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ABSTRACT The work considers a qubit interacting off-resonantly a nonlinear Kerr-like quantum-harmonic-
oscillator cavity field through nonlinear intensity-dependent and one-photon interactions. The analytical
solution for the master equation is obtained when the qubit starts with an excited pure state while the
harmonic-oscillator field starts with a coherent state. The dynamics of the phase space Husimi-distribution
and its Wehrl-Husimi entropy entanglement/mixedness is explored under the effects of the atom-field
detuning, Kerr-like nonlinearity as well as atomic spontaneous-emission dissipation. For resonant case,
the Wehrl-Husimi entropy qubit-oscillator entanglement and atomic mixedness are generated (due to the
unitary nonlinear intensity-dependent evolution) with a regular oscillatory behavior. For off-resonant case,
the quantum coherence is generated partially with a high-frequency irregular oscillatory behavior. The Kerr-
like nonlinearity and the atomic spontaneous dissipation lead to enhancing the generated atomic mixedness
Wehrl-Husimi entropy enhances and stabilizing the atomic state in a maximally mixed state. The phase space
Husimi-distribution information dynamics of the corresponding the generated atomic mixed states confirms
the vital link between the formed interference Husimi-distributions and the generated atomic Wehrl-Husimi
entropymixedness. It is found that the dynamics of theHusimi-distribution information and itsWehrl-Husimi
entropy is highly sensitive to the qubit-cavity detuning, Kerr-like nonlinearity as well as the dissipation.

INDEX TERMS Master equation, Husimi-distribution, spontaneous decay.

I. INTRODUCTION
The interactions of qubits (two-level atomic systems) with
field-cavity modes have potential applications in quan-
tum optics and quantum information [1]. One of the most
common resources for generating quantum qubits-effects
(as coherence, correlation, entanglement, mixedness, non-
classicality, and . . . ) is the closed and open qubit-cavity
interactions [2], [3]. More investigations demonstrate the
quantum effects in several physical two-qubit systems [4],
[5], [6]. Therefore, the qubit-cavity interactions have been
realized experimentally in different real systems as trapped
ions [7], [8], quantum dots [9], [10], and superconducting
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circuts [11], [12]. Qubit-cavity interactions were described by
Jaynes-Cummings (JC) model [13], which is generalized to
including nonlinear interactions (of the intensity-dependent
coupling [14], two-photon transitions, Kerr-like medium
[15]), multi-level atomic system [16], atomic motion [17],
Stark-shift [18], driven JCmodel [19], and multi-qubit-cavity
Tavis-Cummings model [20]. Kerr-like nonlinearity can be
realized with superconducting quantum interference device
[21] and with pertubing potential barrier [22]. Quantum
coherence can be enhanced by considering the cavity-field
Kerr nonlinearity [23], [24]. Recently, the exploring cavity-
atom state dynamics under the Kerr nonlinearity effects [25]
in the presence of dissipation is limited [26].

By using the JC models, the qubit-cavity system and its
sub-system dynamics are explored by different equations of
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motion. For closed interactions, Schrödinger equation and
intrinsic-decoherence master equation [27]. While for open
interactions, that are other master equations [28], [29], which
is used to investigate the effects of dissipation (which is
resulted from cavity damping and qubit spontaneous decay,
and the energy is not conserved) and phase decoherence
(which is resulted from field and qubit phase damping, and
the energy is conserved). The effects of surrounding environ-
ments (dissipation and decoherence) on the quantum effect
(as coherence and entanglement) is a central topic of quantum
optics and quantum information [30], [31], [32]. The dissipa-
tion and decoherence induced by surrounding environments
lead to the degradation of quantum correlation [33] and the
growth of the mixedness [34], [35], [36].

Phase-space quantum effects (as non-classicality, mixed-
ness, and entanglement) based on quasi-probability Husimi
and Wigner distributions [37], [38] are important tools to
quantum information [39]. The positivity and negativity of
the Wigner distribution are good indicators to explore the
non-classicality and entanglement [40], [41], [42], [43], [44].
Atomic Husimi-distribution is used to explore phase-space
quantum effects (by using Wehrl-Husimi entropy [45]),
which are useful quantum information resources [46].

The motivation behind this publication is that (1) previous
investigations of the Husimi-distribution information and
its Wehrl-Husimi entropy have been explored exclusively
in closed systems. (2) The investigations of the Husimi-
distribution information and entanglement/mixedness’s
Wehrl-Husimi entropy for open systems remain limited,
particularly with the Kerr nonlinearity and the off-resonant
interaction effects. Therefore, the main objective of this paper
is to explore the dynamics of the atomic Husimi-distribution
information, entanglement, and mixedness’s Wehrl-Husimi
entropy, which are induced by the off-resonant interaction of
a dissipative qubit (by considering a spontaneous-emission
dissipation) with a nonlinear Kerr-like quantum-harmonic-
oscillator cavity through nonlinear intensity-dependent and
one-photon interactions.

The paper is arranged as follows: Section II is devoted to
introduce the dissipative qubit-oscillator model and its ana-
lytical solution. In section III, we offer the Husimi-function
distribution and its Wehrl entropy, then the dynamics of the
phase space Husimi-distribution information loss as well as
Wehrl-Husimi entropy entanglement and mixedness. Finally,
our conclusion is presented in section IV.

II. DISSIPATIVE QUBIT-OSCILLATOR MODEL
To explore the phase space quasi-probability information of a
qubit interacting nonlinearity with a harmonic-oscillator field
mode under atomic spontaneous-emission damping, we con-
sider the generalized JC model that describes a qubit, having
the two-level excited |1⟩ and the ground states |0⟩ as well as
the frequencyω0, coupling off-resonantly to a nonlinear Kerr-
like quantum-harmonic-oscillator cavity, having the creation
â and annihilation â† operators as well as the frequency ω,
through the intensity-dependent interaction. If we consider

the rotating wave approximation and the dissipation sources
(which are results due to interacting the qubit-oscillator with
a harmonic oscillator reservoir) acting only on the qubit [47],
[48], then by using the master equation, the time-dependent
qubit-mode density matrix R(t) evolves as

∂

∂t
R̂(t) = −i[Ĥ , R̂] + κA([|0⟩⟨1|, R̂|1⟩⟨0|]

+ [|0⟩⟨1|R̂, |1⟩⟨0|]), (1)

where κA is atomic spontaneous-emission rate and the non-
linear qubit-mode Hamiltonian Ĥ is given by

Ĥ = ωâ†â+
1
2
ωoσ̂z + χ â†2â2 + λ(â

√
â†â|1⟩⟨0| + h.c, (2)

λ is the qubit-mode coupling, σ̂z represents the population
inversion operator. The qubit-mode detuning is given by:
2D = ωo − ω. χ > 0 is the Kerr-like nonlinearity. i.e.
In the qubit-mode basis states: {|B1⟩ = |1, n⟩, |B2⟩ =

|0, n + 1⟩}, the eigenstates |V±
n ⟩ and eigenvalues V±

n of the
nonlinear qubit-mode Hamiltonian (2) are respectively given
by

|V±
n ⟩ = X±

n |B1⟩ ± X∓
n |B2⟩, ∀n ≥ 0 (3)

V±
n = ω(n+

1
2
) +

1
2
(Mn +Mn+1) ± µn. (4)

With

µn =

√
(D+Mn −Mn+1)2 + λ2(n2 + 2n+ 1) (5)

X±
n =

1
√
2

√
1 ±

D+Mn −Mn+1

µn
, (6)

and the Kerr-like nonlinearity coupling is controlled by the
function: Mn = n2χ − nχ . To find an analytical solution for
Eq.(1), we work in a high−Q cavity limit (κA ≪ λ) and the
eigen-states representation [49], i.e. all the atomic operators
appearing in Eq.(1) will be represented in terms of the eigen-
states |V±

n ⟩, for example,

|1⟩⟨0| =

∞∑
n=0

{X+
n X

−

n−1|V
+
n ⟩⟨V+

n−1| − X+
n X

+

n−1|V
+
n ⟩⟨V−

n−1|

+ X−
n X

−

n−k |V
−
n ⟩⟨V+

n−1| − X−
n X

+

n−1|V
−
n ⟩⟨V−

n−1|⟩,

|1⟩⟨1| =

∞∑
n=0

X+2
n |V+

n ⟩⟨V+
n | + X−2

n |V−
n ⟩⟨V−

n |

+ X+
n X

−
n (|V+

n ⟩⟨V−
n | + |V−

n ⟩⟨V+
n |). (7)

Then the following canonical atom-field-Hamiltonian trans-
form is used,

∂ Ŝ(t)
∂t

= eiĤ t
∂R̂(t)
∂t

e−iĤ t + i[Ĥ ,R(t)], (8)
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According to the canonical atom-field-Hamiltonian trans-
form of Eq.(8), the master equation (1) becomes

∂ Ŝ(t)
∂t

= 2κA
∞∑
n=k

(X+2
n X−2

n−kY
+
nn + X−2

n X−2
n−1Y

−
nn)M̂

+

n−1

+ (X+2
n X+2

n−1Y
+
nn + X−2

n X+2
n−1Y

−
nn)M̂

−

n−1

− κAγ

∞∑
n=0

X+2
n (M̂+

n S + SM̂+
n )

+ X−2
n (M̂−

n Ŝ + ŜM̂−
n ), (9)

where Y±
nn = ⟨V±

n |S|V±
n ⟩ and M̂±

n = |V±
n ⟩⟨V±

n |.
The atom-mode coherence loss (or generation of atom-

mode mixedness) can be achieved by the interaction of the
system with an environment, which leads to neglecting the
interference between system states, i.e., the disappearance of
the density matrix off-diagonal elements leads to coherence
loss. Therefore, we consider that the atom-mode interaction
starts with an initial pure state,

R̂(0) = R̂A(0) ⊗ R̂F (0) = |1⟩⟨1| ⊗ |α⟩⟨α|, (10)

where the atom starts with the excited state |1⟩ while the
harmonic oscillator starts with a coherent state that has the
coherent intensity |α|

2 and the photon number distribution,

qn = e−
1
2 |α|

2 αn
√
n!

. (11)

This maximally coherent/pure state R̂(0) is considered to
show how the atomic spontaneous-emission damping evolves
its initial purity into a maximal mixedness. In the used eigen-
states-representation method, the initial density operator is
rewritten in terms of the eigen-states |V±

n ⟩ as

R̂(0) = Ŝ(0) =

∑
m,n=0

qmq∗
n[X

+
m |V+

m ⟩ + X−
m |V−

m ⟩]

⊗ [X+
m ⟨V+

m | + X−
m ⟨V−

m |], (12)

Therefore, by using the canonical transform of Eq.(8) and the
pervious initial states, the time dependent atom-mode density
matrix of Eq.(1) (in the qubit-mode-states basis: {|Bi⟩}) is
given by

R̂(t) =

∑
m,n

∑
ij=1,2

Rij(t)|Bi⟩⟨Bj|. (13)

The diagonal elements of the density matrix R̂(t) are given by

R11(22)(t) =

{
Umn, ∀ m ̸= n;
Zm, ∀ m = n.

(14)

with

Umn = X±
m X

±
n Y

++

l,j + X∓
m X

∓
n Y

−−
m,n ± X∓

m X
±
n Y

−+
m,n

+ X±
m X

∓

j Y
+−
m,n ,

Zm = X±2
m K±

m + X∓2
m K∓

m ± 2qmq∗
mX

±2
m X∓2

m cos 2µm,

where the coefficients Y ϵκ
m,n(t)(ϵ, ε = +, −) and K±

m (t) are
given by

Y ϵε
m,n(t) = qmq∗

nX
ϵ
mX

ε
n e

−i(V ϵ
m−V ε

n )t e−κA[(X ϵ
m)

2
+(Xε

n )
2]t ,

and

K±
m (t) = e−2X±2

m κAt {K±
m (0)

+2κA

∫ t

0
e2X

±2
m κAt [X±2

m+1X
∓2
m K±

m+1(t)

+X∓2
m+1X

∓2
m K∓

m+1(t)]dt}. (15)

To produce the integral term,we take the casewhere the atom-
mode state has at most N photons only i.e K±

N+1(t) = 0, and
in the end we take N → ∞ [49].
While the off-diagonal elements of the density matrix R̂(t)

are given by

R12(21)(t) = X±
m X

∓
n Y

++
m,n − X∓

m X
±
n Y

−−
m,n

± X∓
m X

∓
n Y

−+
m,n ∓ X±

l X
±

j Y
+−
m,n , ∀m, n. (16)

To explore the atomic quasi-probabilityHusimi-distribution
information dynamics under the atomic spontaneous-
emission damping, we take the trace of the field-mode
number states, {|k⟩(k = 0, 1, 2, . . . ,∞}, to get the
time-dependent atomic reduced matrix,

R̂A(t) = Trfield{R̂(t)} =

∞∑
k=0

⟨k|R̂(t)|k⟩. (17)

Now, we can investigate the sensitivity of the quasi-
probability Husimi-distribution information and its Wehrl-
Husimi entropy coherence under the atom-field detuning and
the atomic damping for one-photon precess.

III. HUSIMI-FUNCTION DISTRIBUTION AND ITS
WEHRL ENTROPY
In follows, we study the dynamics of the phase space quasi-
probability Husimi-distribution information and its Wehrl-
Husimi entropy coherence induced by the dissipative atomic
reduced density matrix R̂A(t). The atomic Wehrl entropy is
a powerful tool to measure important quantum information
resources [45], [50] (as purity loss/mixedness and atom-
mode entanglement) and also the extraction of a phase space
quantum information. For the phase space of the atomic
coherent states |x, y⟩ determined by the angles x ∈ [0, π],
and y ∈ [0, 2π ] [51],

|x, y⟩ =

k=j∑
k=−j

1
2j
ei(j−k)y sinj x cothk

x
2

√√√√√
 2j
j− k

|j, k⟩.

(18)

with the angular momentum j, the atomic Husimi-distribution
information of the corresponding the atomic generated
time-dependent state RA(t) is defined as [38]

H (x, y, t) =
1
2π

⟨x, y|RA(t)|x, y⟩ =
1
4π

3(t), (19)
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FIGURE 1. Atomic WH-entropy dynamics for different values’s atomic
spontaneous emission decay with the initial coherent intensity N = 16 if
the atom and field resonated D = 0 in (a). (b) shows the atom-field
detuning effect.

where 3(t) = 1+βz cos x+ (βx cos y+βy sin y) sin x. βx , βy,
and βy are expectation values of the atomic Pauli operators
σ̂x , σ̂y, and σ̂z, respectively. The atomic Husimi distribution
is used as a useful measure for the phase space information
loss, where the atomic Husimi distribution information is
dependent of the phase space parameters (x, y).

The atomic Wehrl-Husimi entropy (atomic WH-entropy)
[45] is given by

S(t) = ln(4π ) −

∞∑
n=1

∫ 2π

0

∫ π

0

(3(t) − 1)n3(t)
(4πn!)

sin x dx dy.

(20)

For the initial atomic state |1⟩, the atomic WH-entropy
evolves with respect to the following inequality [52], [53]:

2.3379 ≤ S(t) ≤ ln(4π) ≈ 2.5310. (21)

A. PHASE SPACEWH-ENTROPY DYNAMICS
Fig.(1a) illustrates the atomic WH-entropy dynamics S(t)
for different values’s atomic spontaneous-emission decay
when the harmonic oscillator coherent field state is ini-
tially with a large coherent intensity, N = |α|

2
= 4,

and the field is resonated with the two-level atomic sys-
tem, D = 0. In this case where the atomic spontaneous
emission is absent, the generated phase space atomic mixed-
ness and atom-field entanglement of the WH-entropy, due
to the unitary atom-field interaction, have the same quantum
information resource. The solid curve of Fig.(1a) shows the
ability of the atom-field interactions to generate entanglement

FIGURE 2. Atomic WH-entropy dynamics of the solid curve of Fig.(1) is
plotted under different values’s Kerr-like nonlinearity in (a). In (b), the
detuning effect on the WH-entropy dynamics of Fig.1b is shown with
χ = λ. The combined effect of the Kerr-like nonlinearity and the
spontaneous-emission decay is shown in (c) with a small initial coherent
intensity, N = 2.

between the qubit and the harmonic-oscillator field or to gen-
erate atomic WH-entropy mixedness. The generated atomic
WH-entropy entanglement grows and oscillates, periodically
with regular 2π-period oscillatory behavior. Theoretically,
it is proven that the one-photon Jaynes-Cummings model
with intensity-dependent coupling (for a coherent state) dis-
plays regular quantum phenomena with π -period [54], [55],
[56], [57] and the revivals take place at trev = λt = nπ (n =

0, 1, 2, . . .). The regular dynamics of the WH-entropy is due
to that the coefficients X±

n of the periodical cosine and com-
plex exponential functions in the basic term Y ϵκ

m,n(t) (which
controls the atomic density matrix elements) are constant
(X±

n =
1

√
2
when δ = 0 and χ = 0). The atom-field/

atom are in maximally pure states at tIni = trev = nπ (n =

0, 1, 2, . . .) and are in partially pure states at tPar = λt =
(2n+1)

2 π (n = 0, 1, 2, . . .). Also, the atom-field interaction
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has a high ability to generate maximally entangled/
mixed states at different times: tMax = λt = (n.073)π
and tMax = (n.9263)π, (n = 0, 1, 2, . . .). The atomic
WH-entropy reaches itsmaxima andminima,instantaneously.
Therefore, the time intervals of the generated partial atomic
WH-entropy entanglement/mixedness are extensive.

Dashed, dash-doted, and dot curves of Fig.(1a) show the
effect of the increase of the atomic spontaneous-emission dis-
sipation on the phase space WH-entropy dynamics. Accord-
ing to Eq.(15), the m, n-elements of the density matrix of
Eq.(13) have the atomic spontaneous emission dissipation
term: TmnD = e−κA[(X ϵ

m)
2
+(Xε

n )
2]t . For the case of κA ̸= 0,

the WH-entropy quantities only the phase space mixedness
between the atomic upper |1⟩ and lower |0⟩ states. And the
atomic dissipation term TmnD leads to increasing the regular
π -period-oscillatory amplitudes of the WH-entropy mixed-
ness. For a large value of the atomic spontaneous-emission
dissipation, the WH-entropy minima shifted up to reaches
and stables at its maximum value Smax(t) = ln 4π , which is
time dependent. Therefore, the time intervals of the generated
phase space stationary maximally atomic mixed state are very
large.

Fig.(1b) displays the atomicWH-entropy dynamics S(t) of
the solid curve of Fig.(1a) but for different values’s atom-field
detuning in the absence of the atomic spontaneous-emission
decay with the intensity of the coherent states, |α|

2
= 4.

By comparing the results of the solid curves of Fig.(1a) and
Fig.(1b), we find that, for a small value of the atom-field
detuning, the generated atomic WH-entropy entanglement
and atomic mixedness grow with irregular oscillatory behav-
ior. The atomic entanglement and atomic mixedness enhance
due to increasing atom-field detuning. The atom-oscillator
and the qubit do not return to their initial quantum informa-
tion resources. The dashed and dotted-dashed plots show that
the increase of the atom-field detuning has a high ability to
generating partial entanglement and mixedness with irregular
oscillatory behavior with high fluctuations. Comparing by the
resonant case, we can deduce that the off-resonant case leads
to degrading the amplitudes and increasing the frequency of
the generated irregular entanglement and mixedness oscilla-
tory behavior.

Fig.(2a) shows the atomic WH-entropy dynamics for
different values’s harmonic-oscillator field Kerr-like nonlin-
earity, in the absence of the atomic-spontaneous dissipation
with the initial intensity coherent N = 16 when the atom
and the harmonic-oscillator field is resonated. By comparing
the solid curves of the Fig.(2a) and Fig.(2b), we find that, for
a small value of the harmonic-oscillator field Kerr-like non-
linearity, the generated atomic WH-entropy entanglement/
mixedness (due to the unitary atom-oscillator interac-
tion) enhances. Most of the partial entanglement/mixedness
intervals of Fig.(2a) are replaced by stationary maxi-
mal entanglement/mixedness intervals. In this case, the
atom-oscillator and two-level atomic system have stablemax-
imally atom-oscillator entanglement and qubit mixed states,
which can be used to building quantum information and

computation [58], [59] and quantum-channel metrology [60].
The dashed and dotted-dashed curves show that the increase
of the harmonic-oscillator fieldKerr-like nonlinearity leads to
decreasing the stationary maximal entanglement and mixed-
ness amplitudes. This contributes to the appearance of partial
stable atom-oscillator entanglement and atomic mixedness.

Fig.(2b) illustrates the atom-oscillator detuning effectD >

0 on the WH-entropy dynamics of Fig.(1b) in the presence
of the cavity Kerr-like nonlinearity χ = 0.5λ. After adding
the cavity Kerr-like nonlinearity, we find the Kerr-like non-
linearity leads to decreasing the amplitudes and increasing
the frequency of the generated irregular atomic WH-entropy
entanglement/mixedness oscillatory behavior. In addition,
the partial stable atom-oscillator entanglement and atomic
mixedness intervals reduce by increasing the atom-oscillator
detuning. This means that the combined effect of the cavity
Kerr-like nonlinearity and the atom-oscillator detuning leads
to notable changes in the WH-entropy entanglement and
atomic mixedness dynamics. From Fig.(1b) and Fig.(2b) of
the cases of δ ̸= 0 and χ ̸= 0, we find that the WH-entropy
has irregular dynamics, this is due to that the coefficients
of the periodical cosine and complex exponential functions,
in the basic term Y ϵκ

m,n(t) of the atomic density matrix ele-

ments, are n-dependent (X±
n =

1
√
2

√
1 ±

D+Mn−Mn+1
µn

).

Fig.(2c) shows the atomic WH-entropy dynamics under
the combined effects of the cavity Kerr-like nonlinearity and
the atomic spontaneous-emission decay for a small initial
coherent intensity. The cases of (N , κA, χ) = (2, 0.08, 0)λ
(solid curve), (N , κA, χ) = (2, 0.08, 0.5)λ (dashed plot
curve), (N , κA, χ) = (2, 0.08, 1)λ (dotted-dashed curve) are
considered. From the solid-curve case, we observe that the
WH-entropy atomic mixedness dynamics is susceptible to
the atomic spontaneous-emission decay effect. The dashed
dotted-dashed curves confirm that the cavity Kerr-like non-
linearity increases the atomic spontaneous-emission effect
(here, the cavity Kerr-like nonlinearity is work as an addi-
tional dissipation resource to increase the coherence loss).
The generated stable atomic mixedness is enhanced. The
numerical results of the Fig.(1) and Fig.(2) show that the
generated lower and upper bounds of the atomicWH-entropy
entanglement/mixedness are in the line of the theoretical
inequality of Eq.(21) (2.3379 ≤ S(t) ≤ ln(4π ) ≈ 2.5310).

B. PHASE SPACE HUSIMI-DISTRIBUTION
INFORMATION LOSS
Atomic phase space Husimi distribution information
loss/erasing means the atomic Husimi distribution is inde-
pendent of the phase space parameters (x, y). Each atomic
pure/mixed state is described by only one Husimi distribu-
tion. In Fig.(3), at λt = nπ , the atomic Husimi distribution
H (x, y, nπ ) is plotted for the phase space x ∈ [0, 2π ] and y ∈

[0, 2π ] angles and the initial intensity-coherent harmonic-
oscillator field N = 16. The nπ -atomic Husimi distributions
have the same distribution of the initial atomic state ρ̂A(0) =

|1⟩⟨1|, which is given by: H (x, y) =
1
4π 1 + cos x that
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FIGURE 3. Atomic Husimi-function distribution H(x, y ) is depicted at
different times: tIni = λt = nπ, (n = 0, 1, 2, . . .) in (a), tMax = (n.9263)π in
(b), and tPar =

(2n+1)
2 π with n = 2 in (c) for the initial intensity coherent

field N = 16 and without the atomic spontaneous emission decay κA = 0.

depends only on the x-axis and it is y-independent. Fig.(3a)
shows that the nπ -atomic Husimi distribution information
is only distributed with a regular oscillatory behavior with
respect to the x-axis with 2π-period oscillatory surface. The
maxima of the nπ -atomic HD, Hmax =

1
2π ≃ 0.16, are

at x = 2nπ, (n = 1, 2, . . .) whereas the nπ -atomic HD
minima, Hmin = 0, are at x = (2n + 1)π , (n = 0, 1, 2, . . .).
To see the dynamics of the atomic Husimi-function (H-F)
distribution information H (x, y) = H (x, y, t), the atomic
H-F will be depicted at different times. The choice of these
times depends on atomic WH-entropy dynamics of Fig.(1).
From the atomicWH-entropymixedness dynamics of Fig.(1),
we find that the two-level atomic system is in maximally
pure states at tIni = nπ (n = 0, 1, 2, . . .), in partially pure
states at tPar =

1
2π (2n + 1)(n = 0, 1, 2, . . .), and are in

maximally atomic mixed states at tMax = (n.073)π and
tMax = (n.9263)π, (n = 0, 1, 2, . . .).

From Fig.(3b), we find that the maxima and minima of
atomic H-F distribution of the corresponding the generated
maximally atomic mixed state at tMax = (n.9263) (forD = 0,
χ = 0, and κA = 0) are squeezed to form the constant atomic

FIGURE 4. Husimi-function distribution of the generated partially atomic
pure state at the time of tPar =

(2n+1)
2 π of Fig.(3c) is depicted under the

effects of the atom-field detuning D = 10λ in (a), the cavity Kerr-like
nonlinearity χ = 0.5λ in (b) as well as the atomic spontanous-emission
dissipation κA = 0.4λ in (c).

H-F distributionHconst ≃
1
4π that is (x, y)-independent. It has

the same shape of a two-level atomic state described by a
statistically mixed state: 1

2 (|1⟩⟨1| + |0⟩⟨0|).
In Fig.(3c), the atomic H-F distribution of the generated

partially atomic pure state at the time of tPar =
(2n+1)

2 π

with n = 2 is depicted for D = 0, χ = 0, and κA = 0.
Due to the unitary evolution, the initial pure atomic state
transform to be another partially mixed atomic state at the
time of tPar =

(2n+1)
2 π , which is described by a superposition

of the atomic state |1A⟩ and |0A⟩. At these times of tPar =
(2n+1)

2 π , the atomic H-F distribution of the corresponding the
time of tPar has regular oscillatory distribution. This regular
oscillatory distribution has peaks (at (x, y) = (0.5, 0.5)π and
(x, y) = (0.5, 1)π ) and bottoms (at (x, y) = (1, 0.5)π and
(x, y) = (0.5, 1)π ), which are up and down the constant
Husimi distribution Hconst . The peak and bottom appear-
ance is an indicator to the interference between |1A⟩⟨1A| and
|0A⟩⟨0A| atomic states.
Fig.(4) shows H-F distribution dynamics of the generated

partially atomic pure state at the time of tPar =
(2n+1)

2 π

of Fig.(3c) under the effects of the atom-field detuning

VOLUME 11, 2023 43291



A.-B. A. Mohamed et al.: Qubit Quasi-Probability Coherence Induced by a Nonlinear Coherent Cavity

D = 10λ in (a), the cavity Kerr-like nonlinearity χ =

0.5λ in (b), and the atomic spontaneous-emission dissipation
κA = 0.4λ in (c). Due to that the amplitudes of the atomic
WH-entropy mixedness of the case where the atom-field
detuning D = 10λ is smaller than that of the resonant
case (see Fig.(1a)), the generated atomic H-F distribution is
formed to be similar to the nπ -atomic Husimi distributions,
but their minima (which is at x = π ) are shifted up. see
Fig.(4a). From Fig.(4b), we find that the Kerr-like nonlin-
earity and the spontaneous-emission dissipation effects lead
to that the generated atomic H-F distribution that formed to
be similar to the constant atomic H-F distribution Hconst ≃
1
4π . The atomic generated H-F distributions under the atom-
field detuning, the Kerr-like nonlinearity, and the atomic
spontaneous-emission dissipation effects are agreed with the
generated atomicWH-entropy mixedness. Having the atomic
H-F distribution H (x, y) the form of Hconst ≃

1
4π (that no

have peaks and bottoms) is due to that the expectation values
βx , βy, and βy are vanished by increasing the dissipation rate
κA in the atomic spontaneous emission dissipation term that
controls the atomic density matrix elements.

IV. CONCLUSION
This paper considers a qubit interacting nonlinearity
with a harmonic-oscillator field mode. The qubit is
coupled off-resonantly to a nonlinear Kerr-like quantum-
harmonic oscillator cavity through intensity-dependent inter-
action. A particular solution for the considered master
motion equation, which is considered only the atomic
spontaneous-emission decay effect, is obtained when the
qubit starts with an excited pure state while the harmonic
oscillator starts with a coherent state. The time evolu-
tions of the Husimi-distribution information, the phase
space WH-entropy entanglement, and atomic mixedness are
explored under the effects of the unitary nonlinear atom-
oscillator interaction, atom-field detuning, Kerr-like nonlin-
earity as well as the atomic spontaneous-emission dissipation.
If the atomic spontaneous-emission dissipation is absent,
the regular oscillatory behavior of the WH-entropy is used
to investigate the generated qubit-oscillator entanglement
and the atomic mixedness dynamics. While for the off-
resonant case, the entanglement and the atomic mixedness
are generated with a high-frequency irregular oscillatory
behavior. With the Kerr-like nonlinearity, the generated
atomic WH-entropy entanglement/mixedness enhances and
the stationary maximal and partial entanglement/mixedness
intervals appear. The atomic spontaneous emission dissipa-
tion leads to enhancing the generated WH-entropy mixed-
ness. The cavity Kerr-like nonlinearity affects as an additional
dissipation resource and enhances the generated mixedness
and its stability. The phase space Husimi-distribution infor-
mation dynamics confirms the link between the formed
Husimi-distributions and the atomic WH-entropy mixedness.
The generated qubit quasi-probability coherence and sta-
tionary maximally atomic mixed state have several potential
applications as quantum information resources. Where, the

generated phase space stationary maximally mixed state is
used to realize quantum computation and quantum-channel
metrology.
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and W. Leoński, ‘‘Enhancement of the entanglement generation via ran-
domly perturbed series of external pulses in a nonlinear Bose–Hubbard
dimer,’’ Nonlinear Dyn., vol. 97, no. 2, pp. 1619–1633, Jul. 2019.

[6] A.-B.-A. Mohamed and N. Metwally, ‘‘Quantifying the non-classical cor-
relation of a two-atom system nonlinearly interacting with a coherent cav-
ity: Local quantum Fisher information and Bures distance entanglement,’’
Nonlinear Dyn., vol. 104, no. 3, pp. 2573–2582, May 2021.

[7] R. Blatt and D. Wineland, ‘‘Entangled states of trapped atomic ions,’’
Nature, vol. 453, no. 7198, pp. 1008–1015, Jun. 2008.

[8] A.-B.-A. Mohamed, H. A. Hessian, and A.-S.-F. Obada, ‘‘Nonclassical
effects in a nonlinear two trapped-particles system under intrinsic deco-
herence,’’ Chaos, Solitons Fractals, vol. 146, May 2021, Art. no. 110857.

[9] H. Haffner, C. Roos, and R. Blatt, ‘‘Quantum computing with trapped
ions,’’ Phys. Rep., vol. 469, no. 4, pp. 155–203, Dec. 2008.

[10] E. A. Sete and H. Eleuch, ‘‘Interaction of a quantum well with squeezed
light: Quantum-statistical properties,’’ Phys. Rev. A, Gen. Phys., vol. 82,
no. 4, Oct. 2010, Art. no. 043810.

[11] A. D. Armour, M. P. Blencowe, and K. C. Schwab, ‘‘Quantum dynamics
of a cooper-pair box coupled to a micromechanical resonator,’’ Phys. Rev.
Lett., vol. 88, Jan. 2002, Art. no. 148301.

[12] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer,
S. Kumar, S. M. Girvin, and R. J. Schoelkopf, ‘‘Strong coupling of a single
photon to a superconducting qubit using circuit quantum electrodynam-
ics,’’ Nature, vol. 431, no. 7005, pp. 162–167, Sep. 2004.

[13] E. T. Jaynes and F. W. Cummings, ‘‘Comparison of quantum and semiclas-
sical radiation theories with application to the beam maser,’’ Proc. IEEE,
vol. 51, no. 1, pp. 89–109, Jan. 1963.

[14] B. Buck and C. V. Sukumar, ‘‘Exactly soluble model of atom-phonon
coupling showing periodic decay and revival,’’ Phys. Lett. A, vol. 81,
nos. 2–3, pp. 132–135, Jan. 1981.

[15] G. S. Agarwal and R. R. Puri, ‘‘Collapse and revival phenomenon in the
evolution of a resonant field in a Kerr-like medium,’’ Phys. Rev. A, Gen.
Phys., vol. 39, no. 6, pp. 2969–2977, Mar. 1989.

[16] H. Yoo, ‘‘Dynamical theory of an atom with two or three levels interacting
with quantized cavity fields,’’ Phys. Rep., vol. 118, no. 5, pp. 239–337,
Feb. 1985.

[17] R. R. Schlicher, ‘‘Jaynes–Cummings model with atomic motion,’’ Opt.
Commun., vol. 70, no. 2, pp. 97–102, Feb. 1989.

43292 VOLUME 11, 2023



A.-B. A. Mohamed et al.: Qubit Quasi-Probability Coherence Induced by a Nonlinear Coherent Cavity

[18] R. R. Puri and R. K. Bullough, ‘‘Quantum electrodynamics of an atom
making two-photon transitions in an ideal cavity,’’ J. Opt. Soc. Amer. B,
Opt. Phys., vol. 5, no. 10, p. 2021, Oct. 1988.

[19] S. M. Dutra, P. L. Knight, and H. Moya-Cessa, ‘‘Large-scale fluctuations
in the driven Jaynes–Cummings model,’’ Phys. Rev. A, Gen. Phys., vol. 49,
no. 3, pp. 1993–1998, Mar. 1994.

[20] M. Tavis and F. W. Cummings, ‘‘Exact solution for an
N -molecule—Radiation-field Hamiltonian,’’ Phys. Rev., vol. 170,
no. 2, pp. 379–384, Jun. 1968.

[21] X. Wang, A. Miranowicz, and F. Nori, ‘‘Ideal quantum nondemolition
readout of a flux qubit without Purcell limitations,’’ Phys. Rev. Appl.,
vol. 12, no. 6, Dec. 2019, Art. no. 064037.

[22] F. S. Passos and A. R. C. Buarque, ‘‘Nonlinear flip-flop quantum walks
through potential barriers,’’ Phys. Rev. A, Gen. Phys., vol. 106, no. 6,
Dec. 2022, Art. no. 062407.

[23] B. Bandyopadhyay and T. Banerjee, ‘‘Kerr nonlinearity hinders symmetry-
breaking states of coupled quantum oscillators,’’ Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 106, no. 2, Aug. 2022,
Art. no. 024216.

[24] Z.-B. Yang, J.-S. Liu, H. Jin, Q.-H. Zhu, A.-D. Zhu, H.-Y. Liu, Y. Ming,
and R.-C. Yang, ‘‘Entanglement enhanced by Kerr nonlinearity in a cavity-
optomagnonics system,’’ Opt. Exp., vol. 28, no. 21, p. 31862, Oct. 2020.

[25] M. Ibrahim, S. J. Anwar, M. Ramzan, and M. K. Khan, ‘‘Entanglement
dynamics of n two-level atoms interacting with the coherent field in the
presence of the nonlinear Kerr medium,’’ Eur. Phys. J. Plus, vol. 137, no. 3,
p. 301, Mar. 2022.

[26] H. R. Baghshahi and M. J. Faghihi, ‘‘F-deformed cavity mode coupled to a∧
-type atom in the presence of dissipation and Kerr nonlinearity,’’ J. Opt.

Soc. Amer. B, Opt. Phys., vol. 39, no. 11, p. 2925, Nov. 2022.
[27] G. J. Milburn, ‘‘Intrinsic decoherence in quantum mechanics,’’ Phys.

Rev. A, Gen. Phys., vol. 44, no. 9, pp. 5401–5406, Nov. 1991.
[28] L.-M. Kuang, Z.-Y. Tong, Z.-W. Ouyang, andH.-S. Zeng, ‘‘Decoherence in

two Bose–Einstein condensates,’’ Phys. Rev. A, Gen. Phys., vol. 61, no. 1,
Dec. 1999, Art. no. 013608.

[29] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems.
Oxford, U.K.: Oxford Univ. Press 2002.

[30] F. Benatti, R. Floreanini, and M. Piani, ‘‘Environment induced entangle-
ment in Markovian dissipative dynamics,’’ Phys. Rev. Lett., vol. 91, no. 7,
Aug. 2003, Art. no. 070402.

[31] M. Herrero-Collantes and J. C. Garcia-Escartin, ‘‘Quantum random num-
ber generators,’’ Rev. Mod. Phys., vol. 89, Jan. 2017, Art. no. 015004.

[32] W. H. Zurek, ‘‘Decoherence, einselection, and the quantum origins of the
classical,’’ Rev. Mod. Phys., vol. 75, no. 3, pp. 715–775, May 2003.

[33] L. Aolita, F. de Melo, and L. Davidovich, ‘‘Open-system dynamics of
entanglement: A key issues review,’’ Rep. Prog. Phys., vol. 78, no. 4,
Apr. 2015, Art. no. 042001.

[34] A.-S.-F. Obada, H. A. Hessian, and A.-B.-A. Mohamed, ‘‘The effects
of thermal photons on entanglement dynamics for a dispersive
Jaynes–Cummings model,’’ Phys. Lett. A, vol. 372, no. 20, pp. 3699–3706,
May 2008.

[35] A.-B.-A. Mohamed and H. Eleuch, ‘‘Entanglement dynamics induced by a
squeezed coherent cavity coupled nonlinearly with a qubit and filled with
a Kerr-like medium,’’ Entropy, vol. 23, no. 5, p. 496, Apr. 2021.

[36] B. Sangshekan, M. Sahrai, S. H. Asadpour, and J. P. Bonab, ‘‘Control-
lable atom-photon entanglement via quantum interference near plasmonic
nanostructure,’’ Sci. Rep., vol. 12, no. 1, p. 677, Jan. 2022.

[37] E. Wigner, ‘‘On the quantum correction for thermodynamic equilibrium,’’
Phys. Rev., vol. 40, no. 5, pp. 749–759, Jun. 1932.

[38] K. Husimi, ‘‘Some formal properties of the density matrix,’’ Proc. Phys.-
Math. Soc. Jpn., vol. 22, no. 4, p. 264, 1940.

[39] H. Fakhri and M. Sayyah-Fard, ‘‘The Jaynes–Cummings model of a two-
level atom in a single-mode para-Bose cavity field,’’ Sci. Rep., vol. 11,
no. 1, p. 22861, Nov. 2021.

[40] A. Banerji, R. P. Singh, and A. Bandyopadhyay, ‘‘Entanglement measure
using Wigner function: Case of generalized vortex state formed by multi-
photon subtraction,’’ Opt. Commun., vol. 330, pp. 85–90, Nov. 2014.

[41] A.-B. Mohamed and H. Eleuch, ‘‘Non-classical effects in cavity QED
containing a nonlinear optical medium and a quantum well: Entanglement
and non-Gaussanity,’’ Eur. Phys. J. D, vol. 69, no. 8, p. 191, Aug. 2015.

[42] M. Ghorbani, M. J. Faghihi, and H. Safari, ‘‘Wigner function and entan-
glement dynamics of a two-atom two-mode nonlinear Jaynes–Cummings
model,’’ J. Opt. Soc. Amer. B, Opt. Phys., vol. 34, no. 9, p. 1884, Sep. 2017.

[43] H. A. Hessian and A.-B.-A. Mohamed, ‘‘Quasi-probability distribution
functions for a single trapped ion interacting with a mixed laser field,’’
Laser Phys., vol. 18, no. 10, pp. 1217–1223, Oct. 2008.

[44] G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and
L. L. Sánchez-Soto, ‘‘Local sampling of the Wigner function at telecom
wavelength with loss-tolerant detection of photon statistics,’’ Phys. Rev.
Lett., vol. 116, no. 13, Mar. 2016, Art. no. 133601.

[45] A. Wehrl, ‘‘General properties of entropy,’’ Rev. Mod. Phys., vol. 50, no. 2,
pp. 221–260, Apr. 1978.

[46] Y. Maleki, ‘‘Stereographic geometry of coherence and which-path infor-
mation,’’ Opt. Lett., vol. 44, no. 22, p. 5513, Nov. 2019.

[47] F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, ‘‘Laser
cooling to the zero-point energy of motion,’’ Phys. Rev. Lett., vol. 62, no. 4,
pp. 403–406, Jan. 1989.

[48] R. R. Puri, Mathematical Methods of Quantum Optics. Berlin, Germany:
Springer, 2001, pp. 252–253.

[49] R. R. Puri and G. S. Agarwal, ‘‘Finite-Q cavity electrodynamics: Dynam-
ical and statistical aspects,’’ Phys. Rev. A, Gen. Phys., vol. 35, no. 8,
pp. 3433–3449, Apr. 1987.

[50] A.-B.-A. Mohamed, E. M. Khalil, M. M. Selim, and H. Eleuch, ‘‘Opti-
cal tomography dynamic for time-dependent coherent states generated
by an open qubit-cavity system,’’ Results Phys., vol. 22, Mar. 2021,
Art. no. 103940.

[51] V. R. Vieira and P. D. Sacramento, ‘‘Generalized phase-space representa-
tives of spin-J operators in terms of Bloch coherent states,’’ Ann. Phys.,
vol. 242, no. 1, pp. 188–231, Aug. 1995.

[52] A.-S.-F. Obada and A.-B.-A. Mohamed, ‘‘Erasing information and purity
of a quantum dot via its spontaneous decay,’’ Solid State Commun.,
vol. 151, no. 23, pp. 1824–1827, Dec. 2011.

[53] A.-S. Obada and S. Abdel-Khalek, ‘‘New features of the atomic Wehrl
entropy and its density inmulti-quanta two-level system,’’ J. Phys. A,Math.
Gen., vol. 37, no. 25, pp. 6573–6585, Jun. 2004.

[54] V. Bužek, ‘‘Jaynes–Cummings model with intensity-dependent coupling
interacting with Holstein–Primakoff SU(1,1) coherent state,’’ Phys. Rev. A,
Gen. Phys., vol. 39, no. 6, pp. 3196–3199, Mar. 1989.

[55] P. Zhou and J.-S. Peng, ‘‘Dynamics of the atom in the multiphoton
Jaynes–Cummings model with intensity-dependent coupling,’’ Phys. A,
Stat. Mech. Appl., vol. 193, no. 1, pp. 114–122, Feb. 1993.

[56] D. S. Freitas, A. Vidiella-Barranco, and J. A. Roversi, ‘‘Field purification in
the intensity-dependent Jaynes–Cummingsmodel,’’Phys. Lett. A, vol. 249,
no. 4, pp. 275–280, Dec. 1998.

[57] A.-S.-F. Obada and H. A. Hessian, ‘‘Influence of superposition of coherent
states of light on the evolution of the field entropy and entanglement in the
intensity-dependent JCM,’’ Mod. Phys. Lett. B, vol. 16, pp. 1097–1106,
Dec. 2002.

[58] M. Siomau and S. Fritzsche, ‘‘Quantum computing with mixed states,’’
Eur. Phys. J. D, vol. 62, no. 3, pp. 449–456, May 2011.

[59] L. Zhou and Y.-B. Sheng, ‘‘Feasible logic bell-state analysis with linear
optics,’’ Sci. Rep., vol. 6, no. 1, p. 6857, Feb. 2016.

[60] D. Collins, ‘‘Qubit-channel metrology with very noisy initial states,’’ Phys.
Rev. A, Gen. Phys., vol. 99, no. 1, Jan. 2019, Art. no. 012123.

A.-B. A. MOHAMED received the M.S. and
Ph.D. degrees in applied mathematics from Assiut
University, Egypt. He has been a Professor of
mathematics with Prince Sattam bin Abdulaziz
University, Saudi Arabia, since 2018, and Assiut
University, since 2019. His research interests
include applied mathematics and mathematical
physics, including different directions in quantum
information and computation.

A. ALMUTLG received the B.S. degree (Hons.) in mathematics from
Qassim University, Saudi Arabia, the M.S. degree in statistics from King
Abdulaziz University, Jeddah, and the Ph.D. degree in mathematics from
Lancaster University, U.K., in 2021. He was involved in mathematical mod-
eling of quantum transport in nanoscale structures.

S. M. YOUNIS received the B.S. degree in mathematics and the M.S. degree
in applied mathematics from the Department of Mathematics, Faculty of
Science, Al-Azhar University, Nasr City, Egypt, in 1998. She is currently
a Lecturer with Prince Sattam bin Abdulaziz University, Saudi Arabia.

VOLUME 11, 2023 43293


