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ABSTRACT When using machine learning classifiers to classify data in cloud computing, it is crucial
to maintain data privacy and ensure the correctness of classification results. To address these security
concerns, we propose a new verifiable homomorphic secret sharing (VHSS) scheme. Our approach involves
distributing the task of executing a polynomial form of the machine learning classifier among two servers
who produce partial results on encrypted data. Each server cannot obtain any data information, and the
classification result can be reconstructed and verified using a verification key in conjunction with the two
partial results. Compared to previous VHSS schemes, our scheme can compute the degree of polynomials
as high as the polynomials in the system security parameters while performing comparably to homomorphic
secret sharing (HSS) schemes. We implement our proposed scheme and demonstrate its application to
decision trees (a type of machine learning classifier). Our experiments show that our scheme is twice as
fast as previous VHSS schemes when evaluating decision trees with depths ranging from 2–14.

INDEX TERMS Data privacy, verification, homomorphic secret sharing, decision trees, multi server, cloud
computing.

I. INTRODUCTION
Machine learning classification has been widely used in
medical predictions, credit investment and financial risk pre-
diction [39], [40]. The typical process of using a machine
learning classifier may generally be as follows: a company
trains a machine learning classifier, and the users send their
data to the company to classify the data. When faced with
numerous classification requests, the company needs tomain-
tain certain hardware resources to ensure that the classifi-
cation requests can be responded to in time. With powerful
computing capabilities and popular prices, cloud computing
can free the company from heavy computations, and the com-
pany no longer needs to own or maintain hardware facilities.
In more detail, the users outsource the data x1, . . . , xn to the
servers, and the company sends the classifier f to the servers.
The servers compute and return the result y = f (x1, . . . , xn)
to the users. However, this scenario has significant risks [14],
[24], [28], [42]. At first, data is outsourced to the servers in
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plain text, which can easily lead to data leakage. Secondly,
the servers return wrong results when hijacked or choose to
execute the computing task f ′ ̸= f with lower computational
complexity to reduce costs.

A natural idea to solve the first problem is to use fully
homomorphic encryption (FHE) [23]. The company employs
existing technology [35], [41] to convert themachine learning
classifier into a polynomial. Then, the server can homo-
morphically compute the ciphertext of y on FHE-encrypted
ciphertexts of x1, . . . , xn. However, while FHE can safe-
guard data privacy, it may not be practical in terms of per-
formance [30]. Alternatively, Homomorphic Secret Sharing
(HSS) [7] offers an efficient and multi-server version of
FHE. Specifically, HSS by BKS [7] eliminates costly key-
switching and modulus-reduction steps used in FHE.

Although HSS can protect the data privacy, none of the
current HSS schemes can verify the correctness of the results
of machine learning classifiers. Currently, there are five
works [16], [17], [36], [37], [38] that focus on verifiable HSS
(VHSS) schemes. These schemes ensure both data privacy
and result verification. However, these VHSS schemes may
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not be suitable for machine learning classifiers due to their
limitations. The VHSS scheme proposed by Tsaloli et al. [36]
has been proven to be insecure [26]. Although Tsaloli et al.
proposed two secure VHSS schemes in [37] and [38], they
only support computation of linear polynomials which is
insufficient for machine learning classifiers that often require
higher degree polynomials.

There is also a VHSS scheme [17] that supports computing
higher degree polynomials, but its capability is limited by the
number of servers. As the degree of the polynomial increases,
more servers are required to perform the computation. The
VHSS of CZ [16] is based on the HSS of BKS [7]. In order
to ensure verifiability, the servers of CZ must create a tag for
every computation instruction, resulting in twice the amount
of computation performed by BKS’s servers. In summary,
the current VHSS schemes do not meet the requirements for
machine learning classifiers. They fail to fulfill three key cri-
teria: (1) capacity to compute high-degree polynomial form of
machine learning classifiers; (2) ability to increase the degree
of polynomial without being restricted by server numbers;
and (3) capability to achieve performance comparable to that
of HSS of BKS [7].

A. OUR CONTRIBUTION
The hypothesis of our research is that a VHSS scheme can
meet requirements (1)-(3). We introduce the first VHSS
scheme that satisfies these requirements and enables privacy-
preserving and verifiable machine learning classification in
cloud computing. In our scheme, the users send the cipher-
texts of the data to two servers, and the company converts the
machine learning classifier into a polynomial and distributes
it to both servers. Each server independently execute the
polynomial on the ciphertexts without interaction, and sends
a partial result to the users for reconstruction and verification
of the final classification result. Our contributions are as
follows:
• Privacy preservation: We use Public-Key Encryption
with Nearly Linear Decryption (PKE-NLD) to encrypt
data to protect data privacy. PKE-NLD ensures that
any user holding the public key encrypts its data and
any single server can not obtain information about
the data.

• High-degree polynomial:With PKE-NLD, our scheme
enables poly(λ) (a polynomial function in the security
parameter λ) times distributed additions and multiplica-
tions between two servers. This enables the computation
of polynomials with a degree of poly(λ).

• Verification: The servers need to compute a tag for the
classification result. The correctness of the result can be
verified by using the tag and the verification key, and
any probabilistic polynomial-time malicious adversary
cannot convince the users to accept a wrong result.

• Efficient server computing:To improve server-side effi-
ciency, we have applied new server-side algorithms to
avoid generating a tag for each computation instruction.

Experiments show that the computational complexity of
our scheme on the server side is only half that of CZ.

B. RELATED WORK
1) DIFFERENT PRIVACY (DP)
DP guarantees that the server can compute the function f
on appropriately calibrated noisy data without exposing any
confidential information. Despite the existence of various DP
models, such as Local DP [19], Metric DP [10], and Shuffled
DP [3], DP alone cannot verify the correctness of the result y.
Moreover, the primary constraint of DP is that the client can
only obtain a result with noise, rather than the original result y.
Our scheme, however, achieves both data privacy protection
and result verification while obtaining noise-free result.

2) MULTIPLICATIVE SECRET SHARING (MSS)
The use of MSS [8] enables the sharing of a set of data
x1, . . . , xd among multiple servers. Each server can compute
a partial result with its share of the data and the sum of all par-
tial results is equal to

∏d
i=1 xi. The MSS scheme constructed

by Barkol et al. [8] can achieve information theory security
and have a flexible access structure. At present, there is no
literature or technology to show that the MSS scheme can be
transformed into a scheme that supports the computation of
general polynomials. Compared with our VHSS model, MSS
requires a non-constant number of servers and only allows
the computation of monomials.

3) HOMOMORPHIC SIGNATURES/MACs
Homomorphic signatures (HomSigs) [27] enable a user to
sign a set of data x1, . . . , xn using a secret key, and a server can
then homomorphically compute a function f to obtain both
y = f (x1, . . . , xn) and a short signature µ for y. The resulting
(µ, y) can be verified by anyone using a public key. Existing
HomSigs [12], [22] rely on a single server and expose the data
in clear to the server. In contrast, Homomorphic MACs [11],
[25] are symmetric-key alternatives to HomSigs that use a
single server and leave the data in clear.

4) VERIFIABLE COMPUTATION (VC)
The VC model consists of two phases [2]. During the offline
phase, the company generates an encoding of f to send to
the server. In the online phase, the user encodes the data to
be processed by the server. The server then responds with
an encoding of the result y and a proof, and the user verifies
the encoding before reconstructing y. Some single-server VC
schemes [2], [5], [13], [43] ensure data privacy, but rely on
low-efficiency FHE or only supportmatrix-vector multiplica-
tion. In contrast, our scheme can compute polynomial func-
tions without FHE. Furthermore, while multiple-server VC
schemes [1], [15] have been explored, they either leave data
unprotected or require complex interactions among servers,
which our non-interactive scheme avoids.
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C. ORGANIZATION
Section II includes the introduction of the participants in
our system and the threat model. Section III introduces the
notations and cryptographic primitives used in our scheme.
In Section IV, we introduce our scheme and analyze its
security. In Section V, we implement the proposed scheme
and show its performance. Finally, our discussions and con-
clusions are presented in Sections VI and VII, respectively.

II. PRELIMINARIES AND CRYPTOGRAPHIC PRIMITIVES
We denote with λ ∈ N a security parameter, use poly(λ)
to denote the polynomial function in λ, and use negl(λ) to
denote the negligible function in λ. Let PPT denote proba-
bilistic polynomial time.

For any integer n > 0, we denote [n] = {1, . . . , n}.
For any finite set S, we denote by s ← S the process of
sampling s uniformly at random from S. For any real number
a ∈ R, ⌊a⌉ ∈ Z is the integer closest to a, where we round
up if the first decimal place of a is ≥ 5. We denote by
R = Z[X ]/(XN + 1) the ring of integer-coefficient polyno-
mials modulo XN + 1. For any integer p > 0, we denote
Rp = R/pR = Zp[X ]/(XN + 1). For any a = a(0) +
· · · + a(N−1)XN−1 ∈ R, ∥a∥∞ = maxN−1i=0 |a

(i)
| is the infinity

norm of a.

A. PUBLIC-KEY ENCRYPTION WITH NEARLY LINEAR
DECRYPTION (PKE-NLD)
PKE-NLDwas introduced by Boyle et al. [7], and its security
under the Ring-LWE (RLWE) problem [29]. PKE-NLD is
called near-linear decryption because its decryption algo-
rithm first applies a linear function to the ciphertext and then
performs rounding.

Compared with a general PKE, a PKE-NLD has two
additional algorithms: the key-dependent message oracle
(OKDM) and the distributed decryption (DDec). OKDM
allows anyone to use the public key pk and the data x to
compute an encryption of x · sk, without knowing the secret
key sk. DDec allows two servers to perform decryptions dis-
tributively: by running DDec, each server can use an additive
share of sk to decrypt a ciphertext of x to compute an additive
share of x, and each server can also use an additive share of
x ·sk to decrypt a ciphertext of x ′ to compute an additive share
of x · x ′.

An RLWE-based PKE-NLD (Figure. 1) may be parameter-
ized by:

— κ ∈ N, a correctness parameter (each Mult instruction
in our scheme gives the correct result with probability
≥ 1− 2−κ ).

— Bmsg ∈ N, a power of 2 and amagnitude bound to ensure
that the value of any intermediate result in the process of
computing y = f (x1, . . . , xn) does not exceed Bmsg.

— R = Z[X ]/(XN + 1), a ring where N is a power of 2.
— Dsk, a distribution over R from which the secret key is

sampled.

FIGURE 1. RLWE-based instantiation of PKE-NLD [7].

— hsk ∈ N, a power of 2 and an upper bound on the number
of non-zero terms in the secret key sampled from Dsk.

— Bsk ∈ N, a power of 2 and an upper bound on the infinity
norm of the secret key sampled from Dsk.

— Derr, an error distribution over R.
— Berr ∈ N, an upper bound on the infinity norm of the

error sampled from Derr.
— p, q ∈ N, two powers of 2 such that p = 2κ+2

· Bmsg ·

N · hsk · Bsk, q ≥ p · 22κ+3 · Bmsg ·N 2
· (2hsk + 1) · Berr

and p|q.
— M = Rp, a message space.
— C = R2q, a ciphertext space.

III. SYSTEM MODEL
First, we introduce VHSS system model that can be
used for privacy-preserving and verifiable machine learning
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FIGURE 2. An illustration of system.

classification in cloud computing. The syntax of the building
blocks of our model is as follows:
— Gen(1λ): On input a security parameter 1λ, the key gen-

eration algorithm outputs a public key pk, a verification
key vk and a pair (ek1, ek2) of (private) evaluation keys.

— Enc(pk, x): On input a public key pk and a message x ∈
M, the encryption algorithm outputs a ciphertext ct ∈
C, where C is the ciphertext space.

— Eval(b, ekb, (ct1, . . . , ctn), f ): On input an evaluation
key ekb, a vector (ct1, . . . , ctn) of n ciphertexts and
a function f (x1, . . . , xn), the bth (b ∈ [2]) server’s
evaluation algorithm outputs a partial result (yb, τb).

— Ver(vk, ((y1, τ1), (y2, τ2))): On input a public verifica-
tion key pvk and two partial result (y1, τ1), (y2, τ2),
the verification algorithm outputs a result y (which is
believed to be the correct result) or an error symbol ⊥
(to indicate that at least one of the servers is cheating).

In our model, there are four types of participants: a trusted
institution, multiple users, a company with machine learn-
ing classifiers and two non-communicating servers S1,S2.
We provide an intuitive illustration of the system in Figure 2.
In general, our VHSS scheme is executed as follows.
1. The trusted institution runsGen(1λ) to generate the keys

(pk, vk, (ek1, ek2)). The public key pk is sent to all
participants. The evaluation key ekb is sent to the server
Sb. The verification key vk is sent to the users.

2. Every user encrypts its data x into a ciphertext ct ←
Enc(pk, x) and uploads ct to both servers. And, the
company converts the machine learning classifier into
a polynomial function f , and sends f to both servers.

3. Each server Sb locally computes an additive share yb
(i.e. y = y1 + y2 mod q) and its authentication τb of
y = f (x1, . . . , xn) using the evaluation key ek on the
ciphertext ct1, . . . , ctn.

4. Each user uses y1 and y2 returned by the servers to
reconstruct y, and uses the verification key vk and τ1,
τ2 to verify the correctness of y.

In our scheme, the trusted institution and the users are
considered to be honest and not colluding with any other
participants. Our scheme needs to rely on a trusted authority
to distribute keys, which may imply a single point of failure.
In future work, we will explore models that do not rely on

FIGURE 3. The framework of our scheme.

trusted authorities. Users want to get correct classification
results, then they have no incentive to break the normal
operation of the scheme. Two non-communicating servers
are considered malicious. Each server has the incentive to
obtain information about the data. The servers may return
wrong results for some economic reasons and internal or
external attacks. Furthermore, we adopt the same assumption
in related works [4], [6], [7], [16], [20], [21], [31], [33] that
the two servers do not collude. It is feasible to consider two
non-colluding servers in reality, and the servers can be rented
from two different cloud server providers to ensure that the
two servers do not collude.

IV. OUR SCHEME
In this section, we introduce a newVHSS scheme for privacy-
preserving and verifiable machine learning classification in
cloud computing and perform a security analysis of our
scheme.

A. THE CONSTRUCTION OF OUR SCHEME
We show the framework of our scheme in Figure 3 to give
a concise overview. At first, the machine learning classifier
is equivalently transformed into a multivariate polynomial
function by existing techniques [35], [41]. In order to protect
the privacy of data, we use OKDM algorithm of PKE-NLD
to encrypt data. The computation of a polynomial over the
ciphertext of data can be composed of five basic instruc-
tions: Conversion (Convert), Addition (Add), Multiplication
(Mult), Scalar Multiplication (sMult) and Output (Output).
These instructions are based on the DDec algorithm of PKE-
NLD. Finally, the classification result is verified by the Veri-
fication (Ver) algorithm.

As mentioned in Section III, we divided our scheme into
four stages: key generation, encryption, evaluation, and veri-
fication. Below we describe these four stages in detail.

1) KEY GENERATION
This stage is mainly responsible by trusted institution,
including parameter generation, key generation and key
distribution.

• Parameter generation. First, the trusted institution
chooses the upper bound Bmsg (powers of 2) to ensure
that the value of any intermediate result in the pro-
cess of computing y = f (x1, . . . , xn) does not exceed
Bmsg. Next, the trusted institution selects the appropriate
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parameter for PKE-NLD according to Bmsg. The param-
eters for PKE-NLD include distributions Dsk, Derr,
bounds Bsk,Berr ∈ N, the number hsk of non-zero terms
in a secret key, a polynomial ring R = Z[X ]/(XN + 1),
a message spaceM = Rp, a ciphertext space C = R2q,
whereBsk, hsk,N , p, q are powers of 2, p = 2κ+2

·Bmsg·

N · hsk ·Bsk, q ≥ p · 22κ+3 ·Bmsg ·N 2
· (2hsk+ 1) ·Berr.

• Key generation. First, the trusted institution generates
a key pair (pk, sk) ← PKE.Gen(1λ), where sk =
s = (1, ŝ) ∈ R2q and ∥̂s∥∞ ≤ Bsk. Next, the trusted
institution randomly chooses s1←R2q and computes s2 =
sk − s1 mod q. Then, the trusted institution randomly
chooses α = (α(0), . . . , α(N−1)) ∈ R and ∥α∥∞ ≤ 1,
and lets verification key vk = α. After that, the trusted
institution computes Cα

← PKE.OKDM(pk, α), where
Cα is a ciphertext of α · s = (α, α · ŝ). Finally, the trusted
institution draws a key K←K for a pseudorandom func-
tion PRF : K × {0, 1}∗ → R2q and sets the evaluation
key ekb = (sb,Cα,K ) for b = 1, 2.

• Key distribution. First, the trusted institution distributes
the public key pk to all participants. Next, the trusted
institution distributes the evaluation key ekb to the server
Sb for b = 1, 2. Finally, the trusted institution distributes
the verification key vk to the users.

2) ENCRYPTION
At first, each user encrypts its data x as Cx

←

PKE.OKDM(pk, x), where Cx is a ciphertext of x · s =
(x, x ·ŝ). Next, each user sends the ciphertextCx to the servers
S1 and S2. Given Cxi for i ∈ [n], each server Sb (b ∈ [2])
cannot obtain any information about xi, and each server can
use an evaluation key ekb to locally compute an additive share
of y = P(x1, . . . , xn) with Cxi for i ∈ [n].

3) EVALUATION
The evaluation algorithm of our scheme is divided into the
following five instructions: conversion Convert, addition
Add, multiplication Mult, scalar multiplication sMult and
output Output. Each server will parse polynomial form f as a
sequence of these 5 instructions, which are sorted according
to a unique identifier id ∈ {0, 1}∗. Each server will execute
these instructions in order of identifier id. Next, we will
describe these instructions in detail.
• Conversion Convert. The instruction Convert can con-
vert a ciphertext Cx

= (cx , cx·ŝ) of (x, x · ŝ) into an addi-
tive share of (x, x · ŝ).Convert is essentially based on the
DDec algorithm in PKE-NLD, which allows each server
uses an additive share sb of sk to decrypt a ciphertext of
(x, x · ŝ) to obtain an additive share of (x, x · ŝ). Convert
is a basic instruction. The remaining four algorithms all
take additive shares as one of the inputs. The formal
definition of the Convert is as follows.
Convert(id, ekb,Cx) : the server Sb computes

txb ← (DDec(sb, cx), DDec(sb, cx·ŝ))
+ (2b− 3) · PRF(K , id) mod q,

where txb is an additive share of (x, x · ŝ), i.e. (x, x · ŝ) =
tx1 + t

x
2 mod q.

• Addition Add. The essence of Add is to use the property
of additive share to add txb and tx

′

b to obtain an additive
share tx+x

′

b of (x+ x ′, (x+ x ′) · ŝ). The formal definition
of Add is as follows.
Add(id, ekb, txb , t

x ′
b ) : the server Sb computes

tx+x
′

b ← txb + t
x ′
b

+ (2b− 3) · PRF(K , id) mod q mod q,

where tx+x
′

b is an additive share of (x + x ′, (x + x ′) · ŝ),
i.e. (x + x ′, (x + x ′) · ŝ) = tx+x

′

1 + tx+x
′

2 mod q.
• Multiplication Mult. Mult is essentially based on the

DDec algorithm in PKE-NLD, which allows each server
can use an additive share txb of (x, x · ŝ) to decrypt a
ciphertext Cx ′

= (cx
′

, cx
′
·ŝ) of (x ′, x ′ · ŝ) to obtain an

additive share tx·x
′

b of (x ′, x ′ · ŝ). The formal definition of
Mult is as follows.
Mult(id, ekb, txb ,C

x ′ ) : the server Sb computes

tx·x
′

b ← (DDec(txb , c
x ′ ), DDec(txb , c

x ′·ŝ))

+ (2b− 3) · PRF(K , id) mod q,

where tx·x
′

b is an additive share of (x, x · ŝ), i.e. (x · x ′, x ·
x ′ · ŝ) = tx·x

′

1 + tx·x
′

2 mod q.
The 1st component of tx·x

′

b is an additive share of x · x ′.
Note that the 2nd component of tx·x

′

b does not contribute
to the reconstruction of x · x ′. However, it is required to
enable further multiplications. For example, decrypting
Cx ′′ with tx·x

′

b will give an additive share of x · x ′ · x ′′ · s.
• Scalar Multiplication sMult. sMult can obtain an addi-
tive share of (c · x, (c · x) · ŝ) from a constant c ∈ Rp and
an additive share of (x, x · ŝ). The formal definition of
sMult is as follows. sMult(id, ekb, c, txb ) : the server Sb
computes

tc·xb ← c · txb + (2b− 3) · PRF(K , id) mod q,

where tc·xb is an additive share of (c · x, c · x · ŝ), i.e.
(c · x, c · x · ŝ) = tc·x1 + t

c·x
2 mod q.

• Output Output. The above instructions finally result in
each serverSb has tyb = (tyb, t̂

y
b) which is an additive share

of (y, y · ŝ). In particular, tyb ∈ Rq is an additive share of
y ∈ Rp. For result reconstruction, the Output instruction
only needs to return tyb . For verification, each server Sb
uses tyb , an additive share of y · s, and Cα

= (cα, cα·ŝ),
a ciphertext of (α, α · ŝ), to compute an additive share
τ b = (τb, τ̂b) of α · y · s. In particular, τ1 and τ2 are
additive shares of α · y in the ring Rq, i.e. τ1 + τ2 = α ·

y mod q. The formal definition of Output is as follows.
Output(id, ekb, t

y
b) : the server Sb computes

τ b← (DDec(tyb, c
α), DDec(tyb, c

α·ŝ))

(2b− 3) · PRF(K , id) mod q.

Next, the serverSb parses tyb = (tyb, t̂
y
b) and τ b = (τb, τ̂b).

Finally, the server Sb outputs (tyb, τb).
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4) VERIFICATION
The users receive (ty1, τ1) and (ty2, τ2) from the two servers
respectively. To reconstruct y, the users compute y = ty1 +
ty2 mod q. To verify y, the company uses the verification key

vk = α to check vk · y ?
= τ1 + τ2 mod q.

B. SECURITY ANALYSIS
Our scheme focuses on two security properties: privacy
preservation and verification. We will now examine how our
scheme achieves these objectives.

1) CORRECTNESS
The property of correctness requires that the company always
outputs the correct result y, if the scheme is faithfully exe-
cuted. We prove that the subroutines of the evaluation algo-
rithm and the verification algorithm maintain correctness as
follows:

• ConsiderConvert(id, ekb,Cx) for b ∈ [2], we have tx1+
tx2 ≡ (DDec(s1, cx), DDec(s1, cx·ŝ)) − PRF(K , id) +
(DDec(s2, cx), DDec(s2, cx·ŝ)) + PRF(K , id) ≡

(DDec(s, cx), DDec(s, cx·ŝ)) ≡ (x, x · ŝ) (mod q).
• Consider Add(id, ekb, txb , t

x ′
b ) for b ∈ [2], we have

tx+x
′

1 + tx+x
′

2 ≡ tx1 + tx
′

1 − PRF(K , id) + tx2 + tx
′

2 +

PRF(K , id) ≡ (x + x ′, (x + x ′) · ŝ) (mod q).
• Consider Mult(id, ekb, txb ,C

x ′ ) for b ∈ [2], we have
tx·x

′

1 + tx·x
′

2 ≡ (DDec(tx1 , cx
′

), DDec(tx1 , cx
′
·ŝ)) −

PRF(K , id) + (DDec(tx2 , cx
′

), DDec(tx2 , cx
′
·ŝ)) +

PRF(K , id) ≡ (DDec(x · s, cx
′

), DDec(x · s, cx
′
·ŝ)) ≡

(x · x ′, (x · x ′) · ŝ) (mod q).
• Consider sMult(id, ekb, c, txb ) for b ∈ [2], we have tc·x1 +

tc·x2 ≡ c · tx1 − PRF(K , id) + c · tx2 + PRF(K , id) ≡
c · (tx1 + t

x
1 ) ≡ (c · x, c · x · ŝ) mod q.

• Consider Output(id, ekb, t
y
b) for b ∈ [2], we have τ 1 +

τ 2 ≡ (DDec(ty1, c
α), DDec(ty1, c

α·ŝ)) − PRF(K , id) +
(DDec(ty2, c

α), DDec(ty2, c
α·ŝ)) + PRF(K , id) ≡

(DDec(y · s, cx
′

), DDec(y · s, cx
′
·ŝ)) ≡ (y · α, (y · α) · ŝ)

(mod q).

From above all, for the output (tyb, τb) of server Sb, it holds
τ = τ1 + τ2 = α · (ty1 + ty2) = α · y. As the equality τ =

α · y is always satisfied, the verification algorithm will output
y = f (x1, . . . , xn).

2) PRIVACY PRESERVATION
The property of privacy preservation requires that each server
can not learn any information about the users’ data. In our
scheme, two non-communicating servers perform evaluations
based on the ciphertext of the data, the classifier in polyno-
mial form and the evaluation key, respectively. Like related
works [4], [6], [7], [16], [20], [21], [31], [33], we assume
that the two servers are not colluding. This assumption is
reasonable because the two servers do not need to interact
at all, and each server performs evaluations independently.
In more detail, the ciphertext Cx held by each server

is obtained by encrypting x with the OKDM algorithm

in PKE-NLD.Cx is actually an encryption of x ·sk = (x, x ·ŝ).
Boyle et al. [7] have proved that any PPT adversary cannot
obtain any information about x and sk from Cx .

Besides Cx , the server Sb also holds the public key pk,
the evaluation key ekb = (sb,Cα,K ), and the polynomial
function f . Obviously, the information of x and sk cannot
be obtained from pk, Cα,K , f . sb is an additive share of sk
that is randomly distributed over R2q. Therefore, no individual
server can use sb to get sk. In addition, the server Sb holding
sb cannot execute the decryption algorithm on Cx , but can
only execute the distributed decryption algorithm DDec. The
output of DDec is an additive share of x · sk, which is a
random value on R2q. Therefore, each server cannot obtain
information about x and sk through sb.

We can conclude that each server cannot get any informa-
tion about the data.

3) VERIFICATION
Verification requires that a malicious server has no ability
to convince the company to accept a wrong result y′ ̸= y.
We consider two servers not colluding.

In our scheme, without knowing α, a malicious server
cannot persuade the company to accept y′ ̸= y, except with
a negligible probability. We explain this fact by taking the
example that the server S2 is malicious. Denote ty2

′ and τ ′2
as the modified result of the server S2. Let 1y = y−y′ =
(ty1 + ty2) − (ty1 + ty2

′) = ty2 − ty2
′, 1τ = τ − τ ′ = (τ1 +

τ2)− (τ1+ τ ′2) = τ2− τ ′2. Server S2 succeeds iff 1y ̸= 0 and
τ1 + τ ′2 = α(ty1 + t

y
2
′), i.e. α1y = 1τ . Without knowing α,

the probability that S2 can fool the company by choosing 1y
and 1τ is negligible.

Next, we analyze that a malicious server will not obtain
information about α. In our scheme, a malicious server will
obtain the ciphertext Cα of α · s. But the security of the
OKDM algorithm guarantees that the malicious server cannot
obtain information about α from the ciphertext Cα . Even if
the server tries to decrypt Cα with sb it will only get an
additive share of α, which is a random value and does not
provide information about α. Therefore, a malicious server
can not get α. Furthermore, if the malicious server wants to
convince the company to accept the wrong result, it needs to
guess α. Because α ∈ R and ∥a∥∞ ≤ 1, it has 2N (N > λ, see
Table 1) possible values. That is to say, the probability that a
malicious server guesses α is 1/2N < 1/2λ

≤ negl(λ).

V. PERFORMANCE EVALUATION
In this section, we first benchmark each algorithm in the fol-
lowing PKE-NLD based schemes: the non-verifiable scheme
of BKS [7], the verifiable scheme of CZ [16] and our scheme.
Next, we compare the performance of these schemes for
machine learning classifiers in polynomial form.
Platforms: The trusted institution is realized by a virtual

machine with 4GBRAM and an Intel Core i7-6700 CPU. The
company is realized by a virtual machine with 4GB RAM
and an Intel Core i7-7700K CPU. The users are realized
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TABLE 1. The parameters and security level of the PKE-NLD based
scheme.

TABLE 2. The performance of Gen,Enc,Dec,Ver algorithms in
BKS [7], CZ [16] and our scheme.

by a virtual machine with 4GB RAM and an Intel Core i5-
8500 CPU. Each server is realized by a virtual machine with
32GB RAM and an Intel Xeon E-2286G CPU. All virtual
machines in our experiment run Ubuntu Desktop operating
system (Ver. 20.04 LTS) and are configured with 100Mbps
upload and 80Mbps download network bandwidth settings.
We limit the frequency of the CPU of the trusted institution,
the company and the users to 800MHZ to simulate scenarios
with limited computing resources.
Tools:We use the C++ library NTL 11.5.1 [34] to realize

large number operations. Our experiments are all single-
threaded. We repeat ten times for different experiments and
take the mean of the timings.

A. BENCHMARKS
This section tests the running time of the key genera-
tion algorithm, encryption algorithm, decryption/verification
algorithm, and each subroutine in evaluation algorithm.

1) EXPERIMENT SETTINGS
To test the benchmark running time of BKS, CZ and our
scheme at Bmsg = 2, 216, 232, 264, 2128, 2256, 2512, we first
select the parameters Bmsg, N , p and q (Table 1) for PKE-
NLD according to [7] such that these schemes achieve at
least 128-bit security. Next, we implement these schemes
with the parameters of Table 1 and show their performance in
Tables 2 and 3.
In Table 2, the Gen of our scheme takes more time than

BKS and CZ. Fortunately, the Gen is executed only once,
and the running time of the Gen of our scheme is at most
2.7× that of BKS and CZ. The running time of Enc in all
schemes are close to each other for the same Bmsg. Regarding
Dec/Ver, it takes more time in our scheme and CZ to verify
the results than BKS. Our scheme and CZ use the same
method to verify the results. Therefore, the running time of
their Ver is the same.

TABLE 3. The performance of instructions in Eval in BKS [7], CZ [16] and
our scheme.

Table 3 shows that Convert, Add, and Mult in CZ [16]
take twice more time as that in BKS [7] and our scheme.
This is because CZ needs to compute a tag for each of these
instructions to enable verification, and the computation of the
tag takes as much time as the corresponding instruction. BKS
does not support scalar multiplications (sMult). Although
CZ supports sMult, their algorithm is obtained by modifying
Mult and as slow as Mult. On the contrary, sMult of our
scheme is not based on Mult and is 50-100× faster. The
Output of our scheme is the slowest. However, Output can
be performed only 1 time for each polynomial function f and
has a very limited impact on efficiency.

B. EVALUATION OF CLASSIFIERS IN POLYNOMIAL FORM
In this section, we demonstrate the efficiency of BKS, CZ and
our scheme with decision trees, a fundamental and widely
used machine learning classifier.

1) EXPERIMENT SETTINGS
We use the real and sensitive data set: activity recognition
with healthy older people using a batteryless wearable sensor
data set [18]. We use the Python library scikit-learn [32] to
train the decision tree. We trained decision tree models with
depth d = 2, 4, . . . , 14 respectively on the data sets. We use
the technique of Bost et al. [9] to convert a depths d decision
tree into a degree d polynomial. Raw data is encoded as a
32-bit integer to apply BKS, CZ and our scheme. We choose
Bmsg = 264,Bmsg = 2128,Bmsg = 2256,Bmsg = 2512 such
that BKS, CZ and our scheme can evaluate the polynomials
of degree d = 2, d = 4, d = 6, 8, d = 10, 12, 14 for 32-bit
inputs, respectively.

According to the settings described above, we imple-
mented BKS, CZ, and our proposed scheme. We compared
the computational overhead, ciphertext size, and partial result
size of each scheme as follows.

2) COMPUTATION OVERHEAD
We denote by t1s , t

2
s , and t

3
s the time taken by each server

in BKS, CZ and our scheme, respectively. Figure 4a shows
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FIGURE 4. The computation overhead of BKS [7], CZ [16] and our scheme.

(t1s , t
2
s )/t

3
s ≈ (1, 2). CZ is constructed on the basis of BKS.

In order to achieve verifiability, CZ needs to compute a tag
for instructions in Eval, and the computation of the tag is the
same as the corresponding instruction. This results in about
2 times the computation of CZ on the server side than BKS.
Our scheme does not need to compute a tag. Although the
computation of Output of our scheme is twice that of Output
of BKS, Output is only executed once in our scheme. There-
fore, our scheme computation on the server-side is almost
equal to that of BKS. We denote by t1c , t

2
c and t3c taken by

each company in the three schemes, respectively. Figure 4b
shows the fact: t1c is the smallest, and t2c and t3c are almost
equal. For BKS, the computations of the reconstruction of the
classification result is dominated of 1 addition over Rq. For
CZ and our scheme, the computations of the reconstruction
and verification of the classification result are dominated by
2 additions and 1 multiplication over Rq, meaning that both
CZ and our scheme require the same amount of computation
for reconstructing the correct result.

3) CIPHERTEXT SIZE AND PARTIAL RESULT SIZE
The ciphertext in the three schemes is an element of (R2q)

2.
Therefore, BKS, CZ and our scheme have ciphertexts of the
same size. The partial results generated by every server in
BKS and CZ/our scheme are uniformly distributed over Rq
and R2q, respectively. Therefore, CZ and our scheme have
the same size partial results, and and twice as large as BKS.
Figure 4 reflects these facts.

VI. DISCUSSION
Currently, there exist five works [16], [17], [36], [37], [38]
that concentrate on VHSS schemes. However, not all of
these schemes are secure or efficient. The scheme of [36] is
insecure. The schemes of [37] and [38] only support linear
polynomial computations. The scheme of [17] requires a
non-constant number of servers. The scheme of [16] perform
worse than HSS scheme of BKS [7]. Compared with these

FIGURE 5. The size of a ciphertext, a partial result of BKS [7], CZ [16] and
our scheme.

works, our scheme uses two servers that can support comput-
ing polynomials whose degree can be a polynomial of security
parameters, and the performance is comparable to HSS of
BKS.

FHE, DP, MSS can only protect the privacy of data, while
Homsig, Homomorphic MACs can only verify the correct-
ness of the results. Our VHSS scheme can protect the privacy
of data and the correctness of classification results at the same
time. Some VC schemes can also solve these two problems,
but these schemes either rely on the less efficient FHE, or only
support computing matrix-vector multiplication, or require
complex information interaction between servers. However,
our non-interactive VHSS scheme can compute polynomials
whose degree can be a polynomial of security parameters, and
does not depend on FHE.

VII. CONCLUSION
Previous VHSS schemes either only supported comput-
ing linear polynomials, required a non-constant number of
servers, or performed worse than HSS scheme. These short-
comings make VHSS unsuitable for data classification using
polynomial form machine learning classifiers in cloud com-
puting. To solve this problem, this paper constructs a new
VHSS scheme. Our scheme uses two servers and PKE-NLD
that can support computing polynomials whose degree can be
a polynomial of security parameters. Experiments show that
the server-side performance of our scheme is comparable to
HSS and 2× faster than the existing VHSS scheme CZ.

In our scheme, the machine learning classifier is trans-
formed into a polynomial, and the polynomial is sent to the
servers in plaintext. Machine learning classifiers are trade
secrets to a company. Once the model of the classifier is
leaked, the company cannot profit from it. In our scheme,
the company can encrypt the coefficients of the polynomial
and send it to the servers to protect the privacy of the model,
but this will also increase the amount of computations on the
servers. How to preserve the privacy of the classifier while
maintaining the performance is an interesting future work.
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One significant drawback of VHSS schemes is that it
necessitates either modifying applications or using dedi-
cated and specialized client-server applications to ensure
its functional operation. Additionally, the methodology does
not allow one to conduct ad-hoc/discovery-based queries.
As future work, designing a VHSS scheme that supports
discovery-based queries would be an interesting challenge.
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