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ABSTRACT Higher-order fractional filters with fully controllable frequency characteristics are realized
in this work, after fitting the filter’s magnitude response data using a minimum-phase state-space model.
Subsequently, rational integer-order transfer functions are derived and implemented using as active elements:
a) Operational Transconductance Amplifiers (OTAs) and b) a Field Programmable Analog Array (FPAA)
device. The realized filters enjoy electronic adjustability of their type, order, and characteristic frequencies
while being easily validated on the digitally programmable FPAA platform.

INDEX TERMS Fractional-order filters, approximation techniques, Butterworth filters, Chebyshev filters,
operational transconductance amplifiers, field programmable analog arrays.

I. INTRODUCTION
Fractional-order filtering is an attractive technique for per-
forming fine adjustment of the slope of the transition from
the pass-band to the stop-band of the filter, as well as for
performing scaling of the corresponding time-constants [1].
The former feature originates from the fact that the slope is
expressed by the formula ±20(n + α) dB/dec., with n being
the integer part of the order and 0 < α < 1 being its non-
integer part. The latter feature is the result of the dependence
of the filter’s cutoff frequency on both the pole frequency and
the order.

In the literature, fractional-order filters of orders in the
range ]0,1[ have been developed through the following ways:

1) on the circuit level by substitution of capacitors in
the conventional integer-order filters with RC networks
(e.g. Foster or Cauer types) approximating the behavior
of the required fractional-order capacitors [2], or
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2) on the system level by employing suitable approx-
imation tools (e.g. Oustaloup, continued fraction
expansion, etc.) for approximating the Laplacian oper-
ator sα = (jω)α , used for the transposition of the
integer-order transfer functions to the fractional-order
domain.

The first procedure is straightforward, in the sense that the
derivation of the circuitry is a one-step procedure and the
calculation of the passive element values can be easily per-
formed via a systematic way [3]. The second one is slightly
more complicated, because additional algebraic operations
are required for deriving the rational integer-order trans-
fer function. On the other hand, it offers design flexibility
because the designer can freely choose between multiple
filter design and implementation techniques [4].

The aforementioned procedures have been also followed
in the case of fractional filters of orders between one and
two but without full control of the frequency characteristics
of these filters. More specifically, while the slope of the
pass-band and stop-band gradients are fully determined by
the order of the filter, being equal to ±20(1+α) dB/dec., the
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cutoff frequency is not controlled without the application of
an appropriate optimization algorithm. Significant research
effort has been performed to overcome this obstacle, where
appropriate cost functions, error minimization, metaheuristic,
and genetic algorithms have been utilized [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24]. The design of fractional-order
filters with orders greater than two has been introduced in
[5], [6], [7], [22], [25], [26], [27], where the aforementioned
algorithms have been employed. The corresponding realiza-
tions are actually active-RC implementations of the derived
rational integer-order functions and, therefore, they do not
offer fully adjustable frequency characteristics of the filter
structures.

In the present work, a procedure for deriving the approx-
imation transfer functions, which realize the pre-determined
frequency characteristics of the fractional-order prototype fil-
ters of order greater than two, is introduced. It is based on the
fit of the frequency response magnitude data by a minimum-
phase state-space model, using Log-Chebyshev magnitude
design. This means that all well-known filters types, such
as Butterworth and Chebyshev, can be implemented in any
standard form (e.g. low-pass, high-pass or band-pass). Here,
the implementation of the resulting transfer functions is per-
formed in two different ways: (i) using Operational Transcon-
ductance Amplifiers (OTAs) as active elements, and (ii) using
a Field Programmable Analog Array (FPAA) device. In both
cases, full controllability of the frequency characteristics is
achieved without altering the core structure that implements
the integer-order approximation functions, hence offering
design flexibility and versatility. The paper is organized as
follows: detailed overview of the relevant literature is per-
formed in Section II, while the proposed procedure is also
introduced. Possible implementations are demonstrated in
Section III, and their behavior is evaluated through simulation
and experimental results in Section IV.

II. PROPOSED PROCEDURE FOR DESIGNING
FRACTIONAL FILTERS OF ORDER GREATER THAN TWO
A. BACKGROUND
The expression of the magnitude response of a Butterworth
low-pass transfer function of order (n + α), with n ∈ N and
0 < α < 1, is given by∣∣HLP,n+α(ω)

∣∣ =
1√

1 +

(
ω
ω0

)2(n+α)
, (1)

where the maximum gain is equal to one, and the half-power
frequency (or equivalently the −3 dB cutoff frequency) is
equal to ω0. The first attempt for implementing fractional-
order Butterworth filters of order (n+α) > 2 was reported in
[5], [6], where the (approximated) transfer function of order
(1 + α) Butterworth low-pass filter is divided by an (n − 1)
order Butterworth polynomial, in order to realize an (n + α)
order filter. The work in [22] introduces a new technique to

optimally design the fractional-order Butterworth low-pass
filters in the complex F-plane using the constrained compos-
ite differential evolution (C2oDE) algorithm. The presented
1.5 order fractional low-pass filter realization is performed
by substituting the capacitors in the well-known Sallen-Key
circuit by fractional-order ones, approximated by the Valsa
network [28]. The work in [25] describes the design of analog
pseudo-differential fractional Butterworth filters of the order
(2+α) operating in a mixed-transadmittance mode (voltage
input, current output) and was implemented using second
generation Current Conveyors (CCIIs), Differential Differ-
ence Current Conveyors (DDCCs) or Differential Voltage
Current Conveyors (DVCCs) as active elements. The pro-
cedure followed was: (i) a (2 + α) order transfer function
was considered and its coefficients were determined as a
function of the order of the filter using a numerical opti-
mization algorithm to minimize the error between magnitude
in dB of the considered transfer function and that in (1).
For this purpose, the MATLAB function fminsearch with a
suitable fitness function was used. (ii) The approximation of
the fractional-order capacitors was performed through the uti-
lization of Foster type-II RC networks. This work was further
extended in [26], where transfer functions of low-pass/high-
pass filters with Butterworth maximally flat magnitude and
fractional-orders higher than two were realized. The imple-
mentation presented in [26] was based on the employment
of OTAs as active elements, and the required fractional-order
capacitors were approximated using the Valsa network.

The magnitude frequency response of a (n + α) order
Chebyshev low-pass filter is given by∣∣HLP,n+α(ω)

∣∣ =
1√

1 + ε2C2
n+α(ω)

, (2)

with 0 < ε ≤ 1 being the ripple factor, Cn+α(ω) =

cos
[
(n+ α) · cos−1

(
ω
ω0

)]
being the corresponding Cheby-

shev polynomial, and ω0 being the cutoff frequency where
the gain becomes equal to 1/

√
1 + ε2. A design procedure

for realizing Chebyshev low-pass filters of order (n+ α) was
introduced in [7] where the MATLAB lsqcurvefit function
was used to implement the non-linear least squares optimiza-
tion. No implementation of a filter with order greater than
two was presented in [7]. In the work of [29], metaheuristic
evolutionary algorithms were employed for approximating
the response of (n + α) order Chebyshev low-pass filters.
Operational amplifier (op-amp) and OTA based implemen-
tations of orders in the range ]1, 2[ were reported in this
work. Finally, in [27] a genetic algorithm was also employed
to optimize the parameters of the fractional-order transfer
function so that its magnitude characteristics approximate the
ideal response of the fractional-order Chebyshev low-pass
filter. It provided a design of 2.2 order low-pass filter realized
using op-amps, while the Foster type-I RC network was
employed for approximating the behavior of the fractional-
order capacitors.
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B. FREQUENCY RESPONSE MAGNITUDE APPROXIMATION
1) LOW-PASS FILTER FUNCTIONS
The gain responses described by (1)–(2) can be approximated
through the following steps:

• Collect the frequency response data of (1) or
(2), within the frequency range of interest, using
the MATLAB frd function of the Control System
Toolbox.

• Assuming an approximation order (N ), obtain the
rational integer-order transfer function of the filter
using the MATLAB commands fitmagfrd, which per-
forms the fit of the frequency response magnitude
data by a minimum-phase state-space model, and tf,
which converts the model into a transfer function.
Both commands are included in the Robust Control
Toolbox.

These steps are summarized in the following program listing,
where a Butterworth low-pass filter of order equal to 2.4 is
approximated. It must be mentioned at this point that only
the line describing the variable mag_ideal of the provided
code must be changed for obtaining different types of filter
functions.

Listing 1. MATLAB code for approximating a Butterworth low-pass filter.

The resulting transfer function will have the form of (3)

H (s) =
BN sN + BN−1sN−1

+ . . . + B1s+ B0
sN + AN−1sN−1 + . . . + A1s+ A0

, (3)

withAi andBj (i = 0, 1 . . .N − 1, j = 0, 1 . . .N ) being pos-
itive and real coefficients. For demonstration purposes, let
us consider Butterworth low-pass filter functions with cutoff
frequency ω0 = 1 rad/s, which will be approximated in the
frequency range [10-1, 101] rad/s. Employing a 4th–order
approximation, the resulting values of the coefficients Ai and
Bj are summarized in Table 1. The corresponding values for
approximating Chebyshev low-pass filter functions, with a
3 dB ripple and the same ω0, under the same conditions of
approximation are provided in Table 2. The resulting fre-
quency responses are depicted in Figs. 1 and 2, respectively,
where the validity of the presented concept is verified.

FIGURE 1. Frequency responses of the approximated Butterworth
low-pass filters with the ideal responses given by dashes.

FIGURE 2. Frequency responses of the approximated Chebyshev low-pass
filters with the ideal responses given by dashes.

2) HIGH-PASS FILTER FUNCTIONS
The magnitude response of high-pass fractional filters with
Butterworth characteristics is given in (4)∣∣HHP,n+α(ω)

∣∣ =
1√

1 +
(

ω0
ω

)2(n+α)
, (4)
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TABLE 1. Coefficients values of (3) for approximating Butterworth low-pass filters of orders {2.2, 2.4, 2.6}, {3.2, 3.5}, and {4.2, 4.5}.

TABLE 2. Coefficients values of (3) for approximating Chebyshev low-pass filters of orders {2.2, 2.4, 2.6}, {3.2, 3.5}, and {4.2, 4.5}.

and the corresponding expression of the Chebyshev high-pass
filters is

∣∣HHP,n+α(ω)
∣∣ =

1√
1 + ε2C2

n+α(ω)
, (5)

with Cn+α(ω) = cos
[
(n+ α) · cos−1

(
ω0
ω

)]
.

FIGURE 3. Frequency responses of the approximated Butterworth
high-pass filters with the ideal responses given by dashes.

Following the same procedure in the case of high-pass fil-
ters described by (4)–(5), the resulting values of coefficients
are given in Tables 3–4. The associated frequency responses
are demonstrated in Figs. 3 and 4, respectively.

FIGURE 4. Frequency responses of the approximated Chebyshev
high-pass filters of orders {2.2, 2.,4, 2.6} with the ideal responses given by
dashes.

3) BAND-PASS FILTER FUNCTIONS
The expression of the magnitude of a Butterworth band-pass
filter of order (n+ α) is given by (6)∣∣HBP,n+α(ω)

∣∣ =
1√

1 +

( ∣∣ω2
0−ω2

∣∣
ω·BW

)2(n+α)
, (6)

with ω0 being the center frequency and BW is the bandwidth
of the filter (BW = ωhigh − ωlow). Considering a band-pass
frequency response with ω0 = 1 rad/s, ωlow = ωo/2 and
ωhigh = 2ω0, the values of coefficients which are associated
with filters of orders {2.2, 2.4, 2.6} are given in Table 5.
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TABLE 3. Coefficients values of (3) for approximating Butterworth high-pass filters of orders {2.2, 2.4, 2.6}, {3.2, 3.5}, and {4.2, 4.5}.

TABLE 4. Coefficients values of (3) for approximating Chebyshev high-pass filters of orders {2.2, 2.4, 2.6}, {3.2, 3.5}, and {4.2, 4.5}.

TABLE 5. Coefficients values of (3) for approximating Butterworth
band-pass filters of orders {2.2, 2.4, 2.6}.

FIGURE 5. Frequency response of the approximated Butterworth
band-pass filters with the ideal responses given by dashes.

The corresponding plots of the frequency responses plots are
demonstrated in Fig. 5.

From the above, it is obvious that the proposed method
offers the following advantages:

• It is versatile, in the sense that it is applicable in various
types of filters functions (i.e., low-pass, high-pass, band-
pass) and is independent of the type of the polynomial
that is used for the prototype filter (e.g. Butterworth and
Chebyshev).

• It is very simple because, having available the frequency
response of the filter, one step is required to obtain the
rational integer-order transfer function which approxi-
mates the fractional-order filter function.

• It offers design flexibility and programmability since
the transfer function in (3) is used for implementing the
derived transfer functions of all types, i.e. the same core
can be used for implementing different filters.

FIGURE 6. Functional block diagram of an nth–order Inverse Follow the
Leader Feedback structure.

III. IMPLEMENTATIONS
A. ELECTRONICALLY CONTROLLED IMPLEMENTATION
The transfer function in (3) can be realized using an Inverse
Follow the Leader Feedback (IFLF) topology, described by
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the functional block diagram in Fig. 6 [30]. The realized
transfer function in this case is (7)

H (s) =

GnsN +
GN−1

τ1
sN−1

+ · · · +
G0

τ1τ2···τN−1τN

sN +
1
τ1
sN−1 + · · · +

1
τ1τ2···τN−1τN

, (7)

and the values of time-constants as well of scaling factors are
calculated by equalizing the coefficients of (3) and (7). The
resulting design equations are thus (8)–(9)

τi+1 =
AN−i

AN−1−i
(i = 0 . . .N − 1) , (8)

Gj =
Bj
Aj

(j = 0 . . .N ) . (9)

The corresponding OTA-C structure, which implements
the block diagram in Fig. 6, in the case of a 4th–order
approximation, is depicted in Fig. 7(a). The circuitry shown
in Fig. 7(b) could be utilized for realizing the required
OTAs, due to the offered improved linearity compared to
that offered by conventional implementations [31]. Its small-
signal transconductance parameter is given by gm =

5IB
9nVT

with n being the slope factor of a MOS transistor in sub-
threshold region (1 < n < 2), VT being the thermal
voltage (26 mV at 27◦ C), and IB being the dc bias current.
Consequently, the time-constant of each integration stage
τi = Ci/gmi (i = 1,2. . . 4) is controlled by the dc bias current
of the associated OTAs; in addition, the scaling factors Gj
(j= 0,1. . . 4) are implemented by scaling the dc bias currents
of the OTAs employed for performing this operation.

Using the values of Tables 1–4, the design equations
in (8)–(9) and denormalizing frequency to ω0 = 1 krad/s, the
derived values of the bias currents of the integration sections
are given in Table 6 in the case of Butterworth filters, and
in Table 7 in the case of Chebyshev filters. In both cases the
main bias current of the summation stages is equal to 98.3 nA.

TABLE 6. Values of dc bias currents for approximating Butterworth
low-pass, high-pass, and band-pass filters of orders {2.2, 2.4, 2.6}, using
the structure in Fig. 7.

B. DIGITALLY CONTROLLED IMPLEMENTATION
Another possible implementation of the transfer function
in (3) is that based on the functional block diagram in
Fig. 8, which represents a Follow the Leader Feedback (FLF)
structure [32]. The realized transfer function is the same as

TABLE 7. Values of dc bias currents for approximating Chebyshev
low-pass and high-pass filters of orders {2.2, 2.4, 2.6}, using the structure
in Fig. 7.

that in (7) and, therefore, the design equations (8)–(9) are
still valid. Its implementation can be performed using the
FPAA AN231E04 device provided by Anadigm [33]. The
internal intermediate blocks are interconnected through pro-
grammable buses and this offers attractive design flexibility
and versatility [34], [35].

The integration constants (Mi) are formed asMi = 10−6/τi
(i = 1 . . . 4), having units of μs-1. Choosing the FPAA clock
frequency as fclk = 2 MHz, then the realizable weight factor
values of summation stages which implement the scaling
factors Gj (j = 0,1. . . 4) are in the range [0.01, 8.83]. This is
due to the switched-capacitor nature of operation of the FPAA
and some values of these Gj factors are not in the realizable
range. However, this problem can be overcome by adding
one extra gain stage at the input of the summation stages
with a value given by the formula: G =

√
Gj, (j = 0 . . . 4).

Moreover, the values of the inherit gain of the inputs of the
summation stages will become equal to that of the associated
extra gain stage (i.e.,

√
Gj), for ensuring that the total gain

across the path is equal to that of the associated scaling
factor. Following this, the resulting design obtained using
the Anadigm Designer®2 EDA software is demonstrated in
Fig. 15, where the corresponding experiment implementation
is also provided. The interface is used for performing the
single-to-differential conversion of the input signal, as well
as, the differential-to-single-ended conversion of the output
signal. The parameters of ‘‘GainHold’’ (gain stage) and
‘‘Integrator’’ Configurable Analogue Modules (CAMs) for
implementing low and high-pass filters with cutoff frequency
equal to 100 krad/s, as well as band-pass filter with the same
center frequency employing a 4th–order approximation, are
provided in Tables 8–9, respectively.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS
A. SIMULATION RESULTS
The performance of the topology in Fig. 7(a) will be evaluated
using the Cadence IC design suite and the Austria Mikro Sys-
teme (AMS) CMOS 0.35 μmdesign kit. Considering a dc bias
voltages scheme VDD = −VSS = 0.75 V and that the MOS
transistors are biased at the sub-threshold region, their chosen
aspect ratios are provided in Table 10. The layout design of
the OTA is demonstrated in Fig. 9. The post-layout frequency
responses of Butterworth and Chebyshev filters of orders
{2.2. 2.4, 2.6} are depicted in Figs. 10 and 11, respectively.
The frequency responses of the band-pass filters are provided
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FIGURE 7. (a) OTA-C implementation of the functional block diagram in Fig. 6, in the case of 4th–order approximation and (b) OTA internal structure.

TABLE 8. Values of integration constants ( μs-1) and gain factors for implementing Butterworth band-pass filters of orders {2. 2, 2.4, 2.6}.

FIGURE 8. Functional block diagram of an nth–order Follow the Leader
Feedback structure.

TABLE 9. Values of integration constants ( μs-1) and gain factors for
implementing Butterworth low-pass and high-pass filters of orders
{4.2, 4.5}.

in Fig. 12, while their important frequency characteristics are
summarized in Table 11.

TABLE 10. Aspect ratios of the MOS transistors in Fig. 7(b).

The time-domain behavior of the filters has been evaluated
for the case of a Butterworth low-pass filter of order equal

FIGURE 9. Layout design of the OTA structure in Fig.7(b).

FIGURE 10. Post-layout frequency responses of the designed low-pass
and high-pass Butterworth filters of orders {2.2, 2.4, 2.6}.

TABLE 11. Frequency characteristics of the designed Butterworth
band-pass filters, obtained through simulations.

to 2.4. For this purpose, a (50 mV, 1 krad/s) sinusoidal stim-
ulus is applied to the filter and the obtained waveforms are
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FIGURE 11. Post-layout frequency responses of the designed low-pass
and high-pass Chebyshev filters of orders {2.2, 2.4, 2.6}.

FIGURE 12. Post-layout frequency responses of the designed band-pass
Butterworth filters of orders {2.2, 2.4, 2.6}.

demonstrated in Fig. 13(a), where the measured value of the
gain is −3.01 dB, close to the theoretically predicted value
of −3 dB.

The linearity of the filter has been evaluated through a
62.8 rad/s stimulus of variable amplitude, and the Total Har-
monic Distortion (THD) versus amplitude plot are depicted in
Fig. 13(b). THD levels of 1% and 2% are observed at 52 mV
and 73.5 mV amplitudes, respectively. Integrating the noise
over the pass-band of the filter, the rms value of the input
referred noisewas 42.6 μV.Consequently, the predicted value
of the Dynamic Range (DR) of the filter (at 1% THD level)
is equal to 58.72 dB.

The sensitivity of the filters has been evaluated through the
utilization of Monte-Carlo analysis for N = 500 runs. The
obtained statistical distribution of the cutoff frequency and
bandwidth of the Butterworth low-pass and band-pass filters
of order 2.4 are demonstrated in Figs. 14(a, b). The corre-
sponding values of the standard deviation are 104.32 rad/s
and 24.1 rad/s, respectively, and taking into account that the
associated mean values are 1.02 krad/s and 1.496 krad/s,
it is concluded that the introduced topology offers reasonable
sensitivity characteristics.

B. EXPERIMENTAL RESULTS
The frequency responses of the Butterworth band-pass
filters of orders {2.2, 2.4, 2.6}, and of low/high-pass fil-
ters of orders {4.2, 4.5} obtained using the HP4395A Net-
work/Impedance analyzer are given in Figs. 16(a, b). The

FIGURE 13. (a) Time-domain post-layout frequency responses of the
designed Butterworth low-pass filter (order 2.4) for a (50 mV, 1 krad/s)
stimulus and (b) its linearity performance using a 62.8 rad/s stimulus of
variable amplitude.

FIGURE 14. Statistical plots of the Butterworth low-pass filter of order 2.4
(a) cutoff frequency and (b) bandwidth.

TABLE 12. Frequency characteristics of the implemented Butterworth
band-pass filters, obtained through measurements.

values of the cutoff frequency of the low-pass filters of order
4.2 and 4.5 were measured as 99.1 krad/s and 98.2 krad/s,
respectively. In the case of the high-pass filters, the derived
values were 101.1 krad/s and 101.8 krad/s which are all close
to the theoretical value of 100 krad/s. The measured values
of the frequency characteristics of the band-pass filters are
summarized in Table 12.

The time-domain behavior of the filters has been evalu-
ated as follows: the band-pass filter of order 2.6 is stimu-
lated by a 1Vp-p sinusoidal signal with frequency equal to
the upper cutoff frequency (i.e., 197.55 krad/s), while the
low-pass filter was stimulated by a 1 Vp-p sinusoidal signal
with frequency corresponding to the cutoff frequency of the
filters (i.e. 98.2 krad/s). Using a DSO6034A oscilloscope,
the resulting screenshots are demonstrated in Figs. 17(a, b).
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FIGURE 15. FPAA configuration for realizing fractional-order filters (4th–order approximation) and its corresponding implementation.

The values of themeasured gains were−2.8dB and−2.85dB,
close to the theoretical −3dB value.

Finally, the linear performance of the implemented filters
was evaluated in the case of a low-pass filer of order 4.5,
stimulated by a 6.28 krad/s signal with the amplitude set to the
maximum allowable by the FPAA (i.e., 3 Vp-p). The second
harmonic was found at 77.65 dB below the fundamental.

FIGURE 16. Experimental frequency responses of the Butterworth
(a) band-pass filters of orders {2.2, 2.4, 2.6} and (b) low-pass/high-pass
filters of orders {4.2, 4.5} realized using the FPAA configuration in Fig. 15.

With regards to the presented implementations which
both offer adjustability of the derived frequency char-
acteristics of the realized filter functions, the OTA-C
structure offers the following benefits: a) capability of mono-
lithic implementation on silicon, and b) greater maximum
frequency of operation than that offered by the FPAA

FIGURE 17. Experimental input and output waveforms of a (a) band-pass
filter of order 2.6, stimulated by a (1Vp-p, 197.55krad/s) sinusoidal signal
and (b) low-pass filter of order 4.5 stimulated by a (1Vp-p, 98.2krad/s).

implementation. This is due to the absence of a compensation
network in the internal structure of the OTA, by contrast to
the FPAA device where internally compensated op-amps are
used as active elements.

Another imposed restriction on the maximum frequency
of operation of the FPAA structure is due to the fact that the
switched-capacitor technique is used for implementing the
signal processing. The maximum allowed clock frequency in
the presented design was 2 MHz, restricting the maximum
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frequency of (accurate) operation to the order of few kHz.
On the other hand, the employment of the small-signal
transconductance parameter (gm) of OTAs for realizing the
required time-constants and scaling factors imposes restric-
tion on the maximum amplitude of the signal that can be
handled by the system with a low level of distortion. This is
obvious from the provided results, where THD levels of 1%
and 2% are observed at 52 mV and 73.5 mV, respectively.
The FPAA implementation does not suffer from this obstacle,
because of the employment of op-amps. This is evident from
the provided results where, for a 1.5 V amplitude, the second
harmonic was found to be 77.65 dB below the fundamental
tone.

With regards to the dc power dissipation, considering a
band-pass filter of order equal to 2.4, the corresponding val-
ues are 3.88 μW for the OTA-C realization and 430 mW for
the FPAA implementation. The increased power dissipation
of the FPAA structure is the price paid for its better linear
performance, compared to that offered by the OTA-C filter.

V. CONCLUSION
A systematic way for deriving rational integer-order trans-
fer functions which approximate the behavior of fractional
filters of order greater than two was presented in this paper.
This is actually a two-step procedure based on the fitting of
the magnitude response of the desired fractional-order filter
function. In this work, the chosen order of approximation
was equal to four in order to achieve an accurate level of
approximation. The procedure is versatile in the sense that
it is independent from the order as well as from the type of
filter. For demonstration purposes, Butterworth and Cheby-
shev filter responses have been implemented in this work, but
the procedure is also applicable to other types such as inverse
Chebyshev, Bessel or Elliptic filters. It is noticeable that this
procedure preserves the cutoff frequency of the approximated
filters unlike the methods of [5] and [9] and without using
any complex algorithms as in [7], [22], [25], [26], and [27].
We have provided robust implementations to validate the
designed higher-order filters on the integrated circuit level
(using CMOS OTAs) and experimentally using a switched-C
based FPAA platform.
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