNet, complex EMI, image detection.

I. INTRODUCTION
Frequency hopping (FH) signals have been increasingly uti-
lized in civilian and military communications. Since their
invention, the robust anti-interference capability, low inter-
ception probability, and excellent anti-fading effect have
made it possible to diversify the human use of electromag-
netic waves [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. For instance, Code Division Multiple Access-
based 3G cellular communications significantly enhance the
channel capacity; however, the multipath effect may distort
the frequency identification of FH carriers, leading to an
elevated Bit Error Rate. While military FH communications

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen Chen .

require less channel capacity and spectrum utilization, the
adversary’s intense Electromagnetic Interference (EMI) usu-
ally focuses on covering the hopping bands, resulting in
false detection or even communication disruption at the
receiver. Thus, the precise detection and estimation of the
received FH signals are essential for effective information
transmission. To address this issue, an adaptive kernel was
utilized in [13] to maximize the mutual information between
the input signal and the measurement, thus improving the
detection performance after compressive sampling of the full
FH spectrum. In [14], a spectrum estimation algorithm for
FH signals underlying compressive sensing was introduced,
which reconstructed FH signals with missing observations by
exploiting the inherent structure of the signal. A compression-
aware measurement was presented in [15] to decode FH
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signals without prior knowledge and pseudo-random code,
and an adaptive kernel was designed for compression and
decoding. After the immediate exclusion of gross errors, [16]
proposed a low-complexity multiple-target detection method
for FH signals, based on a small set of random samples.
In [17], FH signals were assumed to be blindly separated
by exploiting the polarized frequency correlation, and the
estimation accuracy was improved by descrambling recon-
struction.

The solutions above consider only the case of FH sig-
nals under the assumption that no other EMI exists. How-
ever, in realistic environments, there are interferences from
the nature, numerous electronic devices around the link,
and deliberately released disturbances. Furthermore, the FH
signal is time-varying, making it difficult to describe its
changing patterns visually and to identify FH signals from
interferences using traditional time-domain or frequency-
domain analysis, especially in complex EMI environment.
Fortunately, approaches based on time-frequency analysis
(TFA) enable the visualization of signal characteristics in the
time-frequency (TF) domain, providing an effective solution
for this problem [18], [19], [20], [21], [22], [23].

Among the various TFA methods, the widely used
ones include the short-time Fourier transform (STFT) [24],
[25], [26], [27], [28], [29], the Wigner-Ville distribution
(WVD) [30], [31], [32], [33], and its modified solution,
known as the smooth pseudo Wigner-Ville distribution
(SPWVD) [3], [34], [35], [36], [37]. However, although
the WVD has the highest resolution, its sizeable cross-term
interference requires numerous computationally intensive
matrix operations. On the other hand, the SPWVD can han-
dle cross-term interference but has limited noise tolerance.
In contrast, the STFT is a computationally simple process that
does not correlate the signal and prevents cross-term interfer-
ence. Additionally, because STFT is a windowed transform,
apparent edges in the spectrogram with high resolution can
be achieved with a smaller window, thus making it easier
to analyze the signal features using image processing algo-
rithms. However, in complex EMI environments, interfering
signals often contaminate the TF representation (TFR) of the
STFT, causing a noticeable drop in detection accuracy. Con-
sequently, accurately identifying FH signals from generated
images has become a pressing concern.

With the advent of deep learning (DL) and rapid develop-
ment of hardware capabilities, image-processing algorithms
based onDL have emerged. Various networks focusing on tar-
get detection have been proposed in the literature [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], using convolu-
tional kernels to extract image features and improve recogni-
tion accuracy by increasing the network depth and innovating
structural design. However, these algorithms require abun-
dant network parameters, resulting in a high computational
burden. Moreover, these algorithms focus on the entire image
and pay insufficient attention to the energy concentration of
FH signals in spectrograms. In contrast, CenterNet [48], [49],
[50], [51] is a lightweight network with a target centroid as

the primary measurement criterion for recognition, ensuring
a high recognition accuracy and speed.

Based on the above analysis, this study proposes an FH
signal estimation scenario using STFT and CenterNet, which
can accurately estimate FH signals after detecting them in
complex EMI. The scenario first transforms the signal into
a spectrogram using STFT to show energy aggregation, and
then uses CenterNet to detect the FH signals from other
interferences by labeling the aggregation area of each hop in
the spectrogram. Finally, mapping the pixel coordinates to the
TF grid provides an accurate parameter estimation of the FH
hops. The contributions of this study are as follows:

1) Making a more intuitive distinction, the scenario con-
verts statistical features of both signals and interfer-
ences into image features;

2) By introducing DL-based image detection methods
into signal processing, the fast iterative properties of
DL algorithms can rapidly improve the accuracy and
anti-interference capability of signal estimation;

3) This scenario enriches the toolbox of signal detection
and parameter estimation by taking advantage of spe-
cific parameters from image detection, such as inter-
section over union (IoU) analysis;

4) CenterNet boosts the computing speed by leveraging
parallel computing for machine learning.

The remainder of this paper is organized as follows: Sec-
tion II establishes an FH signal model with complex EMI.
Section III describes TFA for the FH signal, target detection,
and parameter estimation. Section IV presents the simulation
setup and results evaluation, and Section V provides conclud-
ing remarks.

II. SIGNALS AND ENVIRONMENT MODELING
This section analyses the EMI environment and creates a
signal model in the TF domain.

A. COMPLEX EMI ENVIRONMENT
Interfering signals and noise always coexist with FH signals
in an EMI environment. These interferences typically consist
of three categories: fixed-frequency, linear-frequency modu-
lation (LFM), and burst signals. Fixed-frequency signals such
as voice broadcasts and TV signals typically have a perma-
nent frequency and usually last for seconds. LFM signals, also
known as chirp signals, are signals whose frequency varies
linearly with time andwhose appearance is typically periodic,
such as radar signals. In contrast, burst signals are random and
irregular with fixed frequencies and short durations. These
interferences and background noise constitute themain obsta-
cles to identifying FH signals [52].

B. MODELING
Assume that there is a mixed-signal r(t) consisting of M FH
signals cm(t),H chirp signals fh(t), L fixed-frequency signals
gl(t), Q burst signals jq(t), and v(t) at the receiver during the
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observation time T0, denoted as

r(t) =

M∑
m=1

cm(t) +

H∑
h=1

fh(t) +

L∑
l=1

gl(t) +

Q∑
q=1

jq(t) + v(t)

(1)

where v(t) represents the additional Gaussian white noise
(AWGN) with zero mean and variance of σ 2.

Given that the mth FH signal has a hopping period of
Tm, there are B hops in the observation time T0. The carrier
frequency corresponding to the bth hop is denoted as fmb .
Because the start time of the first hop cannot be determined
and the hop may not be complete, the duration is generally
considered to be αTm with 0 < α < 1. Then, cm(t) can be
expressed as

cm(t) = am
B∑
b=1

ej(2π fmb t
′
+φmb )rect(

t ′

Tm
) (2)

where t ′ = t − (b − 1)Tm − αTm. am is the amplitude of
cm(t) and φmb is the initial phase of the bth hop with b ∈

{1, 2, · · · ,B}. rect(•) is a unit of rectangular pulse function.
From (1), it can be seen that there are no correlations

between the FH signals and others; thus, signals other than FH
can be unified as additive interference n(t) to be represented
as

n(t) =

H∑
h=1

fh(t) +

L∑
l=1

gl(t) +

Q∑
q=1

jq(t) + v(t). (3)

From (1) and (3), we have

r(t) =

M∑
m=1

cm(t) + n(t). (4)

III. METHOD
This section provides an overview of FH signal detection,
covering spectrogram generation, deep network image detec-
tion, and parameter estimation using the detection outputs.

A. SCHEME OVERVIEW
The structure of the proposed scheme is illustrated in Fig. 1.
The time-domain input signal is converted into a spectrogram
via the STFT. The spectrogram is then fed into the CenterNet
as an image for detection, yielding the center point position
and bounding box (Bbox) of the FH signal. Finally, the fre-
quencies and hopping period of the FH signal are estimated
through inverse mapping based on the coordinates from the
image.

B. STFT-BASED SPECTROGRAM GENERATION
STFT is a Fourier transform with added windowing, where
a time-domain signal is processed separately by a sliding
window and then switched into the TF domain as stacked

spectra. The STFT of the signal r(t) is defined as

R(t, f ) = STFT(r(t))

=

∫
∞

−∞

r(t)h(τ − t)e−j2π f τdτ (5)

where h(t) denotes a window function. Performing the STFT
on both ends of (4) simultaneously yields

R(t, f ) =

∫
∞

−∞

(
M∑
m=1

cm(t) + n(t))h(τ − t)e−j2π f τdτ

=

∫
∞

−∞

M∑
m=1

cm(t)h(τ − t)e−j2π f τdτ

+

∫
∞

−∞

n(t)h(τ − t)e−j2π f τdτ

= STFT(
M∑
m=1

cm(t)) + STFT(n(t))

= Cm(t, f ) + N (t, f ). (6)

To facilitate 2-D image processing, we denote the TF values
using the following notation:

|R(t, f )| = |Cm(t, f )| + |N (t, f )| . (7)

This representation makes it easier to detect the FH signal
in a spectrogram, which is the process of detecting |Cm(t, f )|
from |R(t, f )|.
After converting the time-domain signal into a spectrogram

using the STFT, different signals can be easily distinguished
from various interferences. As shown in Fig. 2, the FH signal
appears as a short horizontal line of consistent length in the
spectrogram, whereas the fixed-frequency signal appears as
a long horizontal line. The chirp signal appears as diagonal
segments with the same slope, frequency band, and period,
whereas the burst signal appears as a short horizontal line
of random length. The random noise signal covers the entire
spectrogram as irregular dots, and the lower the signal-to-
noise ratio (SNR), the higher the energy and brightness of
the dots in the spectrogram. According to the above analysis,
detecting FH signals in a spectrogram is transformed into an
image detection problem. The objective is to detect regular
short horizontal lines from other shapes in the image.
Current transmitters usually select a relatively clean band

to avoid overlapping interference. Therefore, we assume that
the FH signal does not overlap with the interfering signals
in the spectrogram, which allows for the accurate detection
and parameter estimation of the FH signal using the proposed
scheme.

C. NETWORK ARCHITECTURE
The architecture of the CenterNet used in this study is illus-
trated in Fig. 3, which comprises two main components:
a convolution-based backbone network and an upsampling
network. The backbone network extracts features from the
image, and the upsampling network merges these features
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FIGURE 1. Structure of the proposed scheme.

FIGURE 2. Spectrogram of the FH signal with interferences (SNR = 1 dB).

into feature maps. The feature maps are then fed into three
different convolutional heads to produce the detection results
of the FH signal. These three heads are responsible for the
following:

1) Extracting the heat map of the features for
classification;

2) Determining the height and width of the target Bbox;
3) Recording the offset between the center point and the

target’s actual position.

One advantage of CenterNet over traditional CNN-based
networks (such as R-CNN and Faster R-CNN) is its insensi-
tivity to the initial size and stretching of the image. Instead
of traversing the image using numerous alternate anchors,
CenterNet focuses solely on the center point position and
anchor size, making the network design straightforward.
In this study, the input image was preprocessed from 900 ×

1200 to 512 × 512 pixels in the RGB format, which contains
three channels.

The backbone network is typically selected from ResNet,
DLA, and Hourglass [48]. In this study, we selected
ResNet-50 as the backbone network, which improves pro-
cessing speed while ensuring learning accuracy and avoids
gradient disappearance and explosion caused by network
deepening [53]. After feature extraction using the backbone
network, the dimensions of the feature maps were 16 ×

16 with 2048 channels. Subsequently, deconvolution of the
feature maps was used as an upsampling tool to obtain
heat maps, acquiring feature maps at a dimension of 128 ×

128 pixels with 64 channels [42], [54].
The obtained featuremaps are duplicated into three parallel

heads to output parameters. First, the convolution depth is
equal to the number of desired classifications. As the FH
signal is the unique class in this study, the convolution depth
of the head was 1. Second, because the Bbox is determined

by the width and height, the convolution depth was 2. Finally,
to compensate for the offset during feature extraction, a fine-
tuning of the centroid position is performed with a convo-
lution depth of 2. The specific architecture of the detection
network is presented in Table 1.

D. TRAINING AND PREDICTION OF THE SPECTROGRAMS
1) POSITION PREDICTION OF THE FH SIGNAL
The keypoint prediction of the FH signal was referenced
from [55]. Given a particular FH signal c in the input image
I ∈ ℜ

W×H×3 with width W and height H , the keypoint
of the ground truth is Y ∈ [0, 1]

W
S ×

H
S ×C with the position

of p ∈ ℜ
2, which is scaled by the same ratio as the position of

p̃ =
⌊ p
S

⌋
and is dispersed by the Gaussian kernel in (8) on the

heat map. The output scaling stride S was set to 4 according to
the network structure, and the number of classes C was set to
1 in this study. The variance σ 2

p of the heat map is calculated
from the radius r , which is determined using IoU settings.

Yxyc = e
−

(x−p̃x )2+(y−p̃y)2

2σ2p (8)

Let the corresponding keypoint Ŷ ∈ [0, 1]
W
S ×

H
S ×C be

given by the network prediction, whose position is p̂ ∈ ℜ
2.

We use Ŷxyc = 1 to denote that the keypoint is acquired,
whereas Ŷxyc = 0 denotes the background. Moreover, we use
the focal loss for logistic regression, and the loss function can
be expressed as

Lpt = −
1
M

∑
xyc


(1 − Ŷxyc)

α
log(Ŷxyc), Yxyc = 1

(1 − Yxyc)β (Ŷxyc)α

log(1 − Ŷxyc), otherwise

(9)

where α and β are the hyperparameters of focal loss. In this
study, we take α = 2 and β = 4, respectively. M is the
number of keypoints in an image when normalizing the focal
loss.

In addition, for the head used for offset prediction, let Ô ∈

ℜ
W
S ×

H
S ×2 be the offset prediction shared by all classes with

offset coordinates (δx̂, δŷ). When using L1 loss to participate
in the training, we have

Loff =
1
M

∑
p

∣∣∣Ôp̃ −

( p
S

− p̃
)∣∣∣. (10)

2) SIZE PREDICTION OF THE FH SIGNAL
For the mth FH hop cm with Bbox coordinates
(x(m)1 , y(m)1 , x(m)2 , y(m)2 ), the center point position pm and the
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FIGURE 3. Architecture of the CenterNet-based detection network.

TABLE 1. Architecture specifications of the image detection network.

size of the Bbox sm(w(m), h(m)) are

pm =

(
x(m)1 + x(m)2

2
,
y(m)1 + y(m)2

2

)
(11)

and

sm =

(
x(m)2 − x(m)1 , y(m)2 − y(m)1

)
, (12)

respectively. Let the size prediction be Ŝ ∈ ℜ
W
R ×

H
R ×2, and

use L1 loss again to participate in the training. Then we have

Lsize =
1
M

M∑
m=1

∣∣∣Ŝpm − sm
∣∣∣. (13)

Overall, the loss for the entire training can be expressed as

Ltrain = Lpt + λsizeLsize + Loff (14)

where the coordinates use the pixel positions in the original
image. The weights assigned to each part of the loss were

defined by λsize = 0.1. Finally, the Bbox predicted by the
network can be expressed as

(x̂ + δx̂ −
ŵ
2

, ŷ+ δŷ−
ĥ
2
, x̂ + δx̂ +

ŵ
2

, ŷ+ δŷ+
ĥ
2
). (15)

where ŵ and ĥ denote the width and height of the Bbox,
respectively.

E. PARAMETER ESTIMATION OF THE FH SIGNAL
The FH signal cm is obtained from network prediction, and
the frequency limit of its image representation is displayed
between the upper limitFmax and the lower limitFmin, respec-
tively. The inverse mapping from the image to the signal is
calculated as

Tm
ŵ

=
T0
W

(16)

and
Fmax − Fmin

H
=
fmb − Fmin

ŷ+ δŷ
. (17)
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The hopping period Tm and carrier frequency fmb of cm can
be converted to

Tm =
ŵ
W
T0 (18)

and

fmb =
ŷ+ δŷ
H

(Fmax − Fmin) + Fmin. (19)

When there is only one FH signal in the environment, the
hop duration for theM hop FH signal in a single observation
window can be estimated as

T̄ =
1
M

M∑
m=1

Tm. (20)

IV. NUMERAL EXPERIMENTS AND ANALYSIS
In this section, numerical results are used to demonstrate the
effectiveness of the proposed scheme.

A. EXPERIMENT SETTINGS
In this study, the carrier signal operates within the very-low
frequency (VLF) band of the International Radio Consul-
tative Committee (CCIR) and the long-wave (LW) band of
the International Special Committee on Radio Interference
CISPR-25. This band is well suited for air-sea integrated
communications and navigation because of the electromag-
netic waves transmitted over longer distances, allowing for
communication over several kilometers. Furthermore, the
band is highly stable, providing robustness against day and
night, weather, climate, cosmic rays, and other interferences.
Additionally, the band is more penetrative underwater, with
less attenuation up to 100 m.

However, the VLF band still faces complex EMI issues,
particularly in FH communication. Chirp signals are com-
monly used in maritime radar systems that may interfere with
VLF band communication, as well as the fixed-frequency
radiation emitted by electrical devices such as motors and
engine blades on aircraft, ships, and offshore platforms.
Furthermore, the burst emissions of maritime lightning and
ionospheric fluctuations can also affect VLF band commu-
nication. Therefore, identifying FH signals in such complex
EMI is of great significance.

This study focused on baseband signal processing to sim-
plify the analysis. The SNR of AWGN ranged from -10 dB
to 10 dB, with an observation time of 0.08 s and a 128-point
Hamming window for the STFT. The parameters of the FH,
fixed-frequency, chirp, and burst signals presented in the
complex EMI are listed in Table 2. In addition, to guarantee
the statistical convenience and accuracy of the experimental
results, Monte Carlo samples considering the algorithm’s
robustness are usually selected by discrete SNR with a step
of 1 dB. However, to better understand the prediction results
between selected SNRs, it is crucial to conduct sufficient
Monte Carlo samples at each SNR. Therefore, this study
generated 500 Monte Carlo samples per dB per step for a
hopping period of the FH signal between 0.01 s and 0.02 s

with a step of 0.002 s, which contained a total dataset of
63,000 spectrograms.

For the CenterNet parameters, the training, validation, and
test sets were segmented at 50%, 25%, and 25%, respectively.
The model was pre-trained on MS COCO [56] for weight
initialization, and the Adam algorithm with 0.94 momenta
and 0.0001 weight decay was used for training. We used a
learning rate segmentation strategy to avoid misconvergence.
The learning rate was initially set to 1 × 10−4 with a batch
size of 64, and then decayed to 1 × 10−5 after 50 epochs
with a batch size of 16, and the training terminus was set to
100 epochs.

B. RESULTS EVALUATION
1) STFT PERFORMANCE VERIFICATION
Fig. 4 compares the spectrograms and contour plots of STFT
with WVD and SPWVD for the same mixed signal at an
SNR of 0 dB. Comparing Fig. 4(a) and 4(b) with Fig. 4(c)
and 4(d) reveals that the WVD extensively aggregated the
signal representation, as evidenced by the slim and bright
outlines, and the noise was effectively suppressed. However,
owing to the presence of cross terms, the WVD of signal
and interference were represented as non-independent, caus-
ing a severe TF overlap. Furthermore, bacause WVD is the
Fourier transform of the autocorrelation function, the values
lose linearity over time, resulting in a more confusing TFR,
making it challenging to achieve signal detection using image
processing algorithms. Comparing Fig. 4(c) and 4(d) with
Fig. 4(e) and 4(f), we can see that the SPWVD reduced the
TF aggregation and overlap. Nevertheless, as the cross terms
remain, the TF overlap generated substantial interference and
few correct outlines, which differs from the STFT. The results
confirm the incomparable advantage of the STFT in this
scheme.

2) RESULTS OBSERVATION OF THE PROPOSED SCHEME
To illustrate the procedure of the proposed scheme more
intuitively, we showcase the detection outputs of the FH
signal in a mixed signal with AWGN at an SNR of 5 dB,
as shown in Fig. 5. The mixed signal in the time domain
is shown in Fig. 5(a). The 3-D mesh in the TF domain
after applying STFT highlights the concentration of the sig-
nal energy, as shown in Fig. 5(b). After 2-D processing to
obtain Fig. 5(c), the FH signal can be visually identified from
other interferences with the energy distribution. Finally, the
Bbox coordinates of the FH hops are revealed in the image
through CenterNet, as shown in Fig. 5(d). After the screening,
an inverse mapping is performed to derive the frequency and
hopping period estimations of the FH signal.

3) NETWORK TRAINING PERFORMANCE
In Fig. 6, we present the trend of the total loss and vali-
dation loss with respect to the epoch of our DL architec-
ture, observing that both losses decreased smoothly as the
number of training epochs increased. The result indicates
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TABLE 2. Parameters of the signal and complex EMI.

FIGURE 4. Comparison of the TFA algorithms (SNR = 0 dB). (a) STFT spectrogram. (b) STFT contour. (c) WVD spectrogram.
(d) WVD contour. (e) SPWVD spectrogram. (f) SPWVD contour.

FIGURE 5. A proceeding example of proposed scheme (SNR = 5 dB). (a) Original time-domain signal. (b) 3-D mesh after the STFT.
(c) Spectrogram after 2-D Processing. (d) Image with Bbox after CenterNet Detection.

that the architecture parameters were well selected without
overfitting. Moreover, the losses reduced steadily when the
epoch was between 30 and 50 and decreased sharply again
when the learning rate was adjusted to 1 × 10−5 at the
50th epoch, demonstrating an appropriate setting. Finally, the
losses became smooth again after 90 epochs andwere reduced
to the magnitude of 10−1, indicating quick convergence and
appropriate fitting of the architecture.

4) PERFORMANCE COMPARISON OF THE DL
ARCHITECTURES
In this part, we conducted two experiments to compare
the performance of CenterNet with YOLOv7 [47] and
YOLOX [46]. The results of the mean average precision
(mAP), APtest50 , and APtest75 obtained from training and test-
ing these three DL architectures on the dataset generated
in Section IV-A are summarized in Table 3. As can be
seen, the average precision (AP) performance of all archi-
tectures is significantly higher than that of MS COCO [56],
with APs exceeding 90%. This result originates from the

continued training for the dedicated application in this study
based on the pre-trained model, which improves the gener-
alization capability of the network parameters for FH sig-
nal detection. In addition, CenterNet obtained 99.25% mAP,
99.91% APtest50 , and 99.75% APtest75 , outperforming YOLOv7
and YOLOX by 6.31%, 0.01%, 0.03% and 8.39%, 0.03%,
1.21%, respectively. This is because YOLOv7 and YOLOX
are both anchor-based architectures that require different
aspect ratios of anchors to traverse the image. In contrast,
CenterNet is an anchor-free architecture that uses a heat
map of the features to represent the probability of the center
point location, thus obtaining a better representation of the
features of the object. On the other hand, YOLOv7 and
YOLOX primarily concentrate on optimization for small-
target detection, and the improvement in performance for
regular-target detection is comparatively limited. For the
application in this study, the FH signal will not appear
as a small target in the spectrogram as long as the TF
scale is set appropriately; thus, the performance is generally
satisfactory.
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FIGURE 6. Training losses of the CenterNet.

TABLE 3. AP comparison of the DL architectures.

FIGURE 7. mAP comparison of the DL architectures by SNR.

Furthermore, we compared the mAPs of the three DL
architectures under different SNRs, as shown in Fig. 7. As can
be seen, the mAP of all architectures gradually increased
as the SNR increased. The mAP of CenterNet exceeded
90% when the SNR reached -1 dB, whereas the mAPs of
both YOLOv7 and YOLOX exceeded 88% when the SNR
reached 3 dB. Subsequently, the mAPs of all the architectures
converged. It was also evident that the mAPs of YOLOv7
and YOLOX were closer under all SNRs, whereas the mAP
of CenterNet was consistently higher by at least 2%. Thus,
we can conclude that CenterNet outperforms YOLOv7 and
YOLOX in terms of the prediction performance under all
SNRs.

5) PERFORMANCE IMPACT OF THE IOU
The key to detecting a signal using image detection is cor-
rectly identifying the target representation from the image.
Therefore, the next step is to verify the detection accuracy
of the proposed method. Here, we chose IoU as the criterion
and usedmiss probability as an index of recognition accuracy.
The miss probability Pmiss is the quantity ratio of detected FH
hops Ndetect to total FH hops Ntotal.

Pmiss = 1 −
Ndetect

Ntotal
(21)

FIGURE 8. SNR-miss probability graph with different IoU thresholds. The
detection accuracy is evaluated by miss probability.

FIGURE 9. Evaluation error analysis. (a) Frequency error of the FH signal.
(b) Hopping period error of the FH signal.

The SNR-miss probability graph for different IoU thresh-
olds is shown in Fig. 8. We observed that if the IoU was too
large, the miss probability also became significant. When the
IoU decreased gradually, the miss probability also decreased
and stabilized until it almost stopped changing when the
IoU was less than 0.6. These results can be explained by
the fact that, although the Bbox of the detected FH hop is
close to the ground truth, there may still be some errors in
the exact position. Thus, setting the IoU between 0.3 and
0.6 will ensure the reliability of the detection results to avoid
discarding of approximate predictions, which would decrease
detection accuracy by having a high threshold value.

In addition, considering IoU = 0.5, as an example, the
miss probability decreased as the SNR increased. When the
SNR exceeded -7 dB, the miss probability dropped to 0,
demonstrating that 100% of the FH hops were detected. Fur-
thermore, the miss probability reduced to within 2%when the
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FIGURE 10. Performance impact of different hopping periods (IoU = 0.5).
(a) SNR-Miss probability. (b) SNR-RMSE of frequency. (c) SNR-RMSE of
hopping period.

SNR reached -10 dB, indicating that the proposed scheme can
accurately detect FH signals in complex EMI environments
with a low SNR.

Furthermore, we evaluate the estimator using the root mean
squared error (RMSE) metric and present the results in Fig. 9.
Fig. 9(a) and 9(b) illustrate that the estimation of the fre-
quency and hopping period reached the magnitudes of 10−3

and 10−4, respectively. The RMSE of the frequency tended
to stabilize after a slight decrease as the SNR increased,
converging after the SNR reached −1 dB. On the other
hand, the RMSE of the hopping period decreased as the
SNR increased and converged after the SNR reached −9 dB,
indicating that the proposed scheme achieves desirable esti-
mation accuracy. Furthermore, increasing the IoU decreases
the RMSE because a higher IoU implies a stricter screening
of the prediction results, which selects a Bbox closer to the

ground truth and lowers the RMSE. However, combined with
the analysis of Fig. 8, the reduction in estimation error comes
at the cost of recognition accuracy, verifying that an IoU
between 0.3 and 0.6 is the optimal choice for performance
compromise.

6) PERFORMANCE IMPACT OF THE HOPPING PERIOD
In this part, we compare the miss probability and the RMSE
of the proposed scheme at different hopping periods. The
results with hopping periods of 0.01 s, 0.016 s, and 0.02 s
at IoU of 0.5 are shown in Fig. 10. As can be seen from
Fig. 10, the three curves overlapped with each other with
an irregular trend, indicating that the hopping period change
does not affect the experimental results. It is worth noting
that the statistics of other hopping periods still obey the same
conclusion. Therefore, Fig. 10 does not present the statistical
results for all hopping periods simultaneously to maintain
conciseness and to facilitate comparison.

V. CONCLUSION
This paper presents a novel scheme for estimating FH signals
in complex EMI environments by combining STFT analysis
and CenterNet image detection. The optimal parameters of
CenterNet were obtained to ensure the detection accuracy and
estimation precision. Simulations showed promising results
in detecting and estimating the FH signal in complex EMI at a
low SNR, providing a reference for designing and optimizing
other DL-based image detection algorithms for detecting and
estimating FH signals. Future work will focus on exploring
the effects of STFT window size, discovering other TFA
algorithms, fingerprinting multiple FH transmitters, detect-
ing interfering signals, analyzing the minimum size of the
dataset for model training, and designing adaptive spectrum
switching or FH code schemes to mitigate the effects of active
or passive interference. The performance of the proposed
scheme under more complex background noise requires fur-
ther exploration. Moreover, the current performance evalua-
tion focuses mainly on the accuracy of the offline scheme,
and we will develop an online version in the future to com-
prehensively evaluate its real-time performance.
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