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ABSTRACT Thiswork addresses the pursuit-evasion problem of capturing aDifferential Drive Robot (DDR)
with a Dubins Car (DC) in minimum time. We model the problem as a zero-sum differential game, and using
differential game theory, we compute the time-optimal motion strategies of the players near the end of the
game. We unveil the existence of three singular surfaces: an Evader’s Dispersal Surface (EDS), a Transition
Surface (TS), where the DDR switches its controls, and a Pursuer’s Universal Surface (PUS). A particular set
of motion strategies for the players is used at each singular surface. To compute our solution, we assume that
both players have the same maximum speed and a bounded turning ratio. Considering the previous setting,
the game’s outcome only depends on the particular motion capabilities of the players. From previous results
in the literature and those presented in the current paper, we can establish that a DDR has an advantage when
it plays as a pursuer or as an evader compared to a Dubins Car performing the same role.

INDEX TERMS Differential games, optimal control, Pursuit-evasion, robotics.

I. INTRODUCTION
Several tasks in robotics require dealing with a moving target.
For example, an autonomous vehicle following another car
operated by a human driver, a robotic guard that wants to
capture a malicious agent or seeks to find a moving agent in
an environment. These problems can be modeled as pursuit-
evasion games [1], [2], where there are two classes of players
who have antagonistic goals. If one finds a solution for this
worst-case scenario, it is possible to adapt it for more favor-
able situations.

In particular, we study the problem of capturing a Differ-
ential Drive Robot (DDR) with a Dubins Car (DC) as soon
as possible. We assume both agents move on the Euclidean
plane, andwemodel them like unitary discs. TheDCplays the
pursuer’s role, and the DDR plays the evader’s role. The DC’s
goal is to capture the DDR in minimum time, while the DDR
wants to avoid being captured for as much time as possible.
To the best of our knowledge, this is the first work to address
this particular game setting. A similar problem involving
a Dubins Car and a Differential Drive Robot was studied
in [3]. In that work, different from our current formulation,
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the Differential Drive Robot wants to capture the Dubins Car
in minimum time. This ‘‘slight’’ change in the players’ roles
has a major consequence in computing the problem’s solution
and requires performing a complete analysis to construct it.
As will be shown in the current paper, we found that the time-
optimal motion strategies in [3] are different from the ones
computed in the current paper.

An important aspect of this work is that it considers two of
the most popular non-holonomic mobile vehicles in robotics,
a DC and a DDR. Dealing with two non-holonomic vehicles
in a pursuit-evasion game makes the problem more difficult
to model and analyze compared to the existing work [4], [5].
Other works in the literature have studied pursuit-evasion
games involving two non-holonomic players. For example,
in [6], the capture problem between two identical Dubins Cars
was analyzed. In [7], an analogous version considering two
identical DDRs was studied. Note that both players have the
same motion capabilities in those works, while in our game,
the pursuer and the evader have different kinematic models.
Having different motion capabilities make us wonder if there
is a more favorable role for each player. From the results
in [3] and those presented in the current paper, we established
that a DDR has an advantage when it plays either of the two
roles compared to a Dubins Car that performs the same role.
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Additionally, since the players have different kinematic con-
straints in our game, this also implies that the time-optimal
motion strategies used by the players in [6] and [7] are distinct
from those found in our current work.

In our problem, as in [3], [6], and [7] to find the play-
ers’ time-optimal motion strategies, we employ tools from
differential game theory [1], [2]. In particular, we model our
problem as a zero-sum game, where the cost the players seek
to optimize is the capture time. We characterize regions of
the playing space containing initial configurations that lead
to capture. To compute the solution to our pursuit-evasion
problem, we follow the approach developed by Isaacs [1],
[8]. The main idea behind Isaacs’ methodology is partition-
ing the playing space into regions where the value function
is differentiable. Finding the boundaries of those regions,
known as singular surfaces, is usually the most difficult part
of the process since there is no knowledge ahead of time if
the optimal trajectories have singular portions. Usually, when
the regular backward construction of candidate trajectories
does not cover the entire playing space [8], one assumes
the existence of a singular surface and tributary trajectories
joining it.

Isaacs’ methodology allows computing closed-form solu-
tions [1], [2], [3], [4], [5], [6], [7], [8], [9] for some specific
game formulations. In this paper, we find analytical expres-
sions that describe the motion strategies of the players.

A. RELATED WORK
In a differential game [1], [2], [8], [10], the state evolution
of two or more agents is dictated by a dynamical system.
If the agents have conflicting goals, then it is known as a
non-cooperative differential game. Additionally, if a player’s
gain is balanced by the other’s loss, it is known as a zero-sum
non-cooperative game. Our problem belongs to the latter class
of games. Many works studying non-cooperative zero-sum
differential games can be found in the literature [4], [5], [7],
[9], [11], [12], [13]. The Homicidal Chauffeur problem [9] is
probably the most famous and well-known. In that problem,
a Dubins Car has as its task to run over a pedestrian as soon
as possible, and it wins if it can accomplish the goal in finite
time. On the other hand, the pedestrian wants to delay it as
much as possible, and he wins if he can avoid it forever.
The car is faster than the pedestrian, but it has a turning
ratio constraint which limits its ability to change its motion
direction. On the contrary, the pedestrian is more agile than
the car, as it can instantly change its direction of motion.
The game occurs in an infinite parking lot without obstacles,
modeled as an Euclidean plane. Thus, the game’s outcome
depends solely on the kinematic constraints of the players.
Solving the problem consists of finding the motion strategies
of the players to achieve their goals and, based on the system’s
initial configurations, deciding which player wins the game.

The problem addressed in this paper is related to the fol-
lowing works in the literature: [3], [4], [5], [6], [7]. In the
following paragraphs, we compare them with our current

work. Reference [4] addressed the pursuit-evasion problem of
capturing an omnidirectional agent with a DDR. In that work,
analogous to the Homicidal Chauffeur problem, the DDR is
faster than the omnidirectional agent but can instantaneously
change its motion direction at a bounded rate. The DDR
wants to capture the omnidirectional agent in the shortest
possible time. On the contrary, the omnidirectional agent
wants to delay it as much as possible. The time-optimal
motion strategies of the players to achieve their goals are
computed in [4]. In addition, considering the players’ initial
configurations, the winner of the game can be decided, i.e.,
if the DDR captures the omnidirectional agent in finite time or
not. Reference [5] studied an analogous problem in which the
players’ roles are reversed; the omnidirectional agent’s goal
is capturing the DDR in minimum time. In contrast, the DDR
wants to delay it. We also have a DDR agent in our current
work, analogous to [4] and [5]. Nevertheless, in our case, the
pursuer is a DCwith non-holonomic constraints distinct from
those of an omnidirectional agent or a DDR. The result of
this modification is that the players’ motion strategies and the
solution’s essence differ from those obtained in [4] and [5].
Another key difference is that to solve our game; we require a
space representation with an additional dimension compared
to the one used in [4] and [5]. Having an additional dimension
makes it more difficult to compute and analyze the solution.

Two related works to our problem considering non-
holonomic players are [6] and [7]. As in our work, the pur-
suer’s goal is to capture the evader in minimum time. In [7],
the pursuer and the evader are two identical DDRs. Note that,
similar to this work, the evader is a DDR. Nevertheless, the
pursuer is also a DDR, which has a different kinematic model
from a DC. That change results in motion trajectories for
the players distinct from those in our current work. In [6],
an analogous version is studied considering two identical
DCs. Again, given that the evader has different kinematic
capabilities, the player’s motion strategies found in [6] differ
from the ones presented in the current work. A more compre-
hensive solution to the problem in [6] was presented in [14],
and a feedback-based solution for particular cases is provided
in [15]. However, since our evader is a DDR, our solution
differs from those of [14] and [15].

Recently, a similar game of capturing involving a DDR and
a DCwas studied in [3]. In that work, a DDRwants to capture
a DC in minimum time; the DDR plays as a pursuer and
the DC as an evader. In our work, the players have opposite
roles. This change in the game’s formulation has the conse-
quence that the solution of our game is different from the
one presented in [3]. In particular, the regions where capture
can be achieved differ from those in [3]. In our game, since
the DC is restricted to always move forward while the DDR
can move forwards or backward, there is a more limited set
of configurations where capture can occur compared to [3].
Additionally, the boundaries of the regions (singular surfaces)
where the value function is differentiable also change. In [3],
four singular surfaces were revealed, two evader’s disper-
sal surfaces, a transition surface, and a pursuer’s dispersal
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surface. In our current game, an evader’s dispersal surface,
a transition surface, and a pursuer’s universal surface were
exhibited. The differences in the players’ motion strategies at
each singular surface will be discussed in more detail in the
following sections.

B. CONTRIBUTIONS
We present a list of the main contributions of our work.

• We identify the initial configurations in the playing
space from which the DC captures the DDR, and we
compute the time-optimal motion strategies of the play-
ers to achieve the task from those configurations.

• We unveil the existence of three singular surfaces in this
game near the end of the game, an evader’s dispersal
surface (EDS), a transition surface (TS) where the DDR
switches its controls, and a pursuer’s universal surface
(PUS).

• Numerical simulations of the time-optimal motion
strategies of the players in two reference frames are
provided.

• From the results in [3] and those presented in the current
paper, we establish that a DDR has an advantage when
it plays either of the two roles compared to a Dubins Car
performing the same role.

II. PROBLEM FORMULATION
Two non-holonomic vehicles, a Dubins Car (DC) and a Dif-
ferential Drive Robot (DDR), move on the Euclidean plane.
The DC plays as a pursuer and tries to capture the DDR as
soon as possible. The DDR, in contrast, plays as an evader
and tries to delay capture. Both players aremodeled as unitary
discs with the same maximum speed of Vmax. Therefore, the
game’s outcome is determined by the specific non-holonomic
constraints of the players. The game ends when the distance
between both players is smaller than the value lc. We study
the problem in a purely kinematic setting.

The problem is initially modeled in the Euclidean plane
(see Fig. 1). In our case, we denote the DC pose as (xp, yp, θp)
and the DDR pose as (xe, ye, θe). The state of the system is
represented as (xp, yp, θp, xe, ye, θe) ∈ R2

× S1 × R2
× S1.

In differential games, this representation is called realistic
space. The equations of motion of the system are

ẋp = Vmax cos θp, ẏp = Vmax sin θp,

θ̇p =
Vmax

rp
v

ẋe =

(
u1 + u2

2

)
cos θe, ẏe =

(
u1 + u2

2

)
sin θe,

θ̇e =

(
u2 − u1

2b

)
(1)

where v ∈ [−1, 1] is the DC control and rp is the maximum
turning radius of the DC. The DDR controls are u1, u2 ∈

[−Vmax,Vmax]. They correspond to the left and right wheel
velocities, respectively. We denote the distance between the
DDR’s center and the wheels’ location by b. In this game,

FIGURE 1. The DC pursuer corresponds to the blue disc and the DDR
evader to the red disc.

we assume that both wheels have a unitary radius. Therefore,
the rotational and translational speeds are equivalent. The
previous equations can be summarized as ẋ = f (x, v,u)
where v ∈ [−1, 1] and u = (u1, u2) ∈ [−Vmax,Vmax] ×

[−Vmax,Vmax]. In the realistic space, all angles are measured
counter-clockwise from the x-axis.
In differential game theory, a coordinate system mounted

on the pursuer is generally used to simplify the analysis.
In this case, we employ a reference frame fixed to the DC
body (see Fig. 1b). In this frame, the state of the system
is given by x = (x, y, θ), which corresponds to the DDR
pose relative to the body of the DC. In the literature, this
representation is known as the reduced space. In this case,
all orientations are measured with respect to the positive
y-axis in a clockwise sense. The following equations provide
a transformation between the reduced and realistic space
representations,

x = (xe − xp) sin θp − (ye − yp) cos θp
y = (xe − xp) cos θp + (ye − yp) sin θp
θ = θp − θe (2)

From (2), we obtain the motion equations in the reduced
space,

ẋ =

(
Vmax

rp

)
vy+

(
u1 + u2

2

)
sin θ

ẏ = −

(
Vmax

rp

)
vx − Vmax

+

(
u1 + u2

2

)
cos θ

θ̇ =

(
Vmax

rp

)
v−

(
u2 − u1

2b

)
(3)

where v ∈ [−1, 1] is the DC control and u1, u2 ∈

[−Vmax,Vmax] are theDDR controls. The previous equations
can be summarized in the form ẋ = f (x, v,u), where x =

(x, y), v = (v) and u = (u1, u2).

III. TERMINAL CONDITIONS
In this section, we find the configurations in which the DC
guarantees the capture independently of the controls selected
by the DDR [1]. This set is named the usable part (UP). In our
case, the DC captures the DDR when the distance between
them is less than a value lc despite any DDR’s opposition. For
our game, similar to [3], we represent the terminal surface
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ζ in the reduced space as a cylinder centered on the origin
with a radius lc and a height 2π . It is convenient to define a
parameterization of ζ by two angles φ and ψ . φ is the angle
between the DC’s heading and the DDR’s position, and ψ is
the angle between the headings of both players. We denote
l as the distance between the players. In the reduced space,
DC guarantees capture when l = lc and l̇ < 0. In the UP

x = lc sinφ, y = lc cosφ, θ = ψ, l2 = x2 + y2, (4)

This game ends when

min
v

max
u1,u2

l̇ < 0 (5)

From the time derivative of l and substituting (3) into the
resulting expression,

l̇ =

(
u1 + u2

2

)
(sinφ sinψ + cosφ cosψ)− Vmax cosφ

=

(
u1 + u2

2

)
cos(φ − ψ) − Vmax cosφ (6)

Considering the optimal controls of the players in the UP,

min
v

max
u1,u2

l̇ = Vmax
|cos(φ − ψ)| − Vmax cosφ (7)

Therefore, from (5),

UP = {φ,ψ
∣∣ cosφ > |cos(φ − ψ)|} (8)

The usable part boundary (BUP) is given by

min
v

max
u1,u2

l̇ = 0 (9)

therefore,

BUP = {φ,ψ
∣∣ cosφ = |cos(φ − ψ)|} (10)

From (7), we conclude that the DDR executes a translation
at maximum speed when it is captured by the DC. The DDR
translates forward when cos(φ−ψ) > 0 and backward when
cos(φ − ψ) < 0. We can also observe that the UP and the
BUP do not explicitly depend on the DC control v. However,
the DC only attains capture when it moves forward, and the
DDR is located in front of it, i.e., φ ∈ [−π

2 ,
π
2 ]. This behavior

differs from the one observed in [3], in which the DDR can
capture the DC moving forward or backward in the reverse
pursuit-evasion game. Fig. 2 shows a graphical representation
of the UP and its boundary for this game.

IV. OUTLINE OF THE SOLUTION
In this section, we present an outline of the problem’s solution
to provide the reader with a guide to the process applied to
compute and identify the time-optimal motion strategies of
the players.

We characterize a portion of the reduced space that con-
tains initial configurations that attain capture. In particular,
we identify three regions, each corresponding to specific
motion strategies for the players. Those regions are bordered
by three types of singular surfaces: transition, universal, and
dispersal surfaces. For this game, we found a transition sur-
face (TS) where the DDR switches its controls, a pursuer’s

FIGURE 2. Usable Part (UP) and its boundary (BUP) in the reduced space.
The purple regions contain configurations where the DC terminates the
game while the DDR moves forward. Similarly, the green regions contain
the final configurations in which the DDR moves backward.

universal surface (PUS), and an evader’s dispersal surface
(EDS). Fig. 3 shows the reduced space characterization.

In Fig. 3a, we can observe the trajectories (blue and red
curves) leading directly to the capture condition. The red
curves correspond to those where the DC pursuer applies a
control v∗ = 1, while the blue curves correspond to those
where v∗ = −1 is used. In the trajectories reaching the
purple region, the DDR evader moves forward at a maximum
speed, whereas, in those reaching the green region, it moves
backward at maximum speed.

Fig. 3a also shows a TS (the boundary between red and
yellow trajectories). The DDR switches its controls on the
TS, and from translating at maximum speed, it starts rotating
in place in retro-time.

On a dispersal surface (DS), one player can select between
two controls producing two trajectories of the same cost.
Following [8], this player dominates the singular surface.
The second player must respond according to the pick of the
first player to avoid favoring it. To accomplish that, it must
execute a non-admissible strategy, i.e., his choice of controls
is based on the knowledge of his opponent’s control selection.
In contrast, an admissible strategy in differential game the-
ory does not demand additional information on the players’
controls. It is based just on the knowledge of the system
state.

The EDS in Fig. 3a is formed by some of the primary
trajectories coming from different regions of the usable part.
On that dispersal surface, the DDR evader has two choices for
its optimal control: rotating clockwise or counter-clockwise;
however, the associated trajectories to each control have the
same cost.

When we construct the trajectories that emanate from the
usable part (primary solution), and we discover void regions,
sometimes we can solve this problem by assuming that there
is a universal surface (US) in the void [8]. In such cases,
the void is covered by two fields of tributaries that emanate
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FIGURE 3. Outline of the solution in the reduced space. The first row shows the primary trajectories, the Evader’s Dispersal
Surface, and the Universal Surface appearing in this game. The second row presents a lateral view of the singular surfaces
and the tributary trajectories joining the Pursuer’s Universal Surface. Finally, the third row shows a lateral view of the
tributary trajectories reaching the Pursuer’s Universal Surface and illustrates the set of trajectories filling the reduced space.

from both sides of the singular surface. Tributary trajectories
from both sides join transversely on a universal surface (US).

In this game, the PUS is located at φ = 0 in Fig. 3b. In the
PUS, the DC applies a control v∗ = 0. The tributaries that

42128 VOLUME 11, 2023



U. Ruiz: Capturing a Differential Drive Robot With a Dubins Car

join the PUS on each side are computed by setting v∗ = −1 or
v∗ = 1, see Fig. 3d.
We present a description of the properties of the regions

found in this paper.
• Region I corresponds to the trajectories in the primary
solution. The system’s trajectories in this region (red and
blue curves) reach the UP and correspond to a DDR’s
translation at maximum speed in the realistic space,
while the DC translates and rotates at maximum speed.

• Region II contains the system’s trajectories (yellow
curves), departing from the transition surface in retro-
time. In all cases, the trajectories correspond to a DDR’s
rotation in place at maximum speed in the realistic space.
They end at the EDS.

• Region III corresponds to the tributaries joining the
PUS. For these trajectories, the DDR performs a trans-
lation at maximum speed while the DC translates and
rotates at maximum speed. On one side of the PUS, the
DC is rotating clockwise, and on the other counterclock-
wise. Once a trajectory reaches the PUS, the DC follows
a straight-line trajectory until it captures the DDR.

V. TIME-OPTIMAL MOTION STRATEGIES
We proceed to compute the players’ time-optimal motion
strategies. In differential game theory, a retro-time integration
of the motion equations starting at the ending configurations
is performed. To do that, first, we need to find the optimal
controls of the players used to perform their tasks.

Following the methodology in [1], we proceed to construct
the Hamiltonian of the system, which is given by

H (x,λ, v,u) = λT · f (x, v,u) + L(x, v,u) (11)

where λT are the costate variables and L(x, v,u) is the cost
function. For our problem L(x, v,u) = 1, therefore,

H (x,λ, v,u) = λx

(
Vmax

rp

)
vy+ λx

(
u1 + u2

2

)
sin θ

− λy

(
Vmax

rp

)
vx − λyVmax

+ λy

(
u1 + u2

2

)
cos θ + λθ

(
Vmax

rp

)
v

− λθ

(
u2 − u1

2b

)
+ 1 (12)

where λT = (λx ,λy,λθ ). For problems of minimum time [1],
as in this work,

min
v

max
u

H (x,λ, v,u) = 0

v∗
= argmin

v
H (x,λ, v,u)

u∗
= argmax

u
H (x,λ, v,u) (13)

where v∗ and u∗ denote the optimal controls of the players.
From (12) and (13), we have that the DC control is given by

v∗ = −sgn
(
λxy− λyx + λθ

)
(14)

and the DDR controls are given by

u∗

1 = sgn
(

λx sin θ
2

+
λy cos θ

2
+

λθ

2b

)
Vmax

u∗

2 = sgn
(

λx sin θ
2

+
λy cos θ

2
−

λθ

2b

)
Vmax (15)

From (15) and (14), we can observe that the optimal con-
trols of the players depend on the values of λT . Those values
are obtained using the costate equations, which are computed
from the Hamiltonian’s partial derivatives with respect to the
state variables [1]. We define the retro-time as τ = tf −

t , where tf is the game’s termination time. The retro-time
derivative of a variable x is denoted as

◦
x. The costate equation

in its retro-time version is
◦

λ =
∂

∂x
H (x,λ, v∗,u∗) (16)

For our game,

◦

λx = −λy

(
Vmax

rp

)
v∗,

◦

λy = λx

(
Vmax

rp

)
v∗

◦

λθ =

(
u∗

1 + u∗

2

2

) (
λx cos θ − λy sin θ

)
(17)

We proceed to compute the players’ retro-time trajectories
close to the game’s end. As the first step, we need to deter-
mine the initial conditions of the costate andmotion equations
in the reduced space. From (4), we have that at the game’s
end, xf = lc sinφ, yf = lc cosφ, and θ = ψ . Thus,

∂x
∂φ

= lc cosφ,
∂y
∂φ

= −lc sinφ,
∂θ

∂φ
= 0

∂x
∂ψ

= 0,
∂y
∂ψ

= 0,
∂θ

∂ψ
= 1 (18)

Given that λ(x) = 0 on the UP, then λφ and λψ are

λφ =
∂λ

∂φ
=
∂λ

∂x
∂x
∂φ

+
∂λ

∂y
∂y
∂φ

+
∂λ

∂θ

∂θ

∂φ

= λx cosφ − λy sinφ = 0

λψ =
∂λ

∂ψ
=
∂λ

∂x
∂x
∂ψ

+
∂λ

∂y
∂y
∂ψ

+
∂λ

∂θ

∂θ

∂ψ
= λθ = 0 (19)

From (19), we get

λx cosφ = λy sinφ, λθ = 0 (20)

Thus, in the UP,

λx = sinφ, λy = cosφ, λθ = 0 (21)

From Section III, near the end of the game, the DDR executes
a translation at maximum speed. Thus, the solution of (17) is
given by

λx = sin
(
φ −

Vmax

rp
v∗τ

)
λy = cos

(
φ −

Vmax

rp
v∗τ

)
λθ =

(
u∗

1 + u∗

2

2

)
sin(φ − ψ)τ (22)
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The previous solutions are valid in the UP and if the players’
controls do not change. We compute numerically the retro-
time instant when the DDR switches its controls.

The next step is to integrate the motion equations in the
reduced space. The retro-time version of (3) in the given by

◦
x = −

(
Vmax

rp

)
vy−

(
u1 + u2

2

)
sin θ

◦
y =

(
Vmax

rp

)
vx + Vmax

−

(
u1 + u2

2

)
cos θ

◦

θ = −

(
Vmax

rp

)
v+

(
u2 − u1

2b

)
(23)

Solving the previous equations with the initial conditions
xf = lc sinφ, yf = lc cosφ and θ = ψ , and also with the
optimal controls u∗

1, u
∗

2 and v
∗, we obtain

x = −
rp
v∗

+

(
xf +

rp
v∗

)
cos

(
Vmax

rp
v∗τ

)
− yf sin

(
Vmax

rp
v∗τ

)
+

(
u∗

1 + u∗

2

2

)
sin

(
Vmax

rp
v∗τ − ψ

)
τ

y =

(
xf +

rp
v∗

)
sin

(
Vmax

rp
v∗τ

)
+ yf cos

(
Vmax

rp
v∗τ

)
−

(
u∗

1 + u∗

2

2

)
cos

(
Vmax

rp
v∗τ − ψ

)
τ

θ = ψ −
Vmax

rp
v∗τ (24)

v∗ is provided by (14) and u∗

1, u
∗

2 by (15). Note that the switch
function

S = λxy− λyx + λθ (25)

in (14) is zero at the moment of capture, i.e., the DC is
following a straight line at that time instant. To compute the
value v∗ the time instant before capture we need to analyze

the value of
◦

S (the retro-time derivative of the switch function
S). From that analysis, we have that v∗ = −sgn(sinφ).
Also note that (24) delivers the players’ trajectories in the
reduced space. We need to apply a coordinate transformation
to find the corresponding trajectories in the realistic space.
The trajectories in (24) are called the primary solution.

In our game, we found that after following some of the
primary trajectories, the DDR switches its controls, and it
starts to rotate in place at maximum speed. However, given
that (24) have transcendental functions, we cannot compute
an analytical function to determine the retro-time instant τs
when that change occurs, and numerical analysis is required
to find τs. Once τs is determined, we need to perform a new
integration of the costate and motion equations. Since the
DDR rotates in place at maximum speed, the solution of (17)

is

λx = sin
(
φ −

Vmax

rp
v∗τ

)
λy = cos

(
φ −

Vmax

rp
v∗τ

)
λθ = λθs (26)

whereλθs is computed substituting τs into the third expression
in (22).

Integrating (23) with xs, ys and θs (the values of x, y and
θ at τs), and considering that the DDR rotates in place at
maximum speed, we obtain,

x =

(
xs +

rp
v∗

)
cos

(
Vmax

rp
v∗(τ − τs)

)
−ys sin

(
Vmax

rp
v∗(τ − τs)

)
−
rp
v∗

y =

(
xs +

rp
v∗

)
sin

(
Vmax

rp
v∗(τ − τs)

)
+ ys cos

(
Vmax

rp
v∗(τ − τs)

)
θ = θs −

Vmax

rp
v∗(τ − τs) +

(
u∗

2 − u∗

1

2b

)
(τ − τs) (27)

The trajectories in the previous equation are valid until the
system reaches the EDS.

In this game, we found the existence of a void region at φ =

0. The switch function S and its first retro-time derivative
◦

S
vanishes for these configurations. Examining its second retro-

time derivative
◦◦

S , we obtain

v∗ = sgn(v∗) (28)

Thus, v∗ can take the values −1, 0, or 1. As in the previous
work [1], [6], [9], this points to the existence of a universal
surface (US). On that surface, the DC pursuer applies v∗ =

0 which can be verified using the Isaacs’ necessary condition
for the existence of universal surfaces [1]. The retro-time
versions of the motion equations in the US are

◦
x = −

(
u1 + u2

2

)
sin θ

◦
y = Vmax

−

(
u1 + u2

2

)
cos θ

◦

θ =

(
u2 − u1

2b

)
(29)

Solving the previous equations with the initial conditions
xf = 0, yf = lc and θ = ψ , and also with the DDR optimal
controls u∗

1 and u
∗

2, we obtain,

x = ∓τVmax sinψ

y = lc + τ (Vmax
∓ Vmax cosψ)

θ = ψ (30)

the sign - is taken when the DDRmoves forward at the end of
the game and the sign + is taken if the DDRmoves backward.
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FIGURE 4. Results of the first simulation. The evader starts at the EDS.

The tributary trajectories joining the PUS at each point
are computed using the values v∗ = −1 or v∗ = 1. The
equations that describe them are obtained by integrating the
retro-time motion equations in (23) and considering, as initial
conditions (xUS , yUS ), the point in the US where the tributary
joins it,

x = −
rp
v∗

+

(
xUS +

rp
v∗

)
cos

(
Vmax

rp
v∗τ

)
− yUS sin

(
Vmax

rp
v∗τ

)

+

(
u∗

1 + u∗

2

2

)
sin

(
Vmax

rp
v∗τ − ψ

)
τ

y =

(
xUS +

rp
v∗

)
sin

(
Vmax

rp
v∗τ

)
+ yUS cos

(
Vmax

rp
v∗τ

)
−

(
u∗

1 + u∗

2

2

)
cos

(
Vmax

rp
v∗τ − ψ

)
τ

θ = ψ −
Vmax

rp
v∗τ (31)
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FIGURE 5. Results of the second simulation. The evader starts on a tributary trajectory of the PUS.

The tributary trajectories of the PUS join smoothly with
the corresponding trajectories in the primary solution, see
Fig. 3f. Note that (24) and (31) share a similar structure, and
evaluating both equations with (xf , yf , ψ) = (xUS , yUS , ψ) =

(0, lc, ψ) produces the same trajectories.

VI. DECISION PROBLEM
Part of the solution process of a pursuit-evasion game
involves finding the initial conditions that allow winning for
each player, in our case, that make capture possible for the DC
or escape for the DDR. An important concept in differential
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game theory is the barrier, which separates the set of initial
configurations into two disjoint regions. One is containing
those that result in capture, and another with those that result
in escape. As described in [1] and [8], to construct the barrier,
a similar approach to the one used to compute the time-
optimal motion strategies and their corresponding trajectories
is applied. To answer the capture-escape question, we need to
find out if the barrier divides the playing space into two parts.

The barrier trajectory is computed by performing a
backward integration of the motion (23) and adjoint
equations (17), taking as initial conditions the configurations
on the terminal surface that belong to the BUP, defined in
(10). However, similar to [3], in this problem, the construction
of the barrier trajectories and validating if they define a closed
region becomes very difficult, and we could not succeed in
such a task. In particular, the solution involves using tran-
scendental functions that do not allow us to compute the
intersections of the trajectories analytically.

Although we were unable to compute the barrier analyti-
cally, in this game, we observed that capture is only attained
from initial configurations near the UP. One can easily realize
that given that both players have the same maximum speed,
the DC cannot decrease the distance to the DDR once they
have reached an alignment condition.

VII. SIMULATIONS
This section presents two simulations (see Figs. 4 and 5) of
the players’ motion strategies. In the first, the evader starts
at the EDS shown in Fig. 4a. In the second case, the evader
begins at one of the tributaries of the PUS; see Fig. 5a. The
general parameters of the simulations were Vmax

= 1m/s,
lc = 2m, b = 1m, rp = 1m.
In the first simulation, we set φ = 0.3156 rad and ψ =

1.4 rad. The trajectory followed by the DDR evader in the
reduced space is shown in Fig. 4a. We can observe that the
DDR travels a trajectory that departs from the EDS. Initially,
it follows the yellow curve by performing a rotation in place
at maximum speed; later, the DDR switches controls and
follows the blue curve moving forward at maximum speed.
The corresponding trajectories of the players in the realistic
space are presented in Fig. 4b. In that figure, we can observe
that while the DDR performs the previous strategy, the DC
pursuer moves forward at maximum speed and performs a
clockwise rotation until it captures the DDR.

In the second simulation, we set φ = 0 rad andψ =
π
6 rad.

The trajectory followed by the DDR evader in the reduced
space is shown in Fig. 5a. Initially, it follows the red curve
(tributary trajectory of the PUS), and later, it follows the gray
curve (PUS) until capture is achieved. The corresponding
trajectories of the players in the realistic space are presented
in Fig. 4b. In that figure, we can observe that the DDR
translates at maximum speedwhen the system travels both the
tributary and the US trajectories. On the other hand, the DC
pursuer moves forward and rotates counterclockwise when it
travels the tributary trajectory of the US. Once that surface is

reached, it moves following a straight line until it captures the
DDR.

VIII. CONCLUSION
This paper addressed the problem of capturing a Differ-
ential Drive Robot with a Dubins Car in minimum time.
Both players have the same maximum speed and a bounded
turning ratio; hence, the game’s outcome only depends on
the particular motion capabilities of the players. The time-
optimal motion strategies of the players to achieve their tasks
were computed. In particular, we unveil the existence of
three singular surfaces: an evader’s dispersal surface (EDS),
a pursuer’s universal surface (PUS), and a transition surface
(TS) where the DDR switches its controls. Some numerical
examples of the players’ trajectories in both the reduced and
realistic space were presented.

In [3], the reverse game was studied; a Differential Drive
Robot wants to capture a Dubins Car in minimum time. How-
ever, despite the similarities in the game formulation with [3],
changing the players’ roles in our current work produces a
completely different solution. In particular, we reveal the
existence of a pursuer’s universal surface that has no coun-
terpart in the solution presented in [3]. This result resembles
those presented in [9] and [6] that consider a DC pursuer;
however, note that the evader’s motion constraints (DDR) in
our game were not considered in those works.

Comparing the set of final configurations and the regions
of the playing space covered with trajectories in [3], for the
case where a DDR pursuer wants to capture a DC evader,
and the corresponding ones found in this current work, for
the case where a DC pursuer wants to capture a DDR evader,
we can establish that a DDR pursuer has an advantage over
a DC pursuer. A similar conclusion can be drawn between
DDR and DC evaders. This advantage is provided mainly by
the fact that the DDR can move forward or backward while
the DC is always forced to move forward. An interesting
future problem is considering a Reeds-Shepp Car (it can
move forward and backward) instead of a Dubins Car player.
In that case, the solution will depend solely on the rotational
capabilities of both players.

In future work, we also plan to compute motion strategies
for several DCs cooperating to capture the DDR. Addition-
ally, we are interested in computing time-optimal strategies
considering visibility constraints, such as a limited field of
view or a bounded range.
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