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ABSTRACT In the field of autonomous driving, cameras are crucial sensors for providing information
about a vehicle’s environment. Image quality refers to a camera system’s ability to capture, process, and
display signals to form an image. Historically, ‘‘good quality’’ in this context refers to images that have been
processed by an Image Signal Processor (ISP) designed with the goal of providing the optimal experience
for human consumption. However, image quality perceived by humans may not always result in optimal
conditions for computer vision. In the context of human consumption, image quality is well documented and
understood. Image quality for computer vision applications, such as those in the autonomous vehicle industry,
requires more research. Fully autonomous vehicles inevitably encounter constraints concerning data storage,
transmission speed, and energy consumption. This is a result of enormous amounts of data being generated by
the vehicle from suites made up of multiple different sensors. We propose a potential optimization along the
computer vision pipeline, by completely bypassing the ISP block for a class of applications. We demonstrate
that doing so has a negligible impact on the performance of Convolutional Neural Network (CNN) object
detectors. The results also highlight the benefits of using raw pre-ISP data, in the context of computation
and energy savings achieved by removing the ISP.

INDEX TERMS Object detection, image signal processor, autonomous vehicles, neural networks, raw data,
Bayer filter.

I. INTRODUCTION
Object detection is a widely studied field concerned with
extracting appropriate information from an image and
identifying subjects from the extracted data. Object detection
is used in a multitude of different applications, such as
autonomous vehicles [1], [2], security [3], robotics [4], and
medical [5]. Almost all existing object detection algorithms
are designed for use with images processed by a typical
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Image Signal Processor (ISP) in a standard camera system.
The ISP is responsible for taking the raw data captured by
a camera sensor, and converting it to a suitable image to be
viewed by a human. However, a typical ISP associated with
modern cameras, including camera sensors in the automotive
industry, primarily produces images designed for human
viewing in mind [6], [7]. What defines ‘‘good quality’’
is a widely debated topic and no definitive answer exists.
Traditionally, humans were considered to be the primary
consumer of camera images, and as such ISPs are commonly
designed to display images that are intended to meet a
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FIGURE 1. Bayer format and filtering.

human’s expectation of what the underlying data represents.
This representation is usually not optimized for the needs of
computer vision applications, and the ideal parameters for
human vision and computer vision may even be mutually
antagonistic.

To produce a typical color image, the camera combines
images from three channels, i.e., red (R), green (G), and blue
(B), combined as an RGB image. Photosensors laid out in
an array capture color information, with a single color being
captured per pixel. These arrays are known as color filter
arrays (CFAs). A Bayer filter is by far the most commonly
used CFA format consisting of a series of 2 × 2 grids each
containing two green pixels, one blue pixel, and one red
pixel [8], as shown in Figure 1. The Bayer filter dedicates
twice as many green pixels as red and blue pixels due to
the human eye being more sensitive to green [9]. From
here, the ISP converts this pattern into an image designed
to be suitable for human viewing through several discrete
processes, including noise filtering and gamma correction,
as well as the conversion of the Bayer image to standard
RGB format, known as demosaicing. In image processing,
‘‘raw’’ can be used either to refer to an image that has not
been processed by an ISP or to refer to an image that has not
undergone image compression. In this study, we use the term
‘‘raw’’ to refer to a mosaic image that has not been processed
by an ISP.

This paper examines the viability of using pre-ISP images
for object detection in an autonomous vehicle application,
using Convolutional Neural Networks (CNNs). To do so we
evaluate the performance of two different CNN-based object
detectors when trained and evaluated on conventionally
processed RGB images, against the performance when
trained and evaluated on raw Bayer images, with no ISP
processing. In [10], Bucker et al. claim that the demosaic and
gamma correction steps are the two most critical processes
for computer vision task performance. Thus we train and
evaluate a third model on an image set whereby only gamma
correction is applied to the original Bayer images. The images
evaluated in this research were captured using linear range
cameras, however, it is worth noting that many autonomous
cameras are High Dynamic Range (HDR) cameras, and thus
would be a possible consideration for future work.

FIGURE 2. (a) Traditional image acquisition pipeline; (b) Proposed image
acquisition pipeline bypassing the image signal processor.

We also explore the potential savings in the context of com-
putation time and power consumption as a result of removing
the ISP from a traditional image acquisition pipeline. Note
that this analysis focuses on the ISP and is independent of
the specific algorithms used for object detection. Figure 2
shows the traditional image acquisition pipeline, as well as
our proposed acquisition pipeline. Additionally, this work
provides a brief commentary on the lack of comprehensive
datasets consisting of pre-ISP Bayer images available within
the public domain and their importance for computer
vision.

The specific contributions of this study include:
• A detailed comparison of object detection performance
between two CNN-based models trained and evaluated
on sets of images both before and after exposure to
image signal processing.

• A comparison of relevant public datasets containing pre-
ISP images, and a brief commentary on the lack of
availability of said datasets, particularly for the use case
of object detection.

• A brief description of the discrete processes in
an ISP, highlighting where the ISP may nega-
tively affect computer vision performance, where
relevant.

• An analysis of potential savings to be made in terms
of energy consumption and computation time, through
bypassing the ISP.

The remainder of section I provides a background on
related work in the field. Section II provides a discussion
on the modular nature of an autonomous vehicle system
architecture. Section III provides a brief overview of ISP
processing blocks, and an insight into the impact tuning
an ISP towards human vision has on computer vision
performance. Section IV covers CNN-based object detection
and the models implemented in this work, as well as a
commentary on available datasets. Section V evaluates the
results of object detection using the YOLOv5 and Faster
R-CNN models on Bayer and RGB images. Section VI
provides a discussion on the system-level performance
benefits of bypassing the ISP for computer vision. SectionVII
concludes the paper.
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A. RELATED WORK
Studies have shown benefits in bypassing the demosaicing
step and using CFA images such as Bayer filter images,
for feature extraction computer vision applications. In [11],
Zhou et al. explore the impact of demosaicing on gradient-
based feature extraction. Zhou et al. demonstrate both
theoretically and experimentally that the raw Bayer pattern
images are sufficient for gradient-based feature extraction
algorithms with a negligible drop in performance. Trifan
and Neves corroborate this in [12] using CFA images for
Scale Invariant Feature Transform (SIFT) [13] and Speeded-
Up Robust Features (SURF) [14] feature description with
minimal drop in performance.

In a conventional computer vision system, the ISP
consumes a significant amount of computational resources,
processing time and energy consumption [10]. In an attempt
to reduce computation, Buckler et al. [10] examined the role
of an ISP in both classical and CNN-based computer vision,
by disabling stages of a traditional ISP. They claim that
the majority of ISP processes are unnecessary for computer
vision applications, however, they found gamma correction,
denoising, and demosaicing to have significant effects on
computer vision. They use a software tool they refer to as
the Configurable & Reversible Imaging Pipeline (CRIP) to
convert ISP-processed images to raw images.

However, since several ISP processes are non-linear and
non-invertible, the resultant images are only approximate
reconstructions, which may amplify the effects of individual
processes. This claim is backed by Lubana et al. who surmise
that Buckler et al. may have overestimated the effects of these
ISP operations due to the images examined being of a pseudo-
Bayer format [15].

Furthermore, due to the nature of the interpolation process,
the demosaicing step may lead to errors in the form of
erroneously estimated colors, or an artificial jagged pattern
known as the zipper effect [16], [17].

A common trend with a lot of the related work is
restrictions due to a lack of pre-ISP images available to
the public domain. Chandra et al. use subsampled RGB
images in a format they refer to as pseudo-Bayer images [18]
for gesture recognition. In their work, they mention the
benefit a comprehensive collection of publicly available
Bayer images would have on their research. The research
presented builds from the related work mentioned above on
using Bayer images for computer vision, by extending the
work to an object detection use case in an autonomous vehicle
context.

II. AUTONOMOUS VEHICLE SYSTEM ARCHITECTURE
The typical architecture of a software system within an
autonomous vehicle is different from that of a traditional PC
system. Autonomous vehicle architectures typically include
several layers of software, usually consisting of many
ECUs (Electronic Computing Units) each responsible for
an individual task such as vision, area mapping, steering,

braking, and infotainment. The exact architecture may vary,
depending on the implementation. A typical autonomous
vehicle software architecture may contain the following [19]:

1) Perception Layer: Responsible for collecting sensor
data from cameras, LiDARs, radar, and other sensors,
and processing the data to generate a 3D map of the
vehicle’s surroundings. The data can then be used to
identify objects such as other vehicles and pedestrians,
as well as their locations.

2) Prediction and Planning Layer: Responsible for using
the data from the perception layer and predicting the
behavior of surrounding objects in order to plan a safe
path for the vehicle.

3) Control layer: Responsible for controlling the vehicle’s
acceleration, braking, and steering to navigate the
planned path from the prediction and planning layer

4) User Interface Layer: Responsible for providing the
user with an interface to interact with the autonomous
vehicle. The user interface layer includes displays and
controls for setting destinations, infotainment systems,
and other features.

The modularity of a typical autonomous vehicle software
architecture makes it feasible to adjust one subsystem
without a drastic effect on the overall system. Furthermore,
modularity allows for the potential for varying degrees of
image processing depending on the use case. For use cases
such as Advanced Driving Assistance Systems (ADAS) and
infotainment systems, where human-viewable images are
required, an ISP may be used in order to produce an image
that is appropriate for human vision. However, in cases where
the user is not required to view the images, such as automated
collision avoidance through object detection, the raw Bayer
images may prove sufficient.

III. IMAGE SIGNAL PROCESSOR
The Image Signal Processor (ISP) is a processing block
involved in the image acquisition process responsible for
converting the data captured by a camera sensor into a usable
image for a given application, be it human consumption
or computer vision. The ISP is made up of many discrete
processes, some of which may be destructive or irreversible.
Thus, as an image passes through each block, the quantity of
information decreases. Without the reference data captured
directly at the sensor, it is impossible to re-capture the data
lost as a result of some of these processes. Figure 3 shows an
example image processing pipeline. Note that an individual
ISP may not be limited to the processes in Figure 3 and may
have additional processes, depending on the individual ISP.
Lens shading correction—is applied to improve the spacial

uniformity of the illumination and color captured by a sensor.
These non-uniformities are more common around the image
periphery due to lens distortion. Lens shading correction is
particularly critical for automotive cameras that employ fish-
eye lenses.
Auto white balance (AWB)—is responsible for correcting

the color temperature of the final image, such that white
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TABLE 1. An overview of relevant available datasets.

FIGURE 3. Example ISP pipeline. In practice, ISPs are not limited to the
blocks provided in the Figure and conversely may not contain all
processes shown.

objects appear a desired white. AWB values are calculated
using the input image and these values are used to apply
digital white balance gains to the red, green, and blue
channels appropriately.
Auto gain control (AGC) / Auto exposure control

(AEC)—is a feedback loop within the ISP, responsible for
managing the gain and exposure for the next frame, which is
calculated using a weighted average of the current exposure.
The gain in a digital imaging device is a way of increasing the
sensitivity of the sensor to light and represents a relationship
between the sensor and the number of electrons captured.
Defect pixel correction—corrects defective pixels captured

by an image sensor. A defective or dead pixel refers to a
pixel in which the pixel, at a sensor level, is turned off,
creating a black spot within the image. Dead pixels increase
over an image sensor’s lifetime and may be the result of
malfunctioning transistors or photodiodes.
Denoise—is the process of filtering an image to remove

the appearance of noise in an image. When removing noise,
it is very difficult to preserve texture within an image,
thus losing high-frequency information. The loss of this

high-frequency data can be a negative factor when detecting
image gradients, a key component in feature detectors.
Denoising is particularly irreversible without the reference
image, due to the stochastic nature of noise.
Demosaicing—or color interpolation, as discussed is the

process of converting a sensor’s raw data, typically in the
form of a Bayer CFA, into a color RGB image. While
demosaicing is certainly a critical operation in terms of
producing an image designed for human viewing, it can
also introduce imaging artifacts. Some of these artifacts
include zippering or staircase artifacts on edges, as well as
false colors within an image. The former of these artifacts
can have a negative impact on edge detection performance
due to repeating edges. These effects can be mitigated
by more complex demosaicing filters, however, this comes
at a computational cost. As a demosaiced image is an
interpolation of the raw sensor data to generate an RGB
image, it is again impossible to accurately reverse without
estimation.
Edge enhancement—is responsible for enhancing edges

within an image, to make it appear sharper. Excessive edge
enhancement can be detrimental to computer vision applica-
tions, however, particularly gradient-based algorithms, by the
artificial creation of duplicate edges.
Color correction—is responsible for correcting any color

error generated as a result of the spectral characteristics of the
optical lens or color filters used in an image sensor, or in the
lighting of the scene. The color correctionmatrix also corrects
any cross-talk between pixels where color information from
one pixel contaminates an adjacent pixel. In most ISPs,
color correction is applied for better color accuracy, however
excessive color correction may accentuate noise, negatively
impacting computer vision.
Contrast Adjustment—is responsible for enhancing image

contrast, thus improving separation between different grey
levels. A clear partition between grey levels can be beneficial
for gradient-based algorithms and can thus improve machine
vision performance. However, contrast tuning towards human
vision needs may differ from computer vision needs, and in
some cases have a negative impact on performance.
Gamma correction—is responsible for adjusting the

gamma of an image, defining the relationship between a
pixel’s numerical value, and the represented luminance.
If twice the number of photons are captured by an image
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sensor, the system will receive a signal with double the
amplitude. However, the human eye perceives light non-
linearly, in that twice the amount of photons would only seem
a fraction brighter. Gamma correction uses the information
encoded by the image sensor to adjust the contrast in the
final image appropriately. While gamma correction is crucial
for human viewing, its impact on machine vision is less
documented.

IV. OBJECT DETECTION
A. DATASETS
The primary roadblock to working with pre-ISP images,
particularly in the context of deep learning, is the lack of
a comprehensive dataset consisting of raw Bayer images
available in the public domain. One approach is the use of
pseudo-Bayer images where some studies attempt to generate
a Bayer image from an already processed RGB image
[10], [18]. The problem with this approach is that many of
the ISP processes are destructive and non-linear, so the raw
images can only be approximately reconstructed [15].

For training and evaluation, we used two different raw
datasets. The first dataset we used is the PASCALRAW
dataset published by researchers from Stanford University
containing pre-ISP images [20]. The dataset consists of 4,259
12-bit images containing three annotated classes: 1,765 cars,
4,077 persons, and 708 bicycles. The images are unprocessed
Bayer images captured using a Nikon D3200 DSLR camera.

The second dataset is a dataset constructed internally
within the University of Galway, Ireland, known as the
Galway Multimodal Infrastructure Node Dataset (G-MIND).
The dataset contains data captured from a suite of sensors,
including sensors typically used in automotive applications,
for the purpose of sensor benchmarking. A subsection of
the dataset contains 65,000 annotated pre-ISP images with
automotive targets. As such, it is a suitable second dataset for
use in this study on the effect of bypassing the ISP on object
detection.

For each dataset, we obtained three sets of images, each
set having a different amount of image processing carried
out, but containing the same information. The three sets of
images consisted of the raw Bayer data with no processing,
the raw Bayer data with only gamma correction, and the
fully processed RGB images. The gamma-corrected, and
ISP-processed images were obtained by processing the raw
Bayer images using Fast-openISP, an open-source software
implementation of a conventional ISP.We examine the effects
of training and evaluate the performance of CNN-based
object detection on each of these different image sets
containing the same real-world information, with varying
levels of image processing. Both YOLOv5 and Faster R-CNN
use OpenCV’s imread() to upscale grayscale/single-channel
images to three-channel images. As stated previously,
Buckler et al. claim in [10] that the demosaic and gamma
correction steps are the most important ISP processes for
computer vision performance, thus we choose our datasets as

such to investigate this for our use case. Figure 4 displays the
visual difference between each set of images. For the gamma-
corrected image set, a gamma correction coefficient of 1

2.2
was applied to each Bayer image, to match the target monitor
gamma in the sRGB color space [21].

B. YOLO: YOU ONLY LOOK ONCE
YOLO (You Only Look Once) is a widely-used Convo-
lutional Neural Network (CNN) for object detection [22],
[23], [24]. The first model YOLOv1, was proposed in
2016 [25], and since then several iterations have led to the
latest —at the time of writing —improved model YOLOv5,
released in 2020 [26]. YOLO is commonly used for its
high performance while maintaining both high training and
detection speed [27].

The YOLOv5 architecture consists of three primary parts,
the backbone, the neck, and the head [28]. The backbone
is responsible for extracting the important features within
an image. YOLOv5 incorporates CSPNets (Cross Stage
Partial Networks) into Darknet as its backbone, known as
CSPDarknet. The neck generates feature grids from the
features extracted by the backbone through the use of a path
aggregation network (PAN). Finally, the head is responsible
for generating output vectors with class probabilities and
bounding boxes for the final detections.

While YOLO architectures provide impressive detection
speeds, early iterations of YOLO struggled with the detection
of small targets within an image [29]. This is because without
detailed grid division there may tend to be several targets
within the same feature grid. YOLOv5 improves on this by
transmitting each batch of training data through a data loader,
capable of image enhancements such as scaling, color space
adjustment, and mosaic enhancement. Moreover, it provides
the YOLOv5 algorithm with high adaptability to different
sizes of images.

C. FASTER R-CNN
Faster R-CNN is a state-of-the-art Region-Based Convolu-
tional Neural Network (R-CNN) for object detection [30].
It consists of two parts: (1) a Region Proposal Network (RPN)
for generating a list of Regions of Interest (RoIs), in which
each region is likely to contain objects; and (2) it employs
a Fast R-CNN network [31] for classifying an image into
objects, including the background as an object, and refining
the boundaries of the region proposals in (1).

The significance of traditional R-CNN networks is that
they bring the high accuracy of CNNs when it comes
to classification tasks to the problem of object detection.
Traditionally, the primary drawback with R-CNN networks
was the computational load [32]. The R-CNN requires a pass
through the network layers for each object proposal in order
to extract features. To reduce this computational burden,
Faster R-CNN uses the RPN, a fully convolutional network,
to generate object proposals to be fed into the second module.
The second module, Fast R-CNN, is responsible for refining
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FIGURE 4. Figure showing three images, each in different formats - Bayer, Bayer with gamma correction, and RGB. The image on the left is a Bayer
image with no ISP processing. The center image is a Bayer image with only gamma correction, zoomed in to showcase the Bayer filter pattern. The
image on the right is an ISP-processed RGB image. This particular image is taken from the PASCALRAW dataset.

FIGURE 5. Class breakdown of the PASCALRAW dataset training set.

the proposals. The key technique is the sharing of the same
convolutional layers for the RPN and Fast R-CNN detector
up to their own fully connected layers. Now the network is
only required to pass through the layers once to produce and
refine object proposals.

D. MODEL TRAINING
The class balance for training for both the PASCALRAW, and
the G-MIND datasets are shown in Figure 5, and Figure 6,
respectively. The primary variable in this research when
comparing model performance is whether each image has
been processed by an ISP, thus model hyperparameters were
kept as default wherever possible. Each model was trained

FIGURE 6. Class breakdown of the G-MIND dataset training set.

with default hyperparameters for 50 epochs, the point where
the Mean Average Precision (mAP) reaches a plateau, for a
fair comparison. It is worth noting that by tuning individual
hyperparameters, higher performance may potentially be
achieved for a specific image set, however, that is not the
purpose of this research.

Figure 7 shows the training Precision-Recall curves for the
PASCALRAW dataset, while Figure 8 shows the training
Precision-Recall curve for the G-MIND dataset.

E. EVALUATION METRICS
The performance of each model was evaluated using
mAP@0.5, and mAP@0.5:0.95, using the definitions in [33].
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FIGURE 7. Precision-Recall curve for the PASCALRAW dataset, for the
YOLO object detection model.

FIGURE 8. Precision-Recall curve for the G-MIND dataset, for the YOLO
object detection model.

To determine whether each detection is a true positive or
a false positive, most object detection challenges use both
a confidence score and the Intersection of the bounding
boxes over the Union of the bounding boxes (IoU) [34].
A confidence score ranging between 0 and 1 is provided
by the model per detection, representing how likely the
classification of an object is to be correct. Precision is defined
as the number of true positives divided by the sum of true
positives and false positives. In this case, the denominator is
equal to the total number of detections made by the model,
whether correct or not. Similarly, Recall is defined as the
number of true positives divided by the sum of true positives
and false negatives. This denominator is equal to the number
of ground truth instances.

Mean Average Precision (mAP) is calculated by observing
the graph of precision versus recall for each class. Average
Precision (AP) is defined as the precision averaged across
all unique recall levels, or in essence, the area under the P-R
curve for a single class. mAP is defined as the mean of AP
across all classes, and a high mAP is a good indicator of
how well a model performs when compared to other models
applied to the same test dataset.

The value mAP@0.5 refers to a mean Average
Precision calculated using an IoU threshold of 0.5.
As this value increases, the model is required to make
a prediction closer to the ground truth. Furthermore,
mAP@0.5:0.95 is a stricter metric that tests the model’s
performance at different IoU threshold increments (in
this case, from 0.5 to 0.95 in steps of 0.05), and takes
the average at each increment. This inherently lends
a greater amount of importance to localization when
compared with mAP@0.5. In this study, we use mAP and
mAP0.5:0.95 as our key performance indicators for model
accuracy.

V. MODEL PERFORMANCE COMPARISON
Table 2 presents object detection results where training and
evaluation are both performed on the same image type for
the PASCALRAW dataset. For example, row 2 presents the
results for a YOLOv5 model trained on an RGB training
set, and subsequently evaluated on a separate RGB test
set. Similarly, row 4 presents the results for a YOLOv5
model trained on a Bayer image training set, with only
gamma correction applied, and subsequently evaluated using
a Bayer image test set, with only gamma correction applied.
When observing the average precision (AP) of these models
when applying an IoU of 0.5, the performance of the
model varies only slightly by ∼1-2%. The variance in
performance does increase by a further ∼1% when using a
tighter IoU restriction taking the average at intervals between
0.5 and 0.95.

Table 3 shows the same results for the G-MIND dataset.
Similar to the PASCALRAW dataset, a negligible drop in
mAP0.5 can be observed across all three image types. The
Table does, however, show a decrease in mAP0.5 performance
when compared against the PASCALRAW set. This can be
attributed to G-MIND being a more difficult image set, in that
it contains much smaller objects. The localization ability for
each model is higher when trained on the G-MIND dataset,
particularly for the Faster R-CNN model, as observed by the
difference between the mAP0.5 and the mAP0.5:0.95 for each.
This is due to the G-MIND annotations being much tighter
around the objects, leaving less negative space for the models
to learn.

Table 4 presents object detection results for the PASCAL-
RAW dataset whereby the images are trained on different
image types and subsequently evaluated on an image set
consisting of raw Bayer images with no ISP processing.
Table 5 shows the same results for the G-MIND dataset.
As one might expect, the performance is worse in instances
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FIGURE 9. Figure showing three corresponding detections from each image type from the PASCALRAW dataset using YOLO object detection. (a) Bayer
images with no ISP processing; (b) Bayer images with only gamma correction; (c) Full ISP processed RGB images.

TABLE 2. PASCALRAW: Object detection results from models trained on
the listed training set, and subsequently evaluated using a test set
consisting of images in the same listed format; GC = Gamma Correction.

TABLE 3. G-MIND: Object detection results from models trained on the
listed training set, and subsequently evaluated using a test set consisting
of images in the same listed format; GC = Gamma Correction.

where the training set is different from the evaluation set.
The drop in performance is only slight, particularly for the
easier PASCALRAW, potentially indicating how an existing

TABLE 4. PASCALRAW: Object detection results using models trained
with the listed training set, and subsequently evaluated using a test set
consisting of pre-ISP Bayer images; GC = Gamma Correction.

TABLE 5. G-MIND: Object detection results using models trained with the
listed training set, and subsequently evaluated using a test set consisting
of pre-ISP Bayer images; GC = Gamma Correction.

modelmay perform if applied directly to pre-ISP images, thus
eliminating the need to retrain existing models.
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FIGURE 10. Figure showing three corresponding detections from each image type from the G-MIND dataset
using both the Faster R-CNN and YOLOv5 object detection models. Top: Bayer images with no ISP
processing; Middle: Bayer images with only gamma correction; Bottom: Full ISP processed RGB images.

Figure 9 displays sample detections for each image set
from the PASCALRAW dataset. In these samples, YOLOv5
was used for detection. Figure 9(a) contains detections for
raw Bayer images with no ISP processing. Figure 9(b)
contains detections for Bayer images with only gamma
correction, thus the images are slightly brighter than those
of 9(a). Figure 9(c) contains full ISP-processed RGB images.
Note that despite the images in Figure 9(a) appearing darker,
and one might say less pleasing to the human eye than
the other image sets, the performance is consistent across
all three. Similarly, Figure 10 displays sample detections
from the G-MIND dataset, using both YOLOv5 and Faster
R-CNN for detection. For the sake of brevity, we do not
include sample images for every permutation of image set and
detection model.

VI. SYSTEM LEVEL PERFORMANCE BENEFITS
A. POWER CONSUMPTION
Power costs in a typical camera can be divided into two
different components: the camera sensor and the signal
processor. A study by Likamwa et al. looks at the energy
consumption of a number of camera sensors across dif-
ferent industry use cases [35]. Typical usage ranged from
137.1 mW for a security camera, to 338.6 mW for a mobile
camera, with an automotive camera listed as 189.5 mW.
More modern commercial sensors range from 261 mW
to 743 mW [36], [37].

Image signal processing is generally implemented in a
dedicated RISC (Reduced Instruction Set Computer) or

hardware-accelerated block. However, an ISP may also be
implemented in software, or in a hybrid software/RISC
architecture. It is therefore difficult to provide a single exact
number for power saving, as it will vary from system to
system. Furthermore, the power usage may vary depending
on the number of cameras and other factors such as desired
resolution and frame rate. For these reasons, we do not
attempt to provide a single exact number for the savings made
through our approach, only a theoretical overview.

OmniVision’s OAX4010 ISP has a power consumption of
522 mWwhen measured with two OX02A10 camera sensors
at 1824× 940@ 60 fps [38]. Each OX02A10 sensor requires
an active power consumption of 450 mW [39]. Hence,
eliminating the ISP in this instance provides a theoretical
power saving of ∼35%.

B. COMPUTATION TIME
Computation speed is critical for safety in autonomous vehi-
cle applications. For most use cases, the latency introduced
by an ISP would not be much of an issue, but for time-critical
uses such as the automotive industry, every millisecond
is crucial. The amount of latency introduced by an ISP
is usually not readily available outside of industry. GEO
SemiConductor’s GW4100 is listed as having a low latency
mode, with the latency typically being 1/6th of a frame.
Arm writes that it should take no longer than 150 ms to
go from an image sensor to the image being processed to
the image being displayed on-screen [40]. Furthermore, Arm
also claims that in a machine vision application, a vehicle
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should not travel more than 250mm between a camera image
being acquired and the image being presented to the decision-
making process. Anything longer means the machine vision
system may be too slow to react in driving situations where
accurate and timely decisions are critical. In [40], Arm do
not provide any data to justify these statements on latency
requirements. However, based on the use cases described,
these time constraints appear reasonable. To put it into
context, a vehicle traveling at 50 km per hour covers 250 mm
in 18 ms, with 50 km/h being a typical speed for an urban
driving scenario.

VII. CONCLUSION
In this paper, we explore the potential benefits of bypassing an
Image Signal Processor (ISP) when training a Convolutional
Neural Network (CNN) for object detection. Typical ISPs
are designed to produce an image deemed suitable for
human viewing, with the optimal parameters for computer
vision often being mutually antagonistic. We train two CNN-
based object detection algorithms on two different pre-
ISP datasets. A negligible drop in overall object detection
performance can be observed when evaluating using the same
datasets, with similar performance being exhibited for the two
datasets considered. This indicates a potential for computer
vision algorithms such as object detection to operate without
the need for an ISP block, without suffering substantial
performance loss. The absence of an image processor in the
middle of the system also allows for the image sensor to
interface directly with the processing system, allowing for
computer vision to be implemented and contained entirely in
the camera if desired.

We discuss the savings to be made in terms of computation
time and power consumption. Furthermore, when evaluating
the performance of a model pre-trained on ISP-processed
RGB images, the model performs at a similar level when
evaluated with a test set containing Bayer images, as with a
test set containing post-ISP images. This allows for the use
of already existing models to be employed on pre-ISP Bayer
images.

While this paper has explored the impact and benefits
of bypassing the ISP in computer vision applications with
a preliminary investigation in object detection, the research
presented in this paper will be expanded in future work,
by observing the effects of bypassing an ISP on other
computer vision applications such as semantic segmentation,
and traffic sign recognition, as well as more challenging
conditions such as applications in low light or adverse
weather.
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