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ABSTRACT Intelligent Transportation System (ITS) provides services for proper traffic assistance. ITS
helps in creating a transportation system that is smart, safe and efficient. Vehicular Ad-hoc Network supplies
internet connectivity to vehicles and helps in traffic guidance. This paper uses a modified transformer
architecture for time-series vehicular data to predict traffic flow. Time-series sequences are generated from
the dataset for capturing temporal dependencies. Our proposed transformer-basedmodel has been engineered
to capture inter-feature correlations along with inter-sample correlations. The 2D-Transformers model has
a significant decrease in error compared with Transformers and LSTM-based models. The prediction
generated from the model can be transmitted throughout a network of vehicles. So, a holistic networking
model is proposedwhere the vehicles will be connected to Road-sideUnits (RSUs) and the backbone network
will be Software Defined Network (SDN). The traditional design principles, that incorporate data, control
and management planes together in a network device, are incapable to adapt with this much data growth,
bandwidth, speed, security, and scalability compared to SDN as it provides with centralized programmable
mechanism reliably. The trained parameters learned using the transformer model can be passed throughout
the network for traffic guidance.

INDEX TERMS Vehicular ad-hoc network, transformers, sequence length, encoders, attention, traffic flow,
software-defined network.

I. INTRODUCTION
THE Intelligent Transportation Systems (ITS) technologies
provide services to better traffic and transportation informa-
tion. It makes transportation smarter by providing meaning-
ful insights into traffic data which are captured by highly
advanced traffic detection sensors, and in essence, makes the
roads safer and more coordinated. Traffic data is captured via
detectors/sensors, so traffic forecasting has been critical to the
development of ITS.

Traffic data can be spatial-temporal data, which means it
contains information about the time and space of the vehicles
at a given time. Additional data might be present as the
average speed, occupancy, etc. which will help us forecast
the traffic flow. LSTM models have a higher performance
in comparison to models which incorporate algorithms like
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HTM [1]. Short-term prediction of traffic conditions is nec-
essary for overcoming traffic congestion [2].

Time-series traffic data is the new and improved way of
predicting traffic as it can utilize sequential data to provide a
proper prediction. Perfect use of sequential machine learning
models can also be implemented. Transformers have been
seen to produce remarkable results in this regard.

Vehicular Ad-hoc Networks or VANETs play a key role
in ITS. Safety and roadside equipment communication of
vehicles is a key factor when it comes to VANET. It ensures
vehicle-to-vehicle and vehicle-to-infrastructure communica-
tion which makes it easier for ITS to communicate and
collect more information. VANET can be incorporated with
Software Defined Network or SDN as in the architecture
there are SDN components (SDN controller, SDN wireless
nodes, SDN RSU). Software-Defined VANET or SDVN can
operate differently based on the degree of control of the
SDN controller. SDVN also provides some benefits which
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can be utilized to provide many services [3]. Sadio et al. have
proposed a design of a complete SDVN prototype [4]. Such
designs can be used with our work to incorporate the trained
weights of the models into the SDN-enabled network.

Traffic prediction is quite a challenge to tackle as spatial-
temporal data is needed to be handled [5]. Traffic prediction
data can be represented with a graph and Graph Neural
Network along with RNN can be used for the prediction of
data [6].

However, there are some limitations to it due to the con-
tinuous nature of time and the adjacent behaviour of space.
The use of RNNs is limited due to temporal dependen-
cies for exploding and vanishing node problems. GRU and
LSTM overcome this shortcoming of RNN. Therefore, sev-
eral algorithms combining Traffic Transformer have emerged
as it works well with sequential data [6]. A combination of
GCN and transformer has outperformed several other models
mainly consisting of RNN in the past [5].

Traffic data is in time-series format, so through a
Transformer-based learning model, traffic flow can be fore-
casted with better performance and a computationally effi-
cient model. The memory of the Transformer has no bound
with available resources. Multidimensional time-series data
is necessary for more accurate prediction. Incorporating mul-
tidimensional data can open a door for handling a different
kind of situation in case of prediction. Our Transformer is
capable of handling such multi-featured time-series data effi-
ciently. Furthermore, a holistic model can be suggested which
incorporates gathering data from the RSUs, learning using the
SDN controllers and finally passing those learned weights to
the RSUs and eventually to the vehicles.

Training a time-series dataset on a learning model is espe-
cially challenging as it involves making some adjustments to
predict long-term dependencies in case of time, and variable
spatial dependencies. The core contributions of the work can
be summarized as follows:

1) Using a state-of-the-art transformer model which pro-
vides more accurate results for the time series data.

2) Introducing the 2D-Transformers model with 2D
Multi-head Attention Mechanism and using the
multivariate model, inter-feature dependencies were
ensured.

3) Proposed a holistic model for traffic guidance in an up-
and-coming SDN-based VANET.

II. RELATED WORKS
Vehicular Ad Hoc Networks are a potential field of research
and have caught a lot of interest. It is this eye-catching
because of its potential to provide vehicle road safety,
increase the efficiency of traffic and provide convenience
and comfort for passengers and drivers. Mobile Vehicular
Cloud and review cloud applications can be considered as sig-
nificant technology to develop intelligent transportation [7].
Vehicular ad hoc networks (VANET) refers to the creation of
a mobile ad-hoc network created in the domain of vehicles

which supports communications among vehicles, roadside
units and base stations to provide safe and efficient trans-
portation. There are three types of architecture in VANET
and those are pure cellular wireless local area networks,
pure ad-hoc networks and hybrid networks [8]. There are
basic characteristics of Vehicular networks. There are many
applications associated with this field. There are require-
ments which come with many challenges. Solutions are also
there which can be considered to overcome challenges [9].
With the advancement of technology and the establishment
of smart cities, there is an increasing need for Intelligent
Transport Systems (ITS). Safety, communication and traffic-
related issues are one of the major concerns of ITS. There are
machine learning techniques which can address these issues
in a feasible manner and overcome such challenges [10].
Security is a concern in the case of routing of the VANET
nodes. Enhancing network robustness, defence mechanisms
with low-security overhead can be introduced [11]. As per
security is concerned, blockchain technology has been incor-
porated with VANET to secure ride-sharing applications. The
Proof of Driving (PoD) in a blockchain-based ride-sharing
service in VANET, which consumes fewer resources than
Proof of Work (PoW), maintains a fair selection than Proof
Of Stake (PoS) as well as the randomness of consensus nodes
in a publicly distributed network of vehicles [12].

The widespread IP network is a very complex and difficult
case of management, to configure according to predefined
policies as well as reconfigure according to faults, loads
and changes. These networks are vertically integrated which
means the control and data plane are bundled together. Soft-
ware Defined Networking is such a field that breaks this
vertical integration separating the control logic from routers,
and switches and provides flexibility, dynamic, optimal and
centralized logical control over the system [13], [14]. Due
to design limitations, the traditional network is unable to
make users interact with the traffic or shape their own traffic
policies. Once the flow management (forwarding policy) has
been determined, the only way to adjust will be by changing
the configuration of the devices which has restricted the
network operator who wants to scale their networks on traffic
demands. This leads to SDN as it provides with central-
ized programmable mechanism [15]. Northbound API in the
Control layer is used to program the network and request
services from the Application layer by the applications and
overall management system. An OpenFlow protocol which
is often used as a southbound API is used between the
Control layer and Infrastructure layer [16]. Wireless sensor
networks are low-rate networks with few resources and short
communication ranges and when it expands it faces network
management and heterogeneous-node networks challenges.
Here SDN can be incorporated with wireless sensor networks
to bring efficiency and sustainability and it is called Software
Defined Wireless Sensor Networks (SDWSN). This model
can also play a critical role in incorporating SDN with the
Internet of Things (IoT) [17]. IoT is a network which is open,
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geographically distributed, and consists of heterogeneous
networking infrastructures. Managing these in dynamic sit-
uations is an important challenge. This challenge can be
overcome by using SDN with IoT. SDN can be designed for
IoT for dynamically achieving quality to different IoT tasks in
heterogeneous wireless networking [18]. For smart cities an
IoT-SDN structure can be incorporated to bring benefits like
energy savings, network scalability and load balancing [19].
The rapid growth of the internet and mobile communica-
tion technology has led us to more complexity. Now, these
need to be efficiently organized, managed and optimally
maintained. This is why more intelligence is needed to be
incorporated and traditional networks failed to do so. SDN
brings the chance to use machine and deep learning and
provide this much-needed intelligence in the networks in this
Big-Data world for its logically centralized control, global
view of the network, software-based traffic analysis and
dynamic updating of forwarding rules [20], [21]. SDN can
be therefore used to tackle network management challenges
which include erratic network conditions and states, high-
level language support for network setup, improved visibility,
network diagnostics, troubleshooting and flow classification
[22], [23], [24].
For the rapid growth of roadside accidents, to ensure pas-

sengers’ safety, an ad-hoc network that is vehicular ad-hoc
network is being encouraged. Managing the whole network
from a single remote controller, SDN-VANET helps to over-
come the drawbacks and complexity of standard VANET
architecture [25]. The adaptability, controllability and versa-
tility of controlling the network as a whole of SDN help to
build an effective and secure VANETwith simplified network
control. When VANET is implemented with SDN, in the
architecture there are SDN components (SDN controller,
SDNwireless nodes, SDNRSU) which are incorporated with
VANET and so Software Defined VANET can operate differ-
ently based on the degree of control of the SDN controller [3],
[26]. SDN is used in Multi-access Edge Computing for the
effective management of networks and services. Integration
of SDN can leverage several advantages which are also useful
for the incorporation of 5G [27], [28]. A global optimal route
can be found to efficiently propagate messages from source to
destination with dynamic network density in SDVN. Central-
ized Routing Protocol is the SDN-based routing framework
that uses modified Dijkstra’s algorithm for efficient message
propagation in VANET and outperforms some other tradi-
tional protocols [29].

SDVN can be used to detect and predict traffic collab-
orating with machine learning. K-means clustering can be
used to detect and LSTM with RNN can be used to then
predict the traffic condition [30]. HTM can be used along-
side LSTM for short-term arterial traffic prediction. Several
Machine learning techniques have been deployed to predict
traffic state and also vehicles [31]. LSTM models have a
higher performance in comparison to models which incorpo-
rate algorithms like HTM [1]. Short-term prediction of traffic

conditions is necessary for overcoming traffic congestion [2].
Results by applying a self-adjusted Neural Network (NN)
have been satisfactory as well [32]. Vacant parking spots have
been predicted using different models like Support Vector
Regression (SVR), LSTM and dense convolutional Neural
Networks with LSTM which showed significant improve-
ments in the domain of time-series prediction [33], [34], [35].
Several models revolving around graph convolutional net-
work has also been effective in predicting short-term traffic
data. Temporal Graph Convolutional network yields decent
performance when it comes to solving this particular problem
of traffic prediction [36]. A long short-term memory (LSTM)
based regression model can be used to predict 24-hour traffic
counts data. The algorithm was not discussed along with the
dataset used [37]. Newer and better models can be used in
this sector to improve performance and proper analysis would
help understand the internals of the prediction models.

Traffic prediction is quite a challenge to tackle as spatial-
temporal data is needed to be handled [5]. Traffic prediction
data can be represented with a graph and Graph Neural
Network along with RNN can be used for the prediction
of data [6]. However, there are limitations to it due to the
continuous nature of time and the adjacent behaviour of
space. The use of RNNs is limited due to temporal dependen-
cies for exploding and vanishing node problems. GRU and
LSTM overcome this shortcoming of RNN. Therefore, sev-
eral algorithms combining Traffic Transformer have emerged
as it works well with sequential data [6]. A combination of
GCN and transformer has outperformed several other models
mainly consisting of RNN in the past [5].

Time series data with proper sequencing can be used to
provide a suitable solution to some of the existing problems.
The short-term traffic condition will be addressed in a more
efficient manner if time series data is used to train the model.
Again, since multiple features are naturally present in these
time series data, using these features to find a prediction
altogether would yield a much better result. Modification of
the classic transformer architecture to incorporate multiple
variables in each of the time sequences is necessary.

III. METHODOLOGY
The aim of this study is to forecast the average occupancy
of a station at a certain time given an already observed time-
series sensor-generated vehicular dataset. Basically, given the
station, the number of samples, percent observed, total flow,
average speed and some other parameters, the prediction of
average occupancy can be obtained.

Time-series analysis on sequential data was conducted
for effective prediction of traffic flow. By training a model
on time-series data, accurate predictions of the condition
of traffic can be produced in the future. Again, predictions
at specific time intervals are possible using this methodol-
ogy. After preprocessing the collected time-series data, the
obtained sequential data can be used for accurate predictions.
Different deep learning models were used which have been
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FIGURE 1. Architecture overview.

proved in the past to have worked phenomenally well in terms
of time-series mode of data, especially in the case of traffic
flow [37].

A. MODEL ARCHITECTURE
As shown in Figure 1, the proposed system consists of three
segments. They are Data Collection, Traffic Flow Prediction
Model and underlying SDVN Architecture.
After the collection of the data, it was preprocessed; the

steps involved cleaning, reduction, and transformation of
data. For transforming the traffic time-series data into sequen-
tial data, the data had to undergo sequence generation. The
final sequential data is used in the training of the model.
A separate controller or server is used to train the model.

The trained weights obtained from the model are fed to
the SDVN architecture. The SDN controller propagates these
weights or model parameters to the RSUs which these units
finally use to find predictions. The predictions are transferred
to the vehicles. The vehicles in turn also provide the live
traffic data which is further sent down by the RSUs to the
controller for newer optimized model parameters.

IV. IMPLEMENTATION
The segments mentioned in section III-A that need to be
implemented are described in this section. Along with that,
we also talk about the dataset that we used for our experi-
ment. Let us look at the environment used for conducting the
experiment.

TABLE 1. Variables along with their unique frequencies existing in the
dataset.

A. DATASET
The dataset we used was obtained fromCaltrans Performance
Measurement System (PeMS) [38]. This dataset is used as a
standard as it contains real-life data with a lot of unforeseen
outcomes. The dataset seems to behave similarly compared
to many other datasets [5]. Nearly 40,000 traffic sensors are
deployed in almost all notable streets in the state of California
and traffic data is collected everyday. Hourly data for the
whole year of 2021 from PeMS district 7 was taken and
finally, an 80-20 train-test split was performed.

Multivariate time-series data sequences are used. For that
reason, the variables or features which was selected are:

B. PREPROCESSING
At first, raw hourly data was collected from the PeMS web-
site. This included selecting a specific year and district where
there are adequate busy streets for variation. Some of the
additional features were trimmed for making the experiment
computationally feasible. Next, mean normalization was used
on the dataset so that the values are in the range of [0, 100].
This ensures that the model is not biased towards only a few
features.

C. GENERATING SEQUENCE
In order to convert a time-series dataset into sequential
data, it is necessary to make a sequential copy of a por-
tion of the data and each time introduce 1 more sample.
Sequence generation is important so that the model gets
an idea of past and present situations in different spa-
tial and temporal perspectives in that area which has an
impact on future conditions. Each time, the model gets
the whole sequence of data and predicts just a single
sample.

While creating sequences, the data is arranged in such a
way that data of (n-1)th sample of all other variables will
be along with nth data of the target variable. This is made
like this so that when any prediction algorithm is used,
it genuinely picks the future target variable based on the
present values of the other variables. The process of creating
sequences takes just a fewminutes. The sequence number that
is picked determines the time required for training. For a large
sequence length, the training time becomes large as well, and
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FIGURE 2. Processing sequences in the dataset.

TABLE 2. Shape of train and test dataset with respect to sequence
number.

vice-versa. In fact, the dataset size will be exactly themultiple
of the sequence number. The shapes of the datasets obtained
are shown in the table below:

D. TRAINING
The Transformer Architecture which is mainly used in NLP
for word generation and translation is similar to category
prediction or logistic regression. For the regression of contin-
uous data, the basic transformer architecture has been made
aligned to the regression model which can fit the regression
data properly.

After setting every module of the architecture properly, the
training data is passed to the Data Generator which generates
batch-wise data. This batch-wise data is at first fed to the
Embedding layer and then to the Positional Encoding layer.
The encoded data carries information about the relative order
of a sequence sample in the input sequence. The encoded
data makes it possible for the Transformer to use the feature
and positional information about the order of the sequence
sample. The encoded data generated from this module is
passed to the Encoder. The exact same process is used to
represent the input to Decoder as well.

1) THE ENCODER
The Encoder consists of N Encoder Layers which are iden-
tical and stacked upon each other. Each of the encoder lay-
ers consists of 2 sub-layers namely Multi-Head Attention
and Position-Wise Feed Forward Network. The Multi-Head
Attention layer is based on the self-attention mechanism in

FIGURE 3. 2D multi-head attention mechanism.

multiple heads and the Positional Feed Forward networks that
consist of fully connected Neural Networks which are applied
to each of the positions.

2) 2D MULTI-HEAD ATTENTION LAYER
In the case of traffic flow, there are several factors which
need to be considered. These factors are responsible for traffic
conditions in a given time step. This is why sequences of
multiple features are needed in case of such time series traffic
flow forecasting.

There are several attention heads inside the multi-head
attention mechanism and each has a self-attention mecha-
nism. The theory behind it is to give the model more rep-
resentational power. That means it will be able to learn
from different points of view generalizing more forms of
representation, thinking that each head will learn something
different. As multiple features are included in such situations,
the standard self-attention mechanism of the transformer is
not enough to focus on more than one feature along with
focusing on a sequence of samples because transformers are
built to work with word sequences which consist of a single
word at a specific time instead of a group of features.
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As per Figure 3, this self-attention mechanism needs two
kinds or dimensions of six linear layers. The first dimension
of the linear layer is focused on features and the second is
on the sequence. The encoded data from the previous layer
is used to calculate f _query, f _key and f _value. These are
calculated after the input is fed to feature focused linear layer.

f _query = LinearQF (s) (1)

f _key = LinearFK (s) (2)

f _value = LinearFV (s) (3)

The f _query and f _key are multiplied to calculate the
f _score matrix. It determines how much focus a feature
should put on every other feature. This is a feature-to-feature
calculation. Each feature will have a score that corresponds
to other features in that time step. It is divided by the square
root of dk which represents the number of features per head
to ensure stability mitigating exploding effect.

The f _score matrix is used to generate a new query, key
and value with the help of a sequence-focused linear layer.
The f _score matrix is fed to sequence focused linear layer
resulting in sf _query, sf _key, sf _value. These three outputs
will represent the sequence as well as implicitly keep atten-
tion information among the features.

sf _query = LinearQSF (f _score) (4)

sf _key = LinearKSF (f _score) (5)

sf _value = LinearVSF (f _score) (6)

Then the sf _query and sf _key will be multiplied to cal-
culate the sf _score matrix which will undergo a softmax
operation generating the attention weights. These weights
denote the self-attention among each and every sequence as
well as features.

Attention(QF ,KF ,VF ) = (softmax(
QSF × KT

SF
√
dk

)VSF )VF

(7)

Then the attention weights are used to do a weighted sum
of the sf _value followed by another weighted sum operation
using f _value to generate the output vector. Thus important
values will get priority. Then the output vector is fed to the
final linear layer with a residual connection to produce an
output which is ready to go to the next layer.

There are several attention heads inside the multi-head
attention mechanism which has the self-attention mechanism
individually. The theory behind it is to give the model more
representational power thinking that each head will learn
something different.

3) POSITION-WISE FEED FORWARD NETWORK
This sub-layer of an encoder layer is nothing but a fully
connected feed-forward network with a residual connection.
If the input is x then:

PFFN (x) = ReLU (xW1 + b1)W2 + b2 (8)

The fully-connected layer is applied which has weights
W1 and biases b1. ReLU non-linearity, max with zero,
is applied to it followed by another fully-connected layer with
weightsW2 and biases b2.

4) THE DECODER
The concept is similar to the encoder. The decoder con-
sists of N Decoder Layers which are identical and stacked
upon each other. Each of the decoder layers consists of
3 sub-layers namelyMaskedMulti-Head Attention, Encoder-
Decoder Multi-Head Attention and Position-Wise Feed For-
ward Network.

5) GENERATING FEATURE WEIGHTS
The output from the last decoder layer is passed on to the
Generator. The Generator basically has a Linear layer and a
Softmax layer. It produces the impact factor of each feature
to produce the target ‘‘Average Occupancy’’. This denotes the
contribution of each feature to the target value. The weighted
sum of the features will be the target output value. In the train-
ing phase, the prediction is compared with the actual value
and loss are computed and the loss is backpropagated. There,
the parametric weights of the model are updated which are
used later for inference and finally to calculate the predicted
value.

V. RESULT AND DISCUSSION
A. ENVIRONMENT AND CONFIGURATION
Google Colab and Google Colab Pro have been used for the
experiment. As the experiment is resource-heavy, in most
cases, Google Colab Pro has been the go-to notebook envi-
ronment. Google Colab Pro proves a heavy RAM option
which gives an average of 25 GB RAM to its users. A Tesla
P100 GPU with 16 GB memory and a storage capacity of
around 200 GB.

B. EVALUATION METRICS
1) MSE
MSE or Mean Squared Error is an error calculating method.
It is mainly used to show how close a regression line is to a
set of predictable points. If Y be the actual output and Ŷ be
the predicted output, then we get:

MSE =
1
n

n∑
i=1

(Yi − Ŷi)2 (9)

2) RMSE
RMSE or Root Mean Squared Error is an error calculating
method. It is more popular in its use as it is measured in
the same unit as the response variable. RMSE basically tells
us about the average deviation between the predicted points
and the actual points. If Y be the actual output and Ŷ be the
predicted output, then we get:

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(10)
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TABLE 3. Hyper-parameters used for the experiment.

TABLE 4. MSE, RMSE and MAE values obtained from the predictions.

3) MAE
MAE or Mean Absolute Error is another error calculating
method. It is the absolute difference between the paired obser-
vations. It is used to measure the accuracy of continuous
variables. If Y be the actual output and Ŷ be the predicted
output, then we get:

MAE =
1
n

n∑
i=1

| Yi − Ŷi | (11)

C. EXPERIMENTAL RESULTS
The model was trained on the Google Colab environment.
The following hyper-parameters which were empirically
observed through several experiments were selected:

The batch size refers to the number of training examples
used by the model in each iteration. Generally, larger batch
size yields better results. The batch size here has been picked
to be 200 considering the memory constraint. The learning
rate is the step size of each iteration. Basically, the percentage
of change in the weight due to the error in the training sample
is determined by the learning rate. The learning rate has been
picked to be 0.001 by a trial-and-error method which properly
works for our dataset. Iterative processing of the input is done
in each layer of the encoder. By increasing the number of
encoders, the model will be able to catch more deviations and
feature contributions to the result. By keeping the memory
constraint in mind, the number of encoders has been chosen
to be a maximum of 5.

We have used the target variable as Average Occupancy
andwith different sequence lengths. Themodel wasmeasured
in terms of MSE, RMSE and MAE. After the convergence of
the training, the results that were obtained are as follows:

This shows the variation of different types of errors on
the basis of the change in sequence lengths. The transformer
architecture considering time series data along a specific
variable has been considered in [5] and [39]. The transformer

TABLE 5. MSE values for varying the number of encoders.

FIGURE 4. Comparison between 2D-Transformers, Transformers and
LSTM.

model across a specific variable failed to capture deviations
which are related to other features in the data. This is what
is depicted in the table 4. Both the sequence lengths 4 and
8 have produced better results compared to the Transformer
and LSTM model of sequence length = 8. Our model was
trained for around 30 minutes for each of the variables of
encoders. We ensured a proper learning period for the Trans-
former and LSTM models by giving them each more than
an hour of training time. We have kept the batch size at
200 and a learning rate of 0.001. The number of encoders
was a maximum of 5 which achieved minimum error.

Varying the number of encoders, the errors also fluctuate.
Now, let us look at how encoders have impacted learning
by observing the variation in MSE for different numbers of
encoders:

It is evident that the number of encoders has a direct impact
on themodel’s learning. A similar pattern is observed for both
Transformers architecture and the proposed 2-D Transformer
architecture. With the increase in the number of encoders, the
model learns better and gives a lesser error.

D. RESULT ANALYSIS
1) IMPACT OF SEQUENCE LENGTH
It is seen that with the increase in sequence length, all the
errors (MSE, RMSE and MAE) seem to decrease. This is
because the sequence length necessarily defines how much
of the time-series data are taken together for correlation at
a time. So, if the sequence length increases, more data is
taken together as a sequence and correlation is much more
evident by the model. Similar results are also shown by our
2D-Transformer model where increasing the sequence length
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FIGURE 5. Performance of the model over four days.

FIGURE 6. Average error distance of transformers and 2D-transformers over four days.

decreased the error up to a certain extent. We have taken
sequence lengths 2, 4 and 8 where 4 has given a better result
than 2, and 8, has given a better result than 4.

If we look at the radar chart in Figure 7, we will see that
our model of sequence lengths 4 and 8 has outperformed the
LSTMmodel of sequence length = 8 and Transformers model
of sequence lengths 4 and 8 in all three metrics.

2) TEMPORAL PERFORMANCE OF THE MODEL
Themodel makes near-accurate predictions of the traffic flow
which can be observed from Figure 5. The figure shows the
performance of the model over a continuous time frame of
4 days in an hourly manner. A similar pattern can be observed
over 5-minutes data as well. One of the critical problems
that can be observed for the basic Transformer model is that
the sudden changes in traffic flow were not captured. This
prediction is of utmost importance as unusual traffic flow
prediction is one of its main practical uses. These abrupt
changes were successfully captured by our model. The model
can be used for traffic guidance andmanagement systems and
make positive improvements in ITS.

Figure 6 shows the Average Error Distance which is the
average error of each of the models with respect to the
actual value over the 4 days of time. Each of the error dis-
tances is taken by averaging over the 5 consecutive hours

of hourly errors caused by both 2D-Transformers and Trans-
formers models. This gives a comprehensive idea about
the improvements offered by 2D-Transformers over a long
period of time. It is evident that 2D-Transformers have out-
performed the Transformer model in almost each of the
hours.

3) IMPACT OF NUMBER OF ENCODERS
The number of encoders directly helps in improving the per-
formance of the model. As the number of encoders increases,
the model is able to learn much more correlation among the
features. Let us see how the number of encoders has made the
model improve in performance:

The basic Transformer model starts to improve with
the increase in the number of encoders as expected. But
the error is still larger than that of 2D-Transformers.
Even with 5 encoders, the model has a higher error than
2D-Transformers with only 3 encoders.

Our experiment shows that our 2D-Transformer increasing
the number of encoders from 2 to 5 has decreased the MSE
by around 70%, which is for sequence length = 4 as shown in
Figure 4. Similar results are seen in the case of sequence
length = 8. The MSE has decreased by around 66%. This
graph shows that the 2D-Transformer model has converged
and has a steady error rate moving forward.
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FIGURE 7. Impact of number of encoders in MSE.

E. INTEGRATING INTO AN SDN ENVIRONMENT
Software-Defined Network (SDN) architecture is being cho-
sen for deploying our traffic predictionmodel and for control-
ling and managing vehicular network communication. It can
be deduced that SDN architecture ensures better connectivity
and performance for vehicular communication over tradi-
tional networks, and upon experimentation, similar results
have been achieved. In this section, we will put some light
on why SDN is being chosen over traditional networks for
integrating vehicular communication, the experimental setup
that is being conducted on the Mininet emulator, and will
discuss the simulation results.

One of the key concepts of SDN is the decoupling of data
and the control plane. In the case of traditional networks,
routing devices perform the duties of both the control plane
and the data plane. In SDN, a controller-switch architecture
is observed for the decoupling of the control and data plane.
Controllers act as the control layer and switch just forward
the data.

1) SDN EXPERIMENTAL SETUP
The experiment was conducted in Mininet Emulator with
Floodlight Controller. The Mininet emulator resided in a
Ubuntu 14.04 OS. The floodlight controller is used as the
remote controller of the network. A custom topology that
has been built to emulate a real-world scenario consists of
4 switches and 4 hosts.

Through the experimentation in the simulation, we have
measured on how much time it usually takes for the model
data to be transmitted to the other devices. Various samples
of data are being gathered as to how much time it takes for
the full data to go from the devices, in the SDN network.

2) SDN SIMULATION AND RESULTS
We have found the results of the experimentation in terms of
the time needed for transmitting the data to the other devices.
We have sample data from 100kb to 500kb and transmitted

TABLE 6. Time needed for data transmission in the topology based on
file size.

them over the network. The time that is required for the
data transmission is presented in the table below. We also
have been able to showcase the topology in the floodlight
controller as shown in the figure.

VI. FUTURE WORKS
A. DATASET MODIFICATION
Each of the stations in the dataset has a specific coverage area.
This coverage varies from station to station. Because of this
reason, some of the stations which have a smaller coverage
might have less traffic present even though it is closer to some
heavy traffic. This sort of case makes it hard for the model
to recognize correlations among stations with their positions
and neighbouring stations.

In order to make the model perform better, these smaller
stations can be merged with their nearest larger stations. This
modification in the dataset will yield a much better result as
the model will be able to understand the spatial correlations.

B. RESOURCE ALLOCATION
Larger sequence lengths and batch sizes would gener-
ally yield a better result. More encoders would also help
in improving performance. To sum up, bigger sequences,
batches and more encoders would yield a much better result.

Again, a larger dataset would mean that the model is learn-
ing from more samples, which generally also produces much
better results and avoid bias.

VII. CONCLUSION
It is clear from the experiments that our transformer model
has performed amazingly on the dataset. This demonstrates
how well-suited transformer-based models are for estimating
traffic flow. The transformer design can tolerate dependencies
across vast distances and protracted timespan since it accom-
modates massive volumes of data.

VANET’s ad-hoc nature meshes seamlessly with the SDN
architecture. The centralized decision-making process of
SDN can guarantee a quicker transmission rate and appropri-
ate control mechanisms that are needed for fast-moving vehi-
cles. The research work has some limitations. Rigorous data
analysis could be done to find dependencies across stations
which could create an avenue for feature engineering. The
model has not been simulated in a real-life SDN environment
which could also provide challenges in its behaviour in a
practical setting with dynamic constraints.
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It can be concluded a comprehensive model for traffic flow
prediction and propagation inside ITS might be produced
by combining VANET and SDN with the precise prediction
made possible by a transformer model.
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