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ABSTRACT One of the major hot topics in seismic data processing is the reconstruction of successively
sampled seismic data. There are numerous traditional methods proposed for addressing this issue; however,
they still have unavoidable drawbacks, such as high computational cost and sensitive tuning parameters. In
this study, we suggest a deep learning model for reconstructing successively sampled seismic data, termed
fully connected U-Net (FCU-Net). FCU-Net maintains the high-resolution representations by connecting
the parallel different-resolution representations and repeating multi-scale fusion. Such a structure allows
FCU-Net to successfully extract multi-scale information, which is beneficial for accurate seismic data
reconstruction. Additionally, the extending subnetwork of FCU-Net contains a large number of feature chan-
nels and sufficient information interaction between different resolution representations via the composite
cascades, which contributes to locating successively sampled traces with big gaps and then performing the
seismic interpolation. To verify the effectiveness of FCU-Net, we compare it with state-of-the-art networks,
i.e., U-Net and HRNet, using synthetic and field examples. The results show that FCU-Net performs best
when interpolating successively sampled seismic data, proving its superiority and availability.

INDEX TERMS Successively sampled seismic data reconstruction, deep learning, U-Net, fully connected

network.

I. INTRODUCTION

Due to the constraints on the acquisition condition, the cost
limitations, and the dead traces, the received seismic data is
often sampled [1], [2]. Sampled seismic data reconstruction
is one of the key and tough tasks in seismic data process-
ing [3], [4], which benefits further seismic data processing
and interpretation, e.g., coherent and incoherent noise atten-
uation [5], [6], [7], [8], [9], geological structure characteriza-
tion [10], [11], [12], attribute analysis [13], [14], [15], [16],
fault and horizon interpretation [17], [18], [19], lithology
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recognition [20], [21], [22], etc. The sampled seismic data
can be mainly divided into randomly and successively sam-
pled cases [23]. Note that interpolating the successively sam-
pled seismic data is a more difficult task than interpolating
the randomly sampled case. Therefore, in this study,
we pay attention to the successively sampled seismic data
reconstruction.

With the development of signal processing and compu-
tational science, there are kinds of methods proposed for
interpolating the successively sampled seismic data. The tra-
ditional methods can be divided into four categories, mainly
including wave equation-based method [24], [25], predic-
tion error filter-based method [23], [26], transform-based
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method [27], [28], and rank reduction based method [29],
[30]. These above reconstruction approaches are proposed
for different application scenarios. Nevertheless, there are
several unavoidable limitations in these traditional recon-
struction methods. First, we often face hundreds of pre-stack
seismic gathers when addressing seismic reconstruction;
therefore, the high computational cost of traditional methods
should be effectively relaxed and addressed. Second, there
are usually several key parameters that need to be manually
defined after several tests. Third, these traditional methods
often require prior assumptions, which are difficult to obtain,
especially when processing field data.

Recently, machine learning and deep learning are suc-
cessfully adopted for addressing geological issues [31], [32],
[33], [34], [35], [36], which are also utilized for seismic
data reconstruction [37], [38], [39], [40], [41], [42]. Among
these deep learning based models, U-Net is a commonly
used one that was originally proposed for medical image
segmentation [43]. Especially, numerous feature channels are
introduced in the upsampling stage of U-Net to propagate
contextual information, which enables it to precisely localize
objects. Additionally, the concatenation operation can also
help U-Net to fuse multi-scale information. In light of these
strengths, U-Net is utilized for promoting seismic processing
and interpretation [44], [45], [46], [47], which is also used
for interpolating sampled seismic data [48]. For example,
He et al. proposed a multi-stage training process to build
multiple U-net models for successively sampled trace inter-
polation [49]. To restore irregularly and regularly sampled 3-
D data on several typical seismic data sets, especially those
with high sampled percentages or large gaps, Fang et al.
established an artificial neural network (ANN) based on an
end-to-end U-Net encoder-decoder style 3-D convolutional
neural network (CNN) [50]. In addition, many networks with
U-Net as the backbone have been proposed. Based on U-Net,
Wang et al. proposed an eight-layer residual learning network
(ResNets) with improved deep backpropagation properties
to aid in the highly accurate reconstruction of irregularly
sampled traces [3]. Liu et al. proposed a wavelet-based net-
work for reconstructing seismic data by using U-Net as its
backbone [2]. Unfortunately, the shallow high-resolution fea-
tures in the encoder are only propagated to the correspond-
ing layers in the decoder via the concatenation operation
in U-Net. And, each pooling operation will halve the size
in the encoder, indicating that the received shallow feature
information is constrained. Due to the insufficient multi-scale
information obtained by U-Net, the detailed features may
be lost or the images may be distorted. There are several
state-of-the-art models proposed for addressing this [51],
[52]. For example, Wang et al. proposed a High-Resolution
Network (HRNet) [53], which has been initially employed
to address computer vision issues. HRNet encourages high-
and low- resolution representations to advance in the network
in parallel and repeating multiple-resolution representation
fusion between levels, allowing it to fully utilize multi-scale
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information to boost the model’s accuracy. However, HRNet
uses a deep supervision technique rather than an extending
subnetwork for precise localization like U-Net in the decoder.
For seismic data reconstruction tasks, it is vital to locate the
sampling locations, while HRNet struggles with this.

In this study, we propose a fully connected U-Net (FCU-
Net) for addressing successively sampled seismic data. The
main contributions of this study are summarized as follows.

1) FCU-Net is a parallel variant of U-Net, which com-
pletes the multi-resolution information transmission
through composite cascading between several levels,
benefiting the efficient extraction of multi-scale infor-
mation.

2) Many multi-scale feature channels are introduced by
the FCU-Net expanding subnetwork, which is benefi-
cial for the localization of successively sampled traces
and stable model training.

3) We utilize synthetic and field data to test the effec-
tiveness of FCU-Net. Moreover, we provide detailed
qualitative and quantitative comparisons with state-of-
the-art deep learning models.

In the following sections, we first introduce the related
U-Net and HRNet. Following that, we present the detailed
architecture of our proposed FCU-Net. Afterward, we imple-
ment the experiments on synthetic and field data sets, both
of which suffer from the successively sampled issue. After
comparing the proposed model with U-Net and HRNet in
reconstructing successively sampled seismic data, we present
their qualitative and quantitative results and detailed analyses.
Finally, we provide several discussions and the main conclu-
sions of this study.

Il. METHODOLOGY

A. U-NET

The architecture of U-Net can be divided into two parts, i.e.,
the contracting subnetwork (encoder) for obtaining contex-
tual information and the expanding subnetwork (decoder) for
precise localization [43], which is more or less symmetric to
the contracting subnetwork. As a consequence, the U-shaped
architecture is called U-Net. Note that U-Net is a fully con-
volutional network (FCN). Nevertheless, compared with the
general FCN, U-Net has two main advantages. One is the
symmetric expanding subnetwork, which yields a large num-
ber of feature channels, allowing the network to propagate
context information to higher-resolution layers. The second
is that U-Net connects the encoder and the decoder via the
concatenation operation, preventing vanishing gradients and
fusing the feature representations of various levels. Aided
by the superior performance, U-Net is applied in incomplete
seismic data reconstruction, which can be expressed as

X = h(f(xraw; 9))7 (D

where X, denotes the raw incomplete seismic data as the
input; 6 represents the convolution kernel weights, bias,
and hyperparameters in the network; A(-) is the activation
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FIGURE 1. The simplified architecture of HRNet [53], which is divided into 4 stages to make the process of feature fusion between various levels explicitly
obvious. In particular, the feature maps at different levels are colored to differentiate. The light orange, light yellow, and light blue color blocks represent
128 x 128 x n, 64 x 64 x n, and 32 x 32 x n feature maps, respectively, where n is the number of channels.

function. x presents the predicted output. Here, f(Xyqw; 6)
indicates a neural network suggested for solving seismic data
reconstruction.

In U-Net, the deeper, high-semantic features are the focus
of the lower convolutional layers, while the shallow, high-
resolution features are the focus of the higher convolutional
layers. In the effort of reconstructing seismic data, both shal-
low and deep characteristics must be acquired. Deep fea-
tures can be effectively propagated by U-Net, but shallow
features can only be spread through concatenation. Also,
each downsampling reduces the scale by half, demonstrating
the inadequacy of the information communicated through
concatenation. In short, the skip connection structure of U-
Net, which is close to series, does not make effective use
of shallow features, which will lead to the loss of detailed
features or distortions of the input image.

B. HRNet

High-Resolution Network (HRNet) is first proposed to
address computer vision problems [53]. The parallel struc-
ture of HRNet can effectively solve the problem of the
under-utilization of shallow features of U-Net. Definitely,
HRNet first encodes the input image into a low-resolution
representation via subnets formed by serial high- and low-
resolution convolutions, such as Residual Network (ResNet)
and Visual Geometry Group Network (VGGNet), and then
recovers the high-resolution representation via the encoded
low-resolution representation [33]. While HRNet can main-
tain high resolution representations throughout the whole
process, it is called High-Resolution Network. HRNet main-
tains high-resolution representations by connecting parallel
different-resolution representations and repeating multi-scale
fusion. As a consequence, the extracted high-resolution repre-
sentations are not only informative but also spatially accurate.
Figure 1 shows a simplified architecture of HRNet [53].
It should be noted that HRNet in this study actually refers to
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HRNetV2, which fuses multi-scale features of different res-
olution representations in the final output to facilitate image
fidelity.

For simplicity, we divide HRNet into four stages in
Figure 1. Here, the light orange, light yellow, and light blue
color blocks represent 128 x 128 x n, 64 x 64 x n, and
32 x 32 x n feature maps, respectively, where 7 is the number
of channels. In each stage, different resolution representations
are propagated in parallel. On the other hand, the multi-scale
repetitive fusion is carried out among different stages, which
improves the ability of image detail extraction and process-
ing. Note that as the network levels increase, this fusion
behavior gets more sophisticated, facilitating communication
between low-level semantic features and high-level abstract
features to promote the fitting of the network model. In addi-
tion, in stage 4, the output of the parallel low-resolution
subnet is first up-sampled to the size of the high-resolution
subnet, and then four branches of the same size are connected
through a cascade operation, and finally, a 1 x 1 convolution
(the remaining convolution kernels are 3 x 3 in Figure 1) is
performed to get the final result. It is worth noting that stage 4
is actually a deep supervision strategy, which improves the
transparency and directness of each hidden layer. Note that
the deep supervision is originally proposed to solve the
classification task, without considering the characteristics of
seismic data, and the multi-scale features are not further
integrated and learned by the decoder, which leads to the
location of big gaps of incomplete seismic data being difficult
to determine.

C. FULLY CONNECTED U-NET

We suggest a fully connected U-Net based on U-Net and
HRNet from the preceding subsections, called fully con-
nected U-Net (FCU-Net). FCU-Net takes advantage of
U-Net and HRNet and can extract multi-resolution features
more effectively, which will be beneficial in reconstructing
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successively sampled seismic data. Figure 2 shows the simpli-
fied structure of the proposed FCU-Net and Table 1 presents
its detailed operations and hyperparameters. Note that the
light orange, light yellow, and light blue color blocks repre-
sent 128 x 128 x n, 64 x 64 x n, and 32 x 32 x n feature maps,
respectively, where n is the number of channels. Afterward,
seismic data reconstruction via the suggested FCU-Net can
be denoted as

X = hsigmoid (frc (Xraw ; ) » 2

where X,4,, and x denote the input sampled seismic data and
the predicted output. frc (-) denotes the suggested FCU-Net.
0 presents the convolution kernel weights, bias, and hyperpa-
rameters in FCU-Net. The activation function is selected as
the sigmoid function, denoted as sigmoid(-).

While reconstructing sequentially sampled seismic data,
FCU-Net has the following advantages by taking into account
the structures of U-Net and HRNet.

1) In FCU-Net, different resolution representatives within
each stage are processed in parallel. At the same time,
repeated multi-scale fusions are achieved between different
stages based on composite cascades. Visually, FCU-Net actu-
ally fills the “hollow” of U-Net. Such a structure makes full
use of shallow high-resolution representatives. It facilitates
multi-scale information interaction, which can preserve more
detailed features of the sampled image and obtain more accu-
rate interpolated results. Furthermore, it provides more alter-
native paths for gradient feedback during network training,
which allows the model to fit in a more reasonable direction
and then helps to recover incomplete seismic data.

2) Structurally, the proposed FCU-Net changes stage 4 of
HRNet, as shown in the red dashed box in Figure 2. Note
that when reconstructing the successively sampled seismic
data, the location of big gaps is significant for the recon-
struction results. Stage 4 of FCU-Net constitutes a decoder,
which introduces a large number of feature channels into the
model and further enhances the integration and interaction of
multi-scale feature information during the decoding process.
Such an improvement helps the model learn more critical
features, especially locating big gaps of incomplete seismic
data, which would result in finer and more satisfactory recon-
struction results.

D. EVALUATION METRICS

We introduce evaluation metrics to quantitatively test the
effectiveness of the proposed model, including Mean Abso-
lute Error (MAE) [54], Structure Similarity Index Mea-
sure (SSIM) [55], and signal-to-noise ratio (SNR) [56].
Suppose that x; and y; represent the i-th predicted output
and the i-th raw complete data, x is the predicted result
and y is the raw complete data. Note that, after obtaining
x, we adopt all traces of x to calculate evaluation met-
rics. Afterward, these evaluation indicators are explained as
follows.
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Mean Absolute Error (MAE) [54]:

1 n
MAE = -~ ; Ixi — il , 3)
where n represents the number of the samples, [0, +00).
When the predicted value is completely consistent with the
ground truth, MAE is equal to 0, which indicates obtaining
a perfect model. And, the larger the error, the larger the
value [54].

Structure Similarity Index Measure (SSIM) [55]: SSIM
is a measurement for describing the similarity between two
images [55]. SSIM of two images X and y can be calculated
as

(2uxtty +c1) (20xy + 2)
(M,% + 1y + 01) (sz +02+ cz)

SSIM(x, y) = )

where uy and py present the averages of x and y, a,f and
ay2 indicate the variances of x and y. oy y is the covariance
of xandy.cy = (kiL)? and ¢, = (kaL)? are both constant
values used to maintain the stability, where k; = 0.01 and
ko = 0.03. L is the dynamic range of the pixel values. SSIM
of two images is between 0 and 1, when SSIM is closer to 1,
the reconstructed image is more fidelity.
Signal to Noise Ratio (SNR) [56]-

Iyll2
ly —xll2”
The larger the SNR denotes the better the restored image
quality [56].

S/N(B) = 201og;, (5)

E. TRAINING DETAILS

During model training, Tensorflow-GPU deep learning
library 2.4.0 and Keras 2.4.3 on Python 3.6 are used to build
all models. The experiments are implemented using NVIDIA
GTX 3090. In addition, we use an Adam optimizer with
default settings. Furthermore, the layers adopt the commonly
used Rectified Linear Unit (ReLU) [57] activation function
except for the last layer of the network, which is activated by
the sigmoid function. Meanwhile, we use the MSE loss [58]
in Equation (6) to monitor the error between the raw complete
data y and the predicted result x.

l n
MSE = - 21 (xi —yi)°, ©6)
=
where x; and y; represent the i-th predicted result and the i-th
label. n represents the number of the samples, [0, +-00). When
MSE is employed as the loss function, the model is gradually
fitting as its value gradually declines.

IIl. SYNTHETIC EXAMPLES

The synthetic data used in this study is the public SEG C3
data set,! whose temporal sampling interval and temporal
sampling number are 8 ms and 625. We randomly select

1 https://wiki.seg.org/wiki/SEG_C3_NA
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FIGURE 2. The simplified architecture of the proposed FCU-Net. The color and stages of the feature maps are similar to those in Figure 1. The light orange,
light yellow, and light blue color blocks represent 128 x 128 x n, 64 x 64 x n, and 32 x 32 x n feature maps, respectively, where n is the number of channels.

TABLE 1. The specific operations and hyperparameters of the proposed FCU-Net. It should be noted that the layer names in the table follow that the first
number represents the network level and the second number represents the order of the feature layer. For example, level1_3 represents the third feature
layer in the first level. In addition, conv block represents the combination of convolution, BN, and ReLU operations.

VOLUME 11, 2023

Layer name Operation Input size Output size
input —_— (128,128, 1)
levell_3 conv block (input)x 3 (128, 128, 1) (128, 128, 32)
levell _7 conv block (levell_3)x 4 (128, 128, 32) (128, 128, 32)
level2_1 maxpooling(levell_3) (128, 128, 32) (64, 64, 32)
level2_4 conv block (level2_1)x 3 (64, 64, 32) (64, 64, 64)
concatenate (
(128, 128, 32),
levell_8 conv block (levell_7), (128, 128, 96)
. (64, 64, 64)
upsampling (level2_4))
concatenate (
(128, 128, 32),
level2_5 maxpooling (levell_7), (64, 64, 96)
(64, 64, 64)
conv block (level2_4))
concatenate (
(128, 128, 32),
level3_1 maxpooling (levell_7)x 2, (32, 32, 96)
(64, 64, 64)
maxpooling (level2_4))
levell_11 conv block (levell_8)x 3 (128, 128, 96) (128, 128, 32)
level2_8 conv block (level2_5)x 3 (64, 64, 96) (64, 64, 64)
level3_4 conv block (level3_1)x 3 (32, 32, 96) (32,32, 128)
concatenate (
(128, 128, 32),
conv block (levell_11),
levell _12 (64, 64, 64), (128, 128, 224)
upsampling (level2_8)),
P p £ (32,32, 128)
upsampling (level3_4)x 2)
concatenate (
(128, 128, 32),
maxpooling (levell_11),
level2_9 (64, 64, 64), (64, 64, 224)
conv block (level2_8)),
(32,32, 128)
upsampling (level3_4))
levell _15 conv block (levell_12)x 3 (128, 128, 224) (128, 128, 32)
level2_12 conv block (level2_9)x 3 (64, 64, 224) (64, 64, 64)
concatenate (
(128, 128, 32),
levell_16 conv block (levell_15), (128, 128, 96)
. (64, 64, 64)
upsampling (level2_12))
levell_19 conv block (levell_16)x 3 (128, 128, 96) (128, 128, 32)
output conv+sigmoid(levell_19) (128, 128, 32) (128,128, 1)
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(a) Trace number (b)
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FIGURE 3. A synthetic data example from the blind test data set,
(a) ground truth and (b) the input data after removing seismic traces with

a big gap.

(a) ‘Wavenumber (b) ‘Wavenumber

Frequency (Hz)
Frequency (Hz)

FIGURE 4. The f — k spectra of the images in Figure 3, (a) ground truth,
and (b) input data after removing seismic traces with a big gap.

TABLE 2. The parameters, FLOPs, and training time of different models.

Model parameters (M)  FLOPs (G)  training time (h)

U-Net 3.12 6.32 1.27

HRNet 5.92 10.50 2.25
FCU-Net 4.71 11.89 2.43

8000 patches of 128 x 128 from the SEG C3 data set and all
extracted patches are then normalized as [0, 1] by using the
Min-Max normalization. Next, we divide these 8000 patches
into 50% training set with 4000 patches, 25% validation set
with 2000 patches, and 25% blind test set with 2000 patches,
as our synthetic data set. Since FCU-Net is a supervised deep
learning model, each patch contains the raw complete data y
as the ground truth of the network, and after removing seismic
traces with a big gap, the sampled data as the input data
Xori » @8 shown in Figure 3(a) and 3(b). In addition, Figure 4
shows the corresponding f — k spectra of the images in
Figure 3. Note that x-axis and y-axis represent the normalized
wavenumber and frequency. As observed in Figure 4, there
is a significant loss in the amplitude of data after removing
seismic traces with a big gap, therefore, we must restore
seismic valid amplitudes to facilitate subsequent seismic data
interpretation. In addition, the proportion of the sampled big
gap is randomly set to 10%-30%, whose location is also
random.

Following the ablation tests in Figure 5 and Figure 6, it
can be easily found that, when the initial learning rate and
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FIGURE 5. Recovered SNR of different learning rates based on synthetic
data set with successively sampled traces.
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FIGURE 6. Recovered SNR of different batch sizes based on synthetic
data set with successively sampled traces.
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FIGURE 7. The training MSE loss curves of different deep learning models
on the training data set of the successively sampled synthetic data with a

big gap.

batch size are adjusted to 0.001 and 40, the recovered SNR
value of the training model for the sampled data can achieve
a higher value. After applying these settings and training
deep learning models for 500 epochs, the loss curves of
all deep learning models do not drop further and achieve
convergence, as shown in Figure 7. It should be noted that
to better compare the performance of the proposed FCU-
Net, we also train U-Net and HRNet, which adopt the same
3-level structure as FCU-Net. Here, the gray circle, the green
star, and the cyan diamond represent the MSE loss curves
of U-Net, HRNet, and FCU-Net. Specially, we show the
loss curves of these deep learning models from 20-th epoch
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FIGURE 8. The reconstructed results of the successively sampled example in Figure 3(b) using (a) U-Net, (b) HRNet, and (c) FCU-Net.
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FIGURE 9. The enlarged images indicated by the blue rectangle in Figure 8(c), calculated using (a) U-Net, (b) HRNet, and (c) FCU-Net.
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FIGURE 10. The f — k spectra of the images in Figure 8, (a) U-Net, (b) HRNet, and (c) FCU-Net.

so that the final convergence effect can be clearly seen.
Based on these loss curves, we can find that we obtain three
well-trained deep learning models. Furthermore, we pro-
vide the parameters, floating-point operations (FLOPs), and
training time of different deep learning models in Table 2.
Note that the larger number of parameters indicates more
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space complexity, while the larger FLOPs indicate more time
complexity. These values in Table 2 indicate that U-Net
shows less model complexity and less time complexity, com-
pared with HRNet and our model. Our model shows similar
complexity to HRNet, which is the main limitation of our
model.
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FIGURE 11. A synthetic trace example of consecutively missing synthetic
data from Figure 8, with the trace number 13. The blue solid, cyan circle,
yellow star, and red diamond curves present the ground truth and the

restored traces computed using U-Net, HRNet, and FCU-Net, respectively.

Figure 8 depicts the reconstructed results of the suc-
cessively sampled image in Figure 3(b), predicted using
(a) U-Net, (b) HRNet, and (c) FCU-Net. From the reconstruc-
tion results in Figure 8, we can see that U-Net can reconstruct
sampled traces adjacent to the known traces. However, the
middle part of successively sampled traces with a big gap is
not reconstructed, indicated by the red circle in Figure 8(a).
In addition, the strong valid amplitudes restored using U-Net
are inconsistent with the corresponding part of ground truth
in Figure 3(a), denoted by the green arrow in Figure 8(a).
Moreover, it can be observed that successively sampled traces
reconstructed using HRNet still show significant errors, espe-
cially as shown by the red circle in Figure 8(b). Meanwhile,
the interpolated result in Figure 8(b) has obvious amplitude
loss at the original strong amplitude part, as highlighted by
the pink arrow. Comparatively, it can be easily found from
Figure 8(c) that the reconstructed data using FCU-Net is
more accurate than the interpolated images using U-Net and
HRNet, especially at the successively sampled parts. These
above discussions demonstrate that FCU-Net can promote
model training and train a better model for reconstructing
the successively sampled seismic data. Furthermore, Figure 9
shows the corresponding enlarged images presented by the
blue rectangle in Figure 8(c). Among them, the interpolated
result calculated using U-Net loses most of the valid signals,
indicating that it produces a large error, as presented by the
red circle in Figure 9(a). However, as denoted by the green
arrow in Figure 9(b), HRNet visibly restores more seismic
traces, however, the result is inconsistent and inaccurate.
Whereas, FCU-Net is able to reconstruct the most stable and
comprehensive seismic traces in Figure 9(c).

Additionally, the f —k spectra of the images in Figure 8 are
calculated and shown in Figure 10(a), 10(b), and 10(c), where
the vertical axis denotes the frequency and the horizontal
axis represents the wavenumber. Figure 10(a) demonstrates
that, while the image interpolated using U-Net can restore
some of the valid amplitudes, there is still a clear difference
compared with ground truth, particularly indicated by the
green circle. In addition, the f —k spectrum of the interpolated
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FIGURE 12. A field data example from the blind test data set, (a) ground
truth, and (b) the input data after removing seismic traces with a big gap.

TABLE 3. Quantitative comparisons of different models on successively
sampled synthetic data.

Model MAE SSIM SNR

U-Net 3.1353e-03  0.9725 37.0048

HRNet 2.9803e-03  0.9732  37.1067
FCU-Net 2.9171e-03 09750 37.4145

data using HRNet recovers more accurate valid amplitudes
than that of U-Net, however, still suffers from the valid ampli-
tude loss, as indicated by the pink arrow in Figure 10(b).
Finally, Figure 10(c) shows that FCU-Net can successfully
restore the missing amplitude information and achieve supe-
rior reconstructed results. Afterward, we display the synthetic
trace example of the consecutively missing synthetic data in
Figure 11, extracted from Figure 8§ with the trace number
13. The blue solid, cyan circle, yellow star, and red diamond
curves present the ground truth and the restored traces com-
puted using U-Net, HRNet, and FCU-Net. Compared with
U-Net and HRNet, FCU-Net’s restored trace is closer to the
ground truth and its error is less, which further proves its
availability. Furthermore, U-Net, HRNet, and FCU-NET are
quantitatively compared in Table 3 using MAE, SSIM, and
SNR between the interpolated results and the ground truth.
Table 3 makes it clear that, in comparison with U-Net and
HRNet, FCU-Net achieves lower MAE and higher SSIM and
SNR, indicating that FCU-Net performs best.

IV. FIELD DATA APPLICATIONS

After testing our proposed method on synthetic data, we then
adopt the field data set to confirm the proposed model’s effect
and implement detailed comparisons with U-Net and HRNet.
For the field data set, we randomly select 4000 patches from
the Mobil Avo Viking Graben Line 12 field data set,2 each
of which has a size of 512 x 112. Note that the time sam-
pling interval and the spatial sampling interval are 4 ms and
25 m. Next, we divide these 4000 patches into 2000, 1000,
and 1000, respectively, for 50% training set, 25% validation
set, and 25% blind test set. Additionally, these data sets are
normalized as [0, 1] by using the Min-Max normalization.

2https://wiki.seg.org/wiki/M0bil_AVO_vikinzg,r_graben_line_l 2
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FIGURE 13. The reconstructed results of the successively sampled example in Figure 12(b) using (a) U-Net, (b) HRNet, and (c) FCU-Net.
TABLE 4. Quantitative comparisons of different models on successively (a) Trace number () Trace number
sampled field data. 30 90 80 90
Model MAE SSIM SNR 5 5
g
U-Net 2.2746e-03  0.9908  41.9436 z % L
HRNet  1.6984¢-03 0.9911  43.0149 g g %
FCU-Net  1.3678e-03  0.9921  44.0601 E E j%’«

Furthermore, by randomly sampling 10%-30% of the succes-
sively seismic traces from the raw complete data y as ground
truth, we obtain the corresponding incomplete data x,,,; as the
input data of networks, as shown in Figure 12. Note that all
the training details in this field case are identical to those in
the synthetic case.

By applying the trained deep learning models to the input
data after removing seismic traces with a big gap in Fig-
ure 12(b), we obtain the reconstruction results using U-Net,
HRNet, and FCU-Net, as shown in Figure 13(a), 13(b), and
13(c). We can get several significant conclusions by ana-
lyzing the reconstruction results in Figure 13. First, U-Net
recovers some valid sampled traces but fails to retain more
amplitude details, which makes its interpolated result very
fuzzy, especially at the area represented by the red circle
in Figure 13(a). Consequently, the relative amplitude rela-
tionship of the ground truth in Figure 12(a) is not preserved
in the interpolated component of U-Net, as highlighted by
the green arrow in Figure 13(a). Second, when compared
with ground truth in Figure 12(a), the data interpolated using
HRNet still yields apparent errors, such as the area enclosed
by the red circle in Figure 13(b). Finally, we find that the
FCU-Net based reconstructed data is more continuous and
recovers more detailed amplitudes than U-Net and HRNet
based interpolated data.

Afterward, we further assess the reconstruction perfor-
mance by analyzing the blue rectangle area marked in
Figure 12(a). Figure 14 and Figure 15 represent the enlarged
version of Figure 12 and Figure 13, extracted from the blue
rectangle area indicated in Figure 12(a). We may safely draw
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FIGURE 14. The enlarged images denoted by the blue rectangle in
Figure 12, (a) ground truth, and (b) the input data after removing seismic
traces with a big gap.

the same conclusion as before from comparing Figure 15,
i.e., the image interpolated using FCU-Net is more accurate
and contains more detailed amplitudes than those interpolated
using U-Net and HRNet. For example, U-Net misses a lot
of the details of the raw complete data in Figure 14(a),
as circled by the red circle in Figure 15(a). Moreover, the rel-
ative amplitude relationship between successive traces at the
reconstructed area is irrational, especially as indicated by the
green arrow in Figure 15(a). Although HRNet outperforms
U-Net in terms of its multi-scale fusion capability, it still has
a significant error when compared with ground truth in Fig-
ure 14(a), and its image is plainly deformed, as represented
by the red circle in Figure 15(b). Fortunately, our FCU-Net
can fuse multi-scale information and accurately locate suc-
cessively sampled traces, which makes it possible to train
a model with good interpolation performance. As a result,
FCU-Net produces the most refined and fidelity reconstruc-
tion results, as seen in Figure 15(c). Furthermore, we present
a quantitative comparison of different deep learning models
in Table 4. As shown in the bold text, the metrics calculated
between FCU-Net based reconstructed results and ground
truth all achieve the best results, i.e., lower MAE and higher
SSIM and SNR. All of these aforementioned test results and
analyses completely demonstrate the effectiveness, availabil-
ity, and validity of FCU-Net in reconstructing successively
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FIGURE 15. The enlarged reconstruction images indicated by the blue rectangle in Figure 12(a), i.e., the reconstructed results of Figure 14(b) predicted

using (a) U-Net, (b) HRNet, and (c) FCU-Net.

sampled seismic data benefiting from its multi-scale infor-
mation fusion capability and successively sampled traces
location capability.

V. CONCLUSION

We suggest a fully connected U-Net (FCU-Net) to han-
dle the problem of reconstructing the successively sampled
traces with a big gap. Specifically, we connect different
resolution representations in parallel and perform repeat-
ing multi-scale fusion in FCU-Net, which maintains high-
resolution representations throughout the process. Seismic
data reconstruction benefits from the effective use of the
shallow high-resolution features and deep high-semantic fea-
tures of the input image. Furthermore, FCU-Net features a
symmetric structure that is comparable to U-Net, i.e., the con-
tracting subnetwork for obtaining contextual information and
the expanding subnetwork for precise localization, which is
better for extracting multi-scale features and locating succes-
sively sampled traces. The numerical examples of synthetic
and field data demonstrate that, in both qualitative and quanti-
tative outcomes, FCU-Net beats the state-of-the-art networks,
i.e., U-Net and HRNet. This validates the superiority and
utility of FCU-Net in reconstructing successively sampled
seismic data.

However, the limitations of the proposed model are still
worth addressing in the future. First, the supervised deep
learning model FCU-Net is suggested for tackling seismic
data reconstruction. In some instances, particularly those
involving field data, collecting ground truth labels for model
training might be costly or challenging. Therefore, devel-
oping a high-performance unsupervised or semi-supervised
deep learning model for interpolating sampled seismic data
will thus be one of the next issues. In addition, FCU-Net
has plenty of potential and can be used for various geolog-
ical applications. For instance, it can be utilized to handle
irregularly sampled seismic data reconstruction or attenuate
random noise given its powerful multi-scale extraction capa-
bilities and precise localization capability.
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