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ABSTRACT Automatic visual encoding is frequently employed in automatic visualization tools to auto-
matically map data to visual elements. This paper proposed an automatic visual encoding approach based
on deep learning. This approach constructs visual encoding datasets in a more comprehensive and reliable
manner to extract and label widely available visualization graphics on the Internet in accordance with
three essentials of visualization. The deep learning model is then trained to create a visual encoding model
with powerful generalization performance, enabling automated effective visual encoding recommendations
for visual designers. The results demonstrated that our approach extends the automatic visual encoding
techniques used by existing visualization tools, enhances the functionality and performance of visualization
tools, uncovers previously undiscovered data and increases the coverage of data variables.

INDEX TERMS Automatic visualization, visual encoding, deep learning, visual channels.

I. INTRODUCTION
Visualization techniques utilize the human eye’s capacity
for perception to depict and convey data in an interac-
tive manner, aiming at enhancing the cognition abilities
of humans. The contribution of visualization techniques
has enhanced people’s comprehensive perception, interactive
analysis, decision-making, and reasoning ability of abstract
data, formed the complementary and mutual promotion of the
advantages of human brain intelligence and machine intel-
ligence, established an iterative and spiral way of informa-
tion exchange and knowledge refining, and has been widely
used in many fields, including scientific research, commerce,
finance, medical treatment, and communication.

Visual encoding, perception, and cognition are only a few
of the cognitive processes that go into data visualization [1].
The efficiency of data visualization critically depends on the
accuracy of visual encoding, which is the fundamental theory
and core component of data visualization. Visual encoding
refers to encoding the semantics and properties of data while
following certain principles and making full use of prior
knowledge to reduce the time consumption of graphic per-
ception and cognition [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

Automatic visual encoding is performed utilizing defined
visual encoding rules by conventional automatic visualization
techniques. These rules are principles and approaches that
academics have evolved via a variety of practices. Machine
learning techniques have been heavily used by automated
visualization systems [3] in recent years to achieve automatic
visual encoding.

This paper proposes an automatic visual encoding method
based on deep learning (DPVis) that makes use of three
essentials of visualization: the visual channels, scale plate,
and coordinate systems, to extract visual encodings from
visualization graphics and construct a visual encoding dataset
for the next stage of modeling. This turns the automatic
visual encoding issue into a deep learning issue and offers a
viable automatic visual encoding deep learning model. This
approach, which supplements the previous one, emphasized
learning visual encoding specifications and building models
from a wider range of available graphics, predicting visual
encodings, and realizing rapid mapping of data to visual
channels without resorting to predefined specifications.

The contribution of this paper is as follows:
(1) Construct visual encoding dataset. Three essentials of

visualization were extracted from the graphics of the basic
forms of the data types and annotated to generate a supervised
visual encoding dataset.
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(2) Design and implement an automatic visual encoding
model. A deep learning neural network model was designed,
and the visual encoding dataset was utilized to train the visual
encoding model with strong generalization performance to
accurately predict the visual encoding automatically.

The remainder of this paper is organized as follows.
The relevant work and findings are presented in Section II.
Section III describes the generation method of the visual
encoding dataset in depth and the specific model and training
procedure. Section IV presents the comparison experiment.
The discussion of the proposed approach was presented in
Section V. Finally, we conclude the contribution of DPVis
along with its existing limitations and propose future work
directions.

II. RELATED WORK
The demand for rapid visualization analysis has grown in
recent years, and as a result, visualization has become an
important part of modern data science. Consequently, there
is a growing and increasingly automated requirement for
visualization tools.

The growth of visualization tools may be divided into four
stages [4]. First, there are tools such as D3 [5], EChart [6],
VegaLite [7], and VisComposer [8] that are intended for
people who are familiar with programming and visualization.
In particular, ECharts is an open-sourced, web-based, cross-
platform, widely used framework that facilitates the rapid
createion of interactive visualization and is highly extendable,
high-performance, high expandability and performance.

Second, there are tools such as iCharts [9], raw graph-
ics [10], Polestar [11], Voyager [12], Voyager 2 [13], and
iVisDesigner [14] that are made for users who are famil-
iar with programming but not visualization. Among them,
Polestar is a comprehensive set of information management
and teamwork tools for intelligence analysts. Voyager seeks
to complement manual chart construction with interactive
navigation of a gallery of automatically-generated visualiza-
tions. Voyager 2 is a mixed-initiative system that combines
manual and automated chart specification to help analysts
engage in both open-ended exploration and targeted question
answering. iVisDesigner is a web-based system that allows
users to interactively create information visualizations for
complex datasets. It achieves high levels of interactive expres-
siveness through conceptual modularity, which covers a wide
range of information visualization design possibilities.

Third, semiautomatic visualization techniques such as
SAGE [15] and BDVR [16] may produce graphics with little
to no operator input.

Finally, the newest automatic visualization techniques,
such as Text-to-Viz [17] and Click2Annotate [18]. Automatic
visualization solutions can offer effective visual encoding
recommendations without the requirement for human design
and view definition for people who are unfamiliar with
programming visualization. This will not lead to mistakes
caused by insufficient knowledge, experience, visual illusion,

cognitive dissonance, or other aspects of the manual visual
encoding process.

Automatic visualization techniques aim to help people dis-
cover and explore relevant information that has been hidden
in the data by automatically generating visualization graph-
ics. The existing automatic visualization tools can be divided
into three categories: rule-based, data-driven, and mixed [4].

A. RULE-BASED AUTOMATIC VISUALIZATION
TECHNIQUES
Rule-based automated visualization techniques construct
rules and carry out automatic visual encoding based on the
Bertin-originally suggested visual channel performance rank-
ing [19]. These rules have been validated by visualization
specialists through extensive visual design experience [1].

For example, Foresight [20]method presents visualizations
of the top k instances in the data based on an appropriate
ranking metric to help users rapidly discover visual insights
from massive, high-dimensional datasets. The MuVE [21]
method is proposed for Multi-Objective View Recommen-
dation, which may gradually and incrementally evaluate the
many advantages offered by a visualization.

TheVizdeck [22] approach generates recommendations for
appropriate visualizations automatically and without the need
for programming. It would be better if the ranking function
could connect to other data sources, but it still needs work.
And Show Me [23] uses a series of user interface commands
and defaults to integrate automatic visualization into com-
mercial visual analysis system.

Alexander et al. conducted a series of experiments on
cognitive biases associated with the length, font size, and
height of English words [24] and revealed that using two dif-
ferent dimensions simultaneously in visual encoding should
be avoided as much as feasible.

Szafir focused on color encoding by enhancing the color
differentiation of various marker sizes and shapes to maxi-
mize the effect of visual encoding [25]. In practical appli-
cations, visual encoding must be modified in accordance
with task requirements and data qualities. People arrange
visual channels more precisely according to one or more
assessment variables, such as perceived efficacy, user tasks,
and user preferences. Szafir evaluated the effects of task and
data distribution to rate the effectiveness of visual encoding,
the interaction between visual channels in multidimensional
visualization, and the improvement of automated visualiza-
tion technologies [25].

Perry et al. offered a library of suggested graphics in accor-
dance with the statistical features of interest. The technique
offers visual keyword searches in addition to having a voting
feature that allows users to change ranks, [26].

However, rule-based automatic visualization techniques
are limited because they depend on a set of manually crafted
interdependent rules. These rules can be complex, volumi-
nous, and tedious update, and they may not adequately cover
all edge cases to produce accurate visualizations or may not
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even benefit from experience and expertise in existing visual
encoding.

B. DATA-DRIVEN AUTOMATIC VISUALIZATION
TECHNIQUES
Data-driven automatic visualization techniques can auto-
matically recommend visual encodings by training machine
learning models to provide more effective data explo-
ration [27], [28], [29], [30]. They do not require profes-
sional expertise or prior visualization experience, but can
also quickly create data visualization. Hu et al. proposed a
visual recommendation technique based on machine learning
called VizML [31], which learns the most prevalent visual
designs, such as visual types and axis encoding, from many
datasets and their related Plotly plots, with an accuracy
rate of over 85%. Cui et al. investigated Text-to-Viz [17],
a cutting-edge technique for automatically creating visual-
ization graphics from text. First, they gathered a real-world
corpus sample, manually annotated these examples and then
used machine learning algorithms to train the model and fore-
cast visualization encodings. A visualization analysis appli-
cation named exploroBOT [32] was created byMcAuley et al.
Used common browsing and exploring metaphors in social
media applications as a point of reference, user-driven as the
leading, and automatically generated visualization graphics
and exploration guidance paths to give users accurate data
representation and suitable visual encodings.

In terms of idea expression and technological approaches,
Data2Vis [33] differentiates from past rule-based approaches.
It develops a sequence-to-sequence model using neural
machine translation technique, converts a JSON-encoded
dataset to the Vega-lite visualization standard, and stresses
the use of principles that may be inferred from examples
while creating graphics. Lin et al. improved the automatic
visualization system to better balance automatic suggestions
and user intentions, to deliver a more concise and flexible
creative experience through automatic design, and to preserve
predictability and control through anchor suggestions [34].
DataShot [35] is an automatic system that provides better
customization and data presentation, and can automatically
create configuration files from table data.

Data-driven automatic visualization techniques need to
extract visual features from visualization graphics. This task
lacks a clear operational standard, and the outcomes directly
impact the generalization performance of machine learning
models [36].

C. MIXED AUTOMATIC VISUALIZATIN TECHNIQUES
Combining these two techniques usually generates better
analytical outcomes. To balance the best results of these
two approaches, Luo et al. automatically generated visual-
izations by integrating deep learning with rules [37]. Qian
et al. presented a two-stage approach [38], which indexes
online examples by their visual elements in the retrieval stage,
and leverages recursive neural networks to help adjust the
initial draft and improve its visual appearance iteratively in

the adaption stage. A visual data story generating system
called Calliope [39] was proposed by Shi et al. It automat-
ically generates visual data stories from input spreadsheets
through an automatic process and facilities the easy revision
of the generated story based on an online story editor. Gemini
is a declarative grammar and recommendation system that
Kim and Heer proposed [40] for animated changes between
single-view statistics visualizations. These techniques show
that new theories and research questions are always evolving,
and visualization may be employed as a new type of data
format for artificial intelligence processing.

Despite the fact that several automatic visualization
approaches have produced promising results, not all extrac-
tion and annotation strategies for visual encodings extraction
are equally effective.

III. METHODOLOGY
A. OVERALL
In this study, we first gathered a large number of widely used
visualization graphics of basic data, extracted, and annotated
their visual encodings in accordance with the three essentials
of visualization, including visual channels, X-axis attributes,
Y-axis attributes, and data types, and then constructed a super-
vised visual encoding dataset. After designing and training
a model with strong generalization performance using deep
learning techniques on this dataset, users may swiftly com-
plete automated and successful visual designs. The flowchart
is shown in Fig. 1.

B. DATA SOURCE
We manually collected a sizable number of visualization
graphics from the Internet as original data sources for our
research to conduct. These graphics come from a wide range
of websites, such as Baidu image search. Some of the gath-
ered images are shown in Fig. 4 as we have compiled the most
popular ones with good picture effects. This is step 1 of the
workflows in Fig. 1.

C. CONSTRUCTION OF VISUAL ENCODING DATASET
This section describes the construction of the visual encod-
ing dataset, including the extraction of visual encodings in
accordance with three essentials of visualization and anno-
tation of visual elements to generate a data foundation for
the subsequent model establishment, which can be more
objective and accurate. The scale plate, coordinate system,
and visual channels are the three essentials of visualization.
The visual channels are carried by the coordinate system,
which typically combines the scale plate, visual channels, and
coordinate system to create the final visualization graphics.
This is step 2 of the workflows in Fig. 1.

1) THREE ESSENTIALS OF VISUALIZATION
a: VISUAL CHANNELS
Visual encoding is the process of transforming data into
visual variables. Encoding can be understood as design or
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FIGURE 1. Owchart of DPVis method.

mapping, that is, the mapping relationship between data and
visualization results, which can encourage readers to obtain
information from graphics quickly. Therefore, we can regard
data visualization as a combination of graphic elements bear-
ing visual encodings.

Visual channels and visual markers make up the two com-
ponents of visual encodings orthogonal, as shown in Fig. 2.
Orthogonality means that in this case, every visual channel
can be used to map to anymarker, fromwhich visual channels
for visual encoding can subsequently be constructed.Markers
are usually geometric elements used to illustrate how data
are categorized according to their nature, such as points,
lines, faces, and bodies. As shown on the X-axis in Fig. 2.
As indicated on the Y-axis in Fig. 2, visual channels are
used to quantitatively characterize the presentation state of
markers in graphics and manage their visual features, which
primarily comprise location, size, shape, texture, direction,
color and so on [19]. Currently, the visual channels have
now been expanded to include length, area, volume, hue,
saturation, transparency, brightness, blurring, focusing, etc.

Visualization is the process of converting many types of
data into understandable, simple-to-understand, and easy-
to-remember visual channels using the principles of visual
encoding. Therefore, finding the appropriate visual encod-
ings is equivalent to finding the appropriate visual channels
for data output since the appropriate visual channels are used
for the visual encodings.

b: COORDINATE SYSTEMS
The data should be arranged and the graphic location or
coordinate system must be specified when visually encoding
information. There are many different types of coordinate
systems, but three are frequently used in visual analysis: the
polar coordinate system, the geographical coordinate system,
and the Cartesian coordinate system.

Cartesian coordinate system: The X and Y-axes intersect
vertically, which is very common, as shown in Fig. 3(a).

Polar coordinate system: A coordinate system based
on the radius and angle, which can be understood as

a coordinate system formed by rotating the X-axis by 360◦,
as shown in Fig. 3(b). A polar coordinate system is employed
in visualization graphics such as pie charts and radar
charts.

FIGURE 2. Visual encodings [19].

Geographic coordinate system: The geographic coordi-
nate system is used to identify geographic location informa-
tion using longitude and latitude. In visualization, maps are
widely used to represent geographic data.

c: SCALE PLATE
The coordinate system indicates how many dimensions can
be visualized, whereas the scale plate indicates the data types
in each dimension, which are usually divided into three fun-
damental data categories: quantitative data, categorical data,
and ordered data, as follows:

Quantitative data, such as percentages, is used to describe
the value of the data.

Categorical data is used to describe how qualities are used
to classify data.

Ordered data is used to describe how the data changes over
time.
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FIGURE 3. Coordinate system.

TABLE 1. Common visual channels and fundamental data priorities (from
high to low).

2) VISUAL ENCODING PRINCIPLE
Users may accurately decode the information contained in
visual encodings when many visual channels are combined
logically [41]. However, assuming that the data have n dimen-
sions and there arem visual channels to choose from in accor-
dance with the data properties, there are (n+1)m encoding
schemes, and it is highly challenging to choose the optimal
one among them.

Table 1 summarizes the priorities of the visual channels
utilized for the visual encoding of various data types. Fig. 4(b)
illustrates how categorical and ordered data may be encoded
using shape, whereas Fig. 4(c) and (g) illustrate how quan-
titative data can be encoded using length. As illustrated in
Fig. 4(a), (d), and(e), the location, color, and color hue may
encode any type of data.

Visual encoding requires the use of the fewest number of
visual channels. The visual system becomes muddled and
overlapping if there are too many visual channels. Informa-
tion density, visual prominence, and expressiveness should
also be taken into account. Consequently, visual encoding
must adhere to the design guidelines listed in Table 2.

FIGURE 4. Various visual encodings.

3) VISUAL ENCODING DATASET
We analyzed the collected graphics, extracted three essentials
of visualization from them, and annotated them to create a
visual encoding dataset.

First, the coordinate system was extracted. In most cases,
we created visualization using Cartesian coordinates system,
which is appropriate for the majority of data types. Most
of the graphics collected for our study were designed in
Cartesian coordinates. We can also display data along the Z-
axis, but Table 2 demonstrates that the effect is not favorable
according to the empirical principle of visual encoding.

Second, we extract the scale plate of the graphics, that
is, the type of encoded data. We divided the data into
four categories—spatial data, temporal data, spatial-temporal
data, and general data—covering almost all of the common
types of data to enhance the ability of dataset to be explained.

Third, we extracted of the visual channels encoded in the
graphics as the data features of this record. Then, as the values
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TABLE 2. Empirical principles of visual encoding.

of the X and Y-axis dimension attributes in this record, the
data types encoded by the X and Y-axes in the coordinate
system are extracted.

Finally, the visual channels used in the graphics were
extracted as the supervision label of this piece of data, thus
forming a supervised visual encoding dataset. It is also evi-
dent that a scale plate, a coordinate system, and visual chan-
nels are used in the traditional method of visual encoding.

There are 207 records in the visual encoding dataset to be
trained. Each item of dataset consists of four attributes: data
source, X-axis encoded data type, Y-axis encoded data type,
and data type. The label of this item is the visual channel. The
visual channels, which are frequently utilized in visualization
graphics, were employed in this study. The nine categories
into which we split the labels were location, size, length,
shape, thickness, area, color, color hue, and orientation.

D. METHODS
This section explains the deep-learning-based visual encod-
ing model training procedure. Quick and precise automatic
visual encoding includes data pretreatment, model construc-
tion, model training and testing. These are steps 3 and 4 of
the workflows in Fig. 1.
The main principle of deep learning model training is as

follows. First, an initial value can be initialized randomly or
be set according to previous experience, and the anticipated

outcome can then be determined. The difference between the
actual value in the training set marked beforehand and the
predicted outcome can then be compared. Then, the model
can be adjusted to approach the correct direction based on
the basis of repeated, until the predicted result is almost the
same as the real value.

The following stages may be used to summarize the deep
learning model training process:

1. Establish a deep learning model with a variety of learn-
able weight parameters;

2. Define that loss function;
3. Calculate the loss value, which is the distinction between

the output value and the target value;
4. Backpropagation gradient into the parameters of the

deep learning model;
5. Adjust the weight value of the network model in line

with the update rules;
6. Iterative calculations are used to reduce the loss on the

input.

1) FEATURE PROCESSING
The visual encoding dataset we constructed cannot be directly
applied to train the model. Therefore, preprocessing is neces-
sary. First, we numerically processed all fields in the visual
encoding dataset, changing the original type values into
numeric values, and putting the dataset into a deep learning
model-friendly structure. The data were divided into 70/20/10
training/validation/testing sets to ensure that there was no
overlap between the three sets. Using 5-fold cross-validation,
the model was trained and tested five times. So, the study
results that were provided were an average of the results from
the five testing sets. The model parameters were trained and
adjusted using the training set. The correctness of the model
is checked, and its hyperparameters are modified using the
verification set. The capacity of the model for generalization
was confirmed using a testing set. The training and verifica-
tion sets should be kept apart so that the model’s performance
on the verification set can reflect its generalizability.

2) MODEL PREPARATION
In this section, we designed the deep learning model’s layer
count, dimension matching between layers, and selection
of proper activation function, loss function, and associated
parameters.

First, we defined the hidden layer size and the depth of
the neural network. Our model was a fully connected feed-
forward neural network with three hidden layers. Each layer
was composed of neurons with ReLU activation functions,
as shown in (1), and the model was implemented by using
PyTorch [42].

f (x) = max (0,x) (1)

The Softmax function must process the output layer results
before the final model results can be achieved, as illus-
trated in (2). The multiclassification output sequences may
be converted into relative probabilities using the Softmax
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function, which maps the output neurons to real values
between 0 and 1 and guarantees that the normalized guaran-
teed sum is 1.

Si =
eVi−D∑C
i e

Vi−D
(2)

where Vi is the outcome of the classifier’s previous outcome
unit and D = max(Vi). The total number of categories
is C , where i represents the category index. Si represents the
proportion of the current element index to the total number of
elements.

The cross-entropy loss function is widely used in clas-
sification scenarios since data training is a classification
problem. The cross-entropy loss function is presented in (3).
Cross-entropy is a measure of how far apart two probabil-
ity distributions are from one another. The cross entropy
decreases with increasing proximity.

Loss = −
∑
i

tilnyi (3)

where ti represents the output value and yi represents the value
processed by the Softmax function. Gradient dissipation in
classification issues can be minimized by using cross-entropy
as the loss function.

Finally, the loss function was iterated and reverse updated
using the gradient descent optimizer, as shown in (4).

x ← x − ηf ′ (x) (4)

where η is the learning rate, which is a manually adjustable
hyperparameter that can significantly impact the algorithm’s
precision and effectiveness. The learning rate was initialized
at 1× 10−1,

3) MODEL TRAINING
The training set served as the input. The input layer of the
neural network receives the input for each record, and through
the process of forward propagation, calculates the output
value of each neuron in the output layer.

The error of the output layer was calculated before using
the backpropagation algorithm to obtain the error of each
neuron in each layer.

The connection weight ω and threshold θ of each neuron
can be obtained by the error and then multiplied by the
negative learning rate (−η) to obtain 1ω and 1θ , and the
ω and θ of each neuron are updated to ω+1ω and θ+1θ .

It is necessary to repeat this entire training process hun-
dreds, perhaps even tens of thousands of times. We can create
a neural network model with a pretty low loss after training.

During the neural network learning process, the ‘‘connec-
tion weight’’ between neurons and the threshold value of each
functional neuron are both altered in line with the training
data. In other words, a neural network ‘‘learns’’ based on the
connection weight and threshold parameters [43].

Cross-validation is another method used in deep learning
to train a model. To validate the state and convergence of the
model, a validation set was set aside throughout the model

training phase. Discover which group of hyperparameters
performs best based on the performance of several groups of
model verification sets to determine the appropriate number
of hidden layers and alter the hyperparameters. Overfitting of
the model during training may also be monitored simultane-
ously using the verification set at the same time. In general,
overfitting occurs because if training is continued after the
performance of the verification set has stabilized, the per-
formance of the training set will continue to climb, but the
performance of the verification set will decline instead of
increase. As a result, the stopping point of the backpropaga-
tion algorithm is determined using the verification set.

The trained model was then tested on the testing set, and
its performance was assessed in accordance with the error,
allowing the accuracy of the model to be determined [44].

The deep neural network iterated on our training set and
its loss function, as shown in Fig. 5, steadily decreased, and
tended to be stable, realizing the goal of accurately identify-
ing the visual encoding dataset.

The prediction was produced on the testing set once the
model had been trained. The accuracy rate of the testing
set, which was used to assess the generalizability of the
final model, reached 92.01%. The results demonstrate the
effectiveness of the model and its potential generalizability.

4) PRESERVATION AND APPLICATION OF THE MODEL
The parameters that the model learned were then kept for
later use in practice when it developed a trained model with
good generalization performance. The purpose of the visual
encoding model we developed was to forecast the visual
channels, enabling users to realize automatic visual channel
suggestions in the visual tools and finish the visual design
quickly and automatically [45].

FIGURE 5. Training loss function of the visual encoding dataset.

IV. EVALUATING PERFORMANCE
To illustrate the potential value of DPVis, we com-
pared DPVis with two other machine learning approaches:
K-Nearest Neighbor (KNN) and Naive Bayes (NB). To show
that our method is more efficient, convenient and practi-
cal. All models were implemented with scikit-learn [46]
and default parameters, and the visual encoding dataset was
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trained with the same proportion of training and testing sets
and its accuracywas obtained, as shown in Fig. 6. The random
parameter search of NB and KNN models did not lead to
significant performance improvement. The results show that
DPVis method has higher accuracy than other machine learn-
ing methods. It has good applicability to the visual encoding
dataset constructed by us.

FIGURE 6. Accuracy comparison.

V. DISCUSSIONS
Tens of thousands of more iterative calculations on the input
dataset are required to train the model. The training procedure
is essentially a self-learning process that involves continual
iterative updating of the weight parameter until the average
loss error reaches the lowest point and improves performance.

Furthermore, the performance and speed of convergence of
the model were significantly influenced by the initialization
of the weight parameters. Gradient disappearance or gradient
explosion in the process of gradient descent is common as
the number of neural-network layers increases. These two
issues may be solved with a good initialization of the weight
parameter, which is also beneficial for the performance and
speed of convergence of the model.

The data sample used for model fitting was known as the
training set. The weight parameters were trained throughout
the training procedure using gradient descent of the training
error. A validation set is a distinct set of datasets aside dur-
ing model training that can be used to modify the model’s
hyperparameters and provide a preliminary assessment of the
model’s performance. The training procedure used verifica-
tion set. After several iterations of training, a verification set
is often used to evaluate the training effect, which has the
following benefits: the model may diverge from the verifi-
cation set or provide endless results. For example, flaws in
the model’s parameters might be discovered over time. In this
case, the training may be stopped early so that the parameters
or model can be changed without having to wait until the
training is complete. Second, it is possible to confirm the
model’s capacity for generalization. The overfitting of the
model should be considered if the effect on the verification
set differs significantly from that on the training set. Third,
verification sets can be used to evaluate various models. For
example, an ideal network depth, the stopping point of the

backpropagation algorithm, or the number of hidden layer
neurons in a neural network can all be determined using a
verification set.

The depth and breadth of deep-learning neural networks
may be adjusted at will. Theoretically, it is possible to map
any function. Deep learning is hence capable of resolv-
ing complicated issues. Many systems are compatible with
frameworks such as PyTorch and TensorFlow.

Our approach can be used as a workflow extension for
current automatic visualization techniques in particular visu-
alization applications. Designers can remark on their data
features, X-axis encoded data features, Y-axis encoded data
features, and this data label when designing visualization
graphics. Immediately following creation, a supervised visual
encoding recordwas saved. To expand their learning coverage
and improve performance, visualization tools may use these
datasets, as more users produce graphics and learn from their
visual encodings and rules.

VI. CONCLUSION
In this paper, we describeDPVis, a deep learning approach for
automatic visualization. The visualization process was turned
into a deep learning modeling process in this study, and the
visual encoding dataset was created by extracting the three
components of visualization from the existing visualization
graphics. Automatic visualization is then achieved using the
visual encoding model that is learned from this dataset, which
is expected to improve the intelligence of visual analysis [47].

The accuracy of our method surpasses that of others, and it
is capable of quickly and intelligently realizing visual encod-
ingwithout the need for specialized experience or knowledge.
This is a practical technique that integrates deep learning and
artificial intelligence into the visual analysis process.

We are aware of the limitations of the relatively few and
narrowly focused visualization graphics that we collected.
Although we collected the most prevalent graphics from
different types of data and performed a preliminary analy-
sis, we also removed duplicate graphics, which might have
resulted in a certain proportional imbalance. For training
using other visualization tools, there is a requirement for a
broader diversity of graphics on the data side.

Our dataset is currently downloaded from the Internet and
annotated manually, which is laborious, time consuming, and
costly. Consequently, the next research focus of this study
will be on efficiently, automatically, and correctly producing
a visual encoding dataset. There are also automatic extrac-
tion approaches [48], [49], [50] and applications [51], [52]
to extract visual encodings from graphics, although visual
encodings can be inaccurate and do not conform to the prac-
tice of extracting visual encodings according to the ‘‘three
essentials of visualization’’ in this study, particularly the
number of professional visual channels related to various
fields continues to increase. Future considerations might also
include the extraction of polar and geographic coordinates,
improvement of the scale plate, and the extraction and anno-
tation of interactive analysis.
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