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ABSTRACT This work proposes a new extension to the XLindleymodel called an inverse XLindley distribu-
tion (IXLD). Its probability density function and hazard rate function shapes were deduced mathematically.
Several statistical properties of the IXLD were derived mathematically. We use ten different approaches to
calculate the parameters of the IXLD. The asymptotic behaviour of these estimators were studied thanks to a
comprehensive simulation investigation. Throughmodelling real data sets, the effectiveness and applicability
of the IXLD are examined. This proves that the IXLD better fits the real data set than competing models.

INDEX TERMS Lindley distribution, stress-strength, Anderson-Darling estimation, engineering data,
maximum likelihood estimation, maximum product of spacing.

I. INTRODUCTION
One of the key methods in the study of statistics and probabil-
ity is the simulation of real occurrences and natural phenom-
ena using probability distributions. Because of these factors,
researchers have concentrated on creating probability distri-
butions, despite the fact that the data produced by natural
events cannot be adequately described by existing probability
distributions. This has several implications for how probabil-
ity distributions are generalised and extended.

A new kind of probability distribution, generalised proba-
bility distributions, emerged as a result of the broad accessi-
bility of additional components. The accuracy and sufficiency
of data gathered from natural occurrences as well as the
precision with which the distribution tail shape is described
enhance when a specific parameter is added to a known
probability function. We resorted to probability to lower the
risk element inmany sectors and productions tominimise cost
and time since these events are crucial and are surrounded by
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complexity and hazard. An important topic of statistics is sur-
vival and reliability analysis, which has several applications
in fields including engineering, economics, demography,
medical, actuarial science, and life testing. In the statistical
literature, many lifespan distributions have been established
to provide data modelling in these applied disciplines more
flexibility.

However, there is a method that may be used to increase
the flexibility of the traditional distributions, such the inverse
transformation (IT). Let’s assume that X and T are two
random variables. Many writers have used the PT, such
as X = T−1, to create inverted distributions. For exam-
ple, the generalized inverse-gamma [18], the inverse power
Maxwell [2], the inverse power-Lindley [8], two-parameter
Burr-Hatke distribution [1], the inverse-Lindley with two-
parameter [4], the reverse-Lindley [28], and inverse Power-
Lomax [13]. Some of these models can be obtained as a
special case from the family of distributions presented by
Omair et al. [21].

The primary goal of this study is to provide a novel flexible
distribution that is based on the IT approach, and that has the
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potential to be applied to a variety of phenomena that occur in
real life. This novel model that has been suggested is known
as the inverse XLindley distribution (IXLD). The model that
has been suggested just has one parameter. Hence it can
be classified as a unimodal model. For more information
about papers related to Lindley distribution, see [5], [9], [12],
[14], [15], and [22]. We are concerned with a one-parameter
distribution similar of the one-parameter Lindley distribution
presented by Chouia and Zeghdoudi [10] and defined below
by its probability density function (PDF)

g(x) =
θ2e−θx(θ + x+2)

(θ +1)2
, (1)

and its distribution function (CDF) taking the following form

G(x) = 1−

(
θx

(θ +1)2
+1

)
e−θx . (2)

This paper is presented in the following six sec-
tions. Derivation of our proposed model was presented in
Section II. Many statistical properties of our proposed model
were derived in Section III such as fuzzy reliability, quantile
function, moments, stochastic orders, entropy, and stress-
strength. Ten different methods of estimation were used to
determine proposed model parameters in Section IV and
behaviour of these method were checked in Section V. Ana-
lyzing of the real data set to show the superiority and flex-
ibility of our proposed model was presented in Section VI.
Finally, in Section VII, we presented some of our concluding
remarks.

II. FORMULATION OF THE IXLD
In this section, we proposed an inverted version of the XLind-
ley distribution. If a random variable (r.v for shortly) Y has the
XLindley model (XL), then the r.v X =

1
Y follows the IXLD

with scale parameter θ , its PDF is defined as follows

f (x;θ) =

{
θ2((2+θ )x+1)

(1+θ )2x3
e

−θ
x x,θ > 0

0, otherwise.
(3)

Proposition 1: ∀θ > 0, the PDF (3) is an increasing-
decreasing function.

Proof: The first derivative of the PDF (3) is determined
as follows

d
dx
f (x) = −

θ2

(1+ θ)2
e−

θ
x

x5
(
(
2θ +4)x2 − (θ2 +2θ −3)x− θ

)
,

by equating last equation to zero and solve it with respect to
x, we have

x =
θ

4
−

√
(θ +1)4 +8−3

4(θ +2)
< 0,

x =
θ

4
+

√
(θ +1)4 +8−3

4(θ +2)
> 0,

then, our critical point is

x ′
=

θ

4
+

√
(θ +1)4 +8−3

4(θ +2)
.

The second derivative of the PDF (3) is determined as follows

d2

dx2
f (x) =

θ2e−
θ
x

x7 (θ +1)2
(
6(θ +2)x3 −6(θ2 +2θ −2)x2

× +θ(θ2 +2θ −8)x+ θ2
)
,

d2

dx2
f (x)|x=x′ < 0,

then, ∀θ > 0, x ′
=

θ
4 +

√
(θ+1)4+8−3
4(θ+2) is the unique critical point

which maximize the PDF (3).
Therefore, the mode of IXLD is defined as follws

M∗
=

θ

4
+

√
(θ +1)4 +8−3

4(θ +2)
. (4)

A. SURVIVAL AND HAZARD RATE FUNCTIONS
The CDF of the IXLD is

F(x;θ ) =

(
1+

θ

x(1+ θ )2

)
e−

θ
x . (5)

The following formulas represent the survival and hazard rate
functions of the IXLD respectively

S(x) = 1−

(
1+

θ

x(1+ θ )2

)
e−

θ
x , (6)

h(x) =
θ2e−

θ
x ((2+ θ )x+1)

x2((1− e−
θ
x )(1+ θ)2x− θe−

1
x θ )

. (7)

Proposition 2: Let f (x) and h(x) be the PDF and hazard
rate function of the IXLD respectively, lim

x→0
fIXL(x) = 0. Then

h(x) is an increasing-decreasing function.
Proof: According to Glaser [11] and from the PDF (3),

we have

ρ(x)=−
f

′

(x;θ )
f (x;θ )

= −

(
−2x2θ −4x2 + xθ2 +2xθ−3x+ θ

)
x2((2+ θ )x+1)

.

We have after computations

ρ
′

(x) =
H (x)

x3 (2x+ xθ +1)2
,

where H (x) = ax3 + bx2 + cx+ d, a =
(
−2θ2 −8θ −8

)
<

0, b =
(
2θ3 +8θ2 +2θ −12

)
, c =

(
4θ2 +8θ −3

)
, and

d = 2θ .
In algebra, a cubic equation of the form ax3 + bx2 + cx+

d = 0, has a ̸= 0,b,c,d are real numbers, and its discriminant
1 has three cases as the following

• If 1 > 0, the cubic has three distinct real roots.
• If 1 < 0, the cubic has one real root and two non-real
complex conjugate roots.

• If 1 = 0, the cubic has three multiple real root.
In our case

1 =−336θ10 −4032θ9 −17696θ8 −29120θ7 +10900θ6

+ 76448θ5 +15128θ4 −97840θ3

− 16524θ2 +63504θ −432.
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FIGURE 1. Plots of the pdf of the IXLD.

When 1 > 0, H (x) has three distinct real roots x0 > 0 and
x1,x2 < 0.
When 1 < 0, H (x) has one real root and two non-real

complex conjugate roots, x0 > 0 and z, z̄.
When 1 = 0, H (x) has three multiple real root, x0 = x1 =

x2 > 0.
Then ρ

′

(x) > 0, ∀x < x0, and ρ
′

(x) = 0 and ρ
′

(x) < 0 for
all x > x0, then the hazard function h(x) is an increasing-
decreasing function.

Different Plots of the PDF of the proposed model are
presented in Figure 1 which satisfied Proposition 1. ALso,
hazard function plots of proposed model are presented
garphically in Figure 2 which satisfied Proposition 2.

FIGURE 2. Plots of the HF of the IXLD.

III. STATISTICAL PROPERTIES
A. FUZZY RELIABILITY
The failure time of a system (component) will be represented
by a continuous random variable T . For the calculation of
fuzzy reliability using the following fuzzy probability

RFU (t) =

∫
∞

t
ν(y)f (y)dy, 0 ≤ y< ∞,

with ν(y) is a membership function (degree to which each
element of given universe belongs to a fuzzy set). Thus,
assuming that ν(y) is

ν(y) =


0, y≤ t1
y−t1
t2−t1

, t1 < y< t2, t1 ≥ 0
1, y≥ t2

 .
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TABLE 1. Fuzzy reliability with different values of θ, t1, t2, I .

Using computational analysis of fuzzy number function for
ν(y) whose lifetime y(I ) can be obtained corresponds to some
value of I −Cut, I ∈ [0,1] by ν(y) = I →

(y−t1)
(t2−t1)

= I , then
y(I ) ≤ t1 I = 0

y(I ) = t1 + I (t2 − t1) 0 < I < 1
y(I ) ≥ t2, I = 1

 .

As a result, the fuzzy reliability values may be deter-
mined for all I values. The fuzzy dependability of the inverse
X-Lindley distribution is determined by the fuzzy reliability
definition. The fuzzy reliability of the inverse X-Lindley
distribution can be defined as follows

RFu(t) = (1+
θ

t1(1+ θ )2
)e−

θ
t1 − (1+

θ

y(I )(1+ θ )2
)e−

θ
y(I ) .

Also, we obtained comparison between traditional relia-
bility and Fuzzy reliability, where the traditional reliability is
defined in Equation (6). We executed this comparison by the
following steps

• initial values of a, interval time (t1, t2) and I where 0 <

I < 1.
• Calculate: y(I ) = t1 + I (t2 − t1).
• Estimate IXLD parameter θ̂ , then calculate

R̂Fu(t) = (1+
θ

t1(1+θ)2
)e−

θ
t1 − (1+

θ

y(I )(1+θ )2
)e−

θ
y(I ) .

The numerical results of these comparison are presented
in Table 1. The following observations are based on the
comparison findings

• When the I -Cut increases, the fuzzy reliability increases
and decreases according to the values of t1 and t2.

• The traditional reliability with t1 is lower than the tradi-
tional reliability with t2.

B. QUANTILE FUNCTION
Formulas for mean and variance are difficult to obtain explic-
itly since explicit algebraic expressions for the integrals
involved are not available, quantiles are easy to evaluate. The
quantile function of the IXLD is defined as follows

QX (q) = F−1
X (q) =

−θ

(θ +1)2 +�(q)
, q ∈ [0,1] ,

where �(q) =W
(
−e−(θ+1)2 (θ +1)2q

)
is Lambert function.

C. MOMENTS
The r th moments of the IXLD is determined as follows

E
(
xr

)
=

∫
∞

0
xr

θ2((2+ θ )x+1)
(1+ θ)2x3

e
−θ
x dx

=
θ2

(θ +1)2

∫
∞

0
(2x+ xθ +1)xr−3e−

1
x θ dx,

by using the definition of the inverse gamma function∫
∞

0 x−α−1e
−θ
x = θ−α0(α), we have

E
(
xr

)
=

θ2

(θ+1)2
(
θ r−20(2−r)+θ r0(1−r)+2θ r−10(1−r)

)
,

for r < 1 which E (xr ) = ∞, for r ≥ 1, which implies that
all moments of the IXLD are infinite. Thus, the IXLD has
no mean and no variance. On the other hand, the negative
moments are useful in many domain and application (life test-
ing problems, estimation purposes). Therefore, we discuss the
r th negative moments for this distribution. The r th negative
moment of the IXLD is determined as follows

E
(
x−r)

=

∫
∞

0
x−r θ

2((2+ θ )x+1)
(1+ θ )2x3

e
−θ
x dx

=
θ2

(θ+1)2

∫
∞

0
(2x+xθ+1)x−r−3e−

1
x θdx=

θ2

(θ+1)2

×
(
θ−2−r0(r+2)+ θ−r0(r+1)

+ 2θ−1−r0(r+1)
)
, ∀r > 0.

D. STOCHASTIC ORDERS
Definition 1: Consider T1 and T2, two random variables.

Therefore, T1 is seen as being smaller than T2 in

• Stochastic order (T1 ≺s T2, if FT1 (y) ≺ FT2 (y), ∀y.
• Convex order (T1 ≤ct1 T2), if for all convex
functionsφand provided expectation exist, E[φ(T1)] ≤

E[φ(T2)].
• Hazard rate order (T1 ≺hr T2), if hT1 (y) ≥ hT2 (y), ∀y.
• Likelihood ratio order ( T1 ≺lr T2), if

fT1 (y)
fT2 (y)

is decreasing
in y.

Theorem 1: Suppose that Xi ∼ IXL(θi), i= 1,2. If θ1 ≤ θ2,
then X1 ≺lr X2,X1 ≺hr X2,X1 ≺s X2 and X1 ≤cx X2.

Proof:We have

fX1 (t)
fX2 (t)

=
θ21 (1+ θ2)

2 ((2+ θ1) t+1)

θ22 (2+ θ1)
2 ((1+ θ2) t+1)

e
−

(θ1 − θ2)

t .

For simplify we use ln
(
fX1 (t)
fX2 (t)

)
. Now, we can find

d
dt

ln
(
fX1 (t)
fX2 (t)

)
=

2+ θ1

(θ1 +2) t+1
−

(2+ θ2)
(θ2 +2) t+1

+
(θ1 − θ2)

t2
.

To this end, if θ1 ≤ θ2, we have d
dt ln

(
fX1 (t)
fX2 (t)

)
≤ 0. This means

that X1 ≺lr X2. proved.
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E. ENTROPY
The entropy of a random variable, denoted by the letter X ,
is used to quantify the degree to which uncertainty varies.
Rényi entropy [26] is defined by

J (γ ) =
1

1−γ
log{

∫
f γ (x)dx},

where γ > 0 and γ ̸= 1. For the IXLD, it is determined as
follows

J (γ ) =
1

1−γ
log

∫
∞

0

θ2γ

(1+ θ )2γ
((2+ θ )x+1)γ

x3γ
e

−θγ
x dx

=
1

1−γ
log[

θ2γ

(1+ θ )2γ

∞∑
j=0

(
γ

j

)
(2+ θ )j

∫
∞

0

e
−θγ
x

x3γ−j dx

=
1

1−γ
log[

θ2γ

(1+ θ )2γ

∞∑
j=0

(
γ

j

)
(2+ θ )j

0(3γ − j−1)

(θγ )3γ−j−1 .

F. ESTIMATION OF THE STRESS-STRENGTH PARAMETER
As it measures system performance, the stress-strength
parameter (R) is crucial to the reliability analysis. Addition-
ally, the chance of a system failure is provided by R; a system
fails anytime the applied stress exceeds its capacity. Let X ∼
IXL(θ1) be the strength of a system subject to stress Y , and
Y ∼ IXL(θ2), X and Y are independent of each other. In our
case, the stress-strength parameter R is given by

R= P(Y ≺ X )

=

∫
∞

0

θ21 ((2+ θ1)x+1)
(1+ θ1)2x3

e
−θ1
x

(
1+

θ2

x(1+ θ2)2

)
e−

θ2
x dx

=
θ21

(1+ θ1)2

∫
∞

0
(
(2+ θ1)x+1

x3
)e−

θ1+θ2
x dx

+
θ21 θ2(2+ θ1)

(1+θ1)2(1+θ2)2

∫
∞

0
x−3e−

θ1+θ2
x dx+

∫
∞

0
x−4e−

θ1+θ2
x dx.

by using
∫

∞

0
e−

a
x

xb+1 dx =
0(b)
ab2

, we have

R=
θ21

(θ1 +1)2 (θ2 +1)2 (θ1 + θ2)
3

(
θ21 θ22 +3θ21 θ2

+ θ21 +θ1θ
3
2 +6θ1θ22 +9θ1θ2+3θ1+3θ32 +10θ22 +7θ2+2

)
.

IV. ESTIMATION OF IXLD PARAMETERS
In this section, we’ll examine how to estimate IXLD param-
eter using standard methods. Maximizing or minimising an
objective function will provide this estimator, as we’ll see.

• The estimated parameter of IXLD is obtained by the
maximum likelihood estimation (MLE) approach by
maximizing the following definition

lnL = 2lnθ −2ln(θ+1)−3lnx+ln((2+ θ )x+1)−
θ

x
.

• The estimated IXLD parameter is obtained via
Anderson-Darling estimation (ADE), by minimizing the

following equation

A(xi) = −n−
1
n

n∑
i=1

(2i−1)
[
−

θ

xi
+log

(
1+

θ

xi(1+θ )2

)
+ log

(
1−

(
1+

θ

xi(1+ θ )2

)
e−

θ
xi

)]
.

• The estimated IXLD parameter is obtained via right-tail
Anderson-Darling estimation (RADE), by minimizing
the following equation

R(xi) =
n
2

−2
n∑
i=1

(
1+

θ

xi(1+ θ )2

)
e−

θ
xi

−
1
n

n∑
i=1

(2i−1) log
(
1−

(
1+

θ

xn+1−i(1+ θ )2

)
e
−

θ
xn+1−i

)
.

• The estimated IXLD parameter is obtained via left-tailed
Anderson-Darling estimation (LTADE), by minimizing
the following equation

L(xi) = −
3
2
n+2

n∑
i=1

(
1+

θ

xi(1+ θ )2

)
e−

θ
xi

−
1
n

n∑
i=1

(2i−1)
[
−

θ

xi
+ log

(
1+

θ

xi(1+ θ )2

)]
.

• The estimated IXLD parameter is obtained via Cramér-
von Mises estimation (CVME), by minimizing the fol-
lowing equation

C(xi) = −
1

12n
+

n∑
i=1

[(
1+

θ

xi(1+ θ )2

)
e−

θ
xi −

2i−1
2n

]2
.

• The estimated IXLD parameter is obtained via least-
squares estimation (LSE), by minimizing the following
equation

V (xi) =

n∑
i=1

[(
1+

θ

xi(1+ θ )2

)
e−

θ
xi −

i
n+1

]2
.

• The estimated IXLD parameter is obtained via weighted
least-squares estimation (WLSE), by minimizing the
following equation

W (xi)

=

n∑
i=1

(n+1)2(n+2)
i(n− i+1)

[(
1+

θ

xi(1+θ )2

)
e−

θ
xi −

i
n+1

]2
.

• The estimated IXLD parameter is obtained via maxi-
mum product of spacing estimation (MPSE), by maxi-
mizing the following equation

Ψ (xi) =
1

n+1

n+1∑
i=1

logΦi(xi),
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TABLE 2. Simulation values of BIAS, MSE and MRE of IXLD for (θ = 0.25).

where

Φi(ξ )=
(
1+

θ

xi(1+θ )2

)
e−

θ
xi −

(
1+

θ

xi−1(1+θ )2

)
e
−

θ
xi−1 .

• The estimated IXLD parameter is obtained viaminimum
spacing absolute distance estimation (MSADE), bymin-
imizing the following equation

∆1 (xi) =

n+1∑
i=1

|Φi−
1

n+1
|.

• The estimated IXLD parameter is obtained via mini-
mum spacing absolute-log distance estimation method
(MSALDE), by minimizing the following equation

∆2 (xi) =

n+1∑
i=1

| logΦi− log
1

n+1
|.

V. NUMERICAL SIMULATION
All of the estimatemethods covered in Section IVwill be used
in this section. Now that we have these various estimation
methods, we will examine how well they perform when used
to estimate the IXLD’s parameter. Additionally, by contrast-
ing the numerical values of each strategy, we assess a compar-
ison of each approach by determining average of bias (BIAS)
|Bias(̂θθθ )| =

1
M

∑M
i=1 |̂θθθ − θθθ |, mean squared errors (MSE),

MSE =
1
M

∑M
i=1 (̂θθθ − θθθ )2, and mean relative errors (MRE)

MRE =
1
M

∑M
i=1 |̂θθθ − θθθ |/θθθ . Selecting the best approach for

model parameter estimatemay be based on simulation results.
The M = 10000 random samples from IXLD are generated
using the R programming language with sample sizes of 15,
35, 80, 120, 180, 250, and 500.

Tables 2-6 provide the numerical results of the simulation,
and each number’s power is related to its rank in relation to
other methods of estimating along the same line. Table 7 dis-
plays the partial and total ranks of our estimator. When taking
random samples from the IXLD, we discover that MPSE is
the most effective method for estimated IXLD parameter.

VI. REAL DATA ANALYSIS
The use of data obtained from the ‘‘real world’’ helps illus-
trate the adaptability of the distribution that is being discussed
in this section. The first real world data set describes the

TABLE 3. Simulation values of BIAS, MSE and MRE of IXLD for (θ = 0.75).

TABLE 4. Simulation values of BIAS, MSE and MRE of IXLD for (θ = 1.0).

TABLE 5. Simulation values of BIAS, MSE and MRE of IXLD for (θ = 2.5).

TABLE 6. Simulation values of BIAS, MSE and MRE of IXLD for (θ = 4).

lengths of time it takes for 20 different components to fail.
It was given by Murthy et al. [20], and its values are as
follows: 70.175, 8.851, 2.968, 9.763, 57.637, 57.337, 9.773,
48.442, 6.662, 37.386, 79.333, 85.283, 8.608, 6.56, 54.145,
4.229, 7.11, 10.578, 30.112, 19.136. The second real world
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TABLE 7. Partial and overall ranks of all the methods of estimation of
IXLD by various values of model parameters.

TABLE 8. Numerical values for analyzing the failure real data set.

TABLE 9. Numerical values for analyzing the repair time real data set.

data set describes repair times for an airborne communication
transceiver. It was given by Lemonte et al. [16], and its values
are as follows: 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80,
1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00,
2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70,
5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

FIGURE 3. Histogram of the failure real data set with the fitted PDF, CDF,
SF and P-P plots.

FIGURE 4. Histogram of the repair time real data set with the fitted PDF,
CDF, SF and P-P plots.

In order to demonstrate how adaptable IXLD is, we are
going to test it in contrast to a variety of well recognised
models, including as XL, power XLindley (PXL) [19], Lind-
ley (L), Weibull Lindley (WL) [6], two parameter Lindley
(TPL) [27], Quasi Lindley (QL) [24], gamma Lindely (GL),
extend Lindley (EXL) [7], Weibull (W), inverse log-logistic
(ILL) [23], inverse-power logistic-exponential (IPLE) [3],
inverse Weibull (IW), inverse weighted Lindley (IWL) [25],
inverse Nakagami-M (INM) [17] distributions.

We make use of a variety of analytical criteria in order
to identify which of the models available to us is the most
relevant one to apply with the failure data set. These ana-
lytical criteria are Akaike information criterion (AC), the
correct Akaike information criterion (CAC), Bayesian infor-
mation criterion (BC), Hannan information criterion (HC).
In addition to this, we base our decision on a range of
other variables on the overall goodness-of-fit of the model,
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FIGURE 5. TTT plot and fitted HRF of the IXL model for the failure real
data set.

such as Anderson Darling (F1), Cramér–von Mises (F2)
and Kolmogorov–Smirnov (F3) with its p-value (F3(p)). The
model that has the smallest values for all of these metrics,
with the exception of F3(p), is the best one that will match
the failure real data set.

For the two real data sets that were being taken into consid-
eration for assessment, analytical measurements are provided
together with the estimations made by MLE and the related
standard errors (SE). Tables 8 and 9 display a report of these
numerical values. This leads us to conclude that the IXLD
outperforms other compared models. The P-P plot and the
fitted PDF, CDF, and SF plots are used to fit IXLD to the
two real data sets which shown in Figures 3 and 4. The IXLD
was shown to be a good match using the two actual data sets.
For the two real data sets, the TTT and estimated HRF of
the IXLD plots are shown in Figures 5 and 6, respectively.
Figures 7 and 8 illustrate the behaviour of the unimodal

FIGURE 6. TTT plot and fitted HRF of the IXL model for the repair time
real data set.

FIGURE 7. The profile of the log-likelihood function for θ parameter of
the failure real data set.

log-likelihood function with estimated parameter for the two
real data set, respectively.
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FIGURE 8. The profile of the log-likelihood function for θ parameter of
the repair time real data set.

VII. CONCLUSION
In this study, we presented the IXLD, a relatively new exten-
sion of the Lindley distribution. The inverse transformation
along with the Lindley distribution is used to derive it. A vari-
ety of the recommended model’s statistical characteristics
were demonstrated. Traditional estimation techniques, such
as maximum likelihood estimation and nine other methods,
were used to estimate the indicated model parameters. The
behaviour of the IXLD parameters was examined using esti-
mation approaches and data sets created at random. The
IXLD’s usefulness and superiority over competing models
were shown using a real-world data sets. We came to the
conclusion that it was the greatest option out of all its rivals
since it had the lowest values of the determined measures
and the highest P-value. Additionally, we graphed the profile-
likelihood function of the IXLD with its parameter for the
real data sets to confirm that the roots of the proposed distri-
bution’s MLE give a maximum value. This figure show that
the profile-likelihood function of the estimated parameter is
unimodal.
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