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ABSTRACT This study intends to significantly enhance the capacity of decision experts (DEs) to capture
their judgment in a larger area. In order to accomplish this, we propound the r, s, t-spherical fuzzy set
(r, s, t-SFS), an expansion of the t-spherical fuzzy set. In r, s, t-SFS the sum of the rth power of membership
grade, sth power of neutral grade and the tth power of non-membership grade is less than or equal to 1,
where r, s and t are natural numbers. Due to the inclusion of the extra parameters r and s, the r, s, t-SFS is
able to describe assessment information in a more flexible and comprehensive manner. This work begins by
defining r, s, t-SFS and demonstrating that it is an extension of various existing fuzzy sets. The fundamental
operations, score, and accuracy functions of r, s, t-SFS are then introduced, and their mathematical features
are examined. Also, we study some distance measures between r, s, t-SFSs and their required properties.
Next, to aggregate r, s, t-spherical fuzzy data, r, s, t-spherical fuzzy weighted averaging (r, s, t-SFWA)
and r, s, t-spherical fuzzy weighted geometric (r, s, t-SFWG) operators are bring forward along with some
of their essential properties. Based on the proposed distance measure, maximizing deviation method is
combined with r, s, t-spherical fuzzy information to establish the criteria weight determination method.
Following this, we present r, s, t-spherical fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) method using the grounds of classical VIKOR method depending upon two focal properties,
namely, group utility and individual regret of opponent. To demonstrate the use of the framed approach
and exhibit its validity, we present a case study of arc welding robot selection. Besides, the effectiveness and
accuracy of the proposed VIKOR are proved by parameter analysis and comparison analysis findings.

INDEX TERMS r, s, t-spherical fuzzy set. aggregation operators, maximizing deviation method, VIKOR,
MCGDM.

I. INTRODUCTION
The multi-criteria group decision making (MCGDM) is
intended to select the optimal option from restricted possi-
bilities by integrating evaluation data for each option. As a
valuable evaluation tool throughout the past few decades,
it has been widely utilized in numerous applications, includ-
ing site selection, medical diagnostics, granular computing
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approaches, pattern recognition, etc. How to signify evalua-
tion information for different attributes is the initial step of
MCDM. Decision experts (DEs) frequently use crisp num-
bers to evaluate alternatives. However, it is sometimes inap-
propriate to use crisp numbers since the decision environment
is extremely complicated, and DEs fail to understand the
opinion target completely. On the basis of these requirements,
Zadeh [1] proposed the definition of fuzzy set (FS) in 1965,
which utilized the membership grade to evaluate alternatives
and has been the subject of several issues [2], [3], [4], [5]
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and in-depth investigations, particularly in MCGDM [6],
[7]. Atanassov [8] subsequently added the non-membership
grade to FS and produced the definition of intuitionistic FS
(IFS). As a valuable tool for complex fuzzy messages, IFS
has been extensively studied by a large number of scholars.
However, IFSs are constrained by the fact that the total of
membership grade and non-membership grade resides within
the interval [0, 1], which is a very small range for repre-
senting fuzzy information. To this end, Yager [9] initially
made this observation and produced Pythagorean FS (PyFS),
which broadened the restrictive criteria of IFSs such that
the sum of the squares of the membership grade and the
non-membership grade fits inside [0, 1]. As a comprehensive
type of IFS, PyFS has since piqued the attention of several
researchers, who have carried out a number of noteworthy
publications [10], [11], [12]. With the passage of time, how-
ever, it became apparent that PyFS cannot simulate DEs’
views when we get information in the form of a pair, where
the sum of the squares of membership and non-membership
grades exceeds 1. To address such problems, Yager [13]
upgraded PyFS and presented a q-rung orthopair fuzzy set
(q-ROFS) as a new approach for addressing uncertainty.
In q-ROFS, the sum of the qth power of themembership grade
and the non-membership grade is less than or equal to one.
Since it’s introduction, numerous scholars have investigated
the characteristics of q-ROFSs [14], [15], [16].

Structures such as IFS, PyFS, and q-ROFS fail when
there are more than three possibilities, such as when electing
between two parties: some individuals vote for party X ,
some vote for party Y , some sabotage their vote by stamping
both, and some refuse to vote. To manage this type of infor-
mation, Cuong and Kreinovich [17] introduced the picture
fuzzy set (PFS), which has the requirement that the sum of
membership grade, neutral grade, and non-membership grade
must be between [0, 1]. Although PFS generalizes FS and
IFS, it fails when the total of membership grade, neutral
grade, and non-membership grade does not lie in [0, 1], and
DE is hesitant to employ PFS to solve their problems as a
result. To address this issue, Mahmood et al. [18] presented
the concept of the spherical fuzzy set (SFS), in which they
eased the requirement that the square sum of the aforesaid
grades be in the range [0, 1]. DEs in SFS have more leeway
in making decisions than in PFS. The most generalized form
of all the discussed fuzzy structures is the t-spherical fuzzy
set (t-SFS), which was presented by Mahmood et al. [18].
The DE in t-SFSs has to find a positive integer t such
that the sum of the tth power of membership grade, neutral
grade, and non-membership grade is from [0, 1]. t-SFS is
an appropriate structure for handling uncertain environments.
Ullah et al. [19] defined certain t-spherical fuzzy similarity
measures and explained their applicability in pattern recog-
nition. Garg et al. [20] studied improved interactive opera-
tional laws of t-SFSs and their corresponding aggregation
operators along with their application. The authors in [21] put
forward the axiomatic entropy measure and formulated some
frank aggregation operators with their desired characteristics.

Recently, Huang et al. [22] established a divergence-based
maximizing deviation technique for determining expert and
risk factor weights. Subsequently, they devised a t-spherical
fuzzy combined compromise solution approach to stably rank
failure modes.

However, in t-SFSs, the term level of membership grade
σ , neutral grade ϑ , and non-membership grade ϱ is taken the
same, i.e., 0 ≤ σ t+ϑ t

+ϱt ≤ 1. But in practice, the term level
of σ , ϑ , and ϱ may be different. For example, a DE define the
σ as 0.7, ϑ as 0.6 and ϱ as 0.5. Clearly, 0.72 + 0.62 + 0.52 =

1.1 > 1. Therefore, we should next check 0.73+0.63+0.53 =

0.684 < 1. But since 0.73 + 0.62 + 0.52 = 0.953 < 1.
So the situation can be more successfully captured if the term
level of σ , ϑ , and ϱ is allowed to be different. Thus, there is
a need to initiate a novel fuzzy tool with the constrain 0 ≤

σ r
+ ϑs

+ ϱt
≤ 1 with r, s, t ≥ 1.

MCGDM is the most well-known branch of decision-
support mechanisms, which includes a number of techniques.
For instance, technique for order preference by similar-
ity to ideal solutions (TOPSIS) method studied by Hwang
and Yoon [23], preference ranking organization method for
enrichment evaluations (PROMETHEE) proposed by Brans
and Mareschel [24], vlsekriterijumska optimizacija i kom-
promisno resenje (VIKOR)method studied by opricovic [25],
elimination et choice translating reality (ELECTRE) intro-
duced by Benayoun, Roy, and Sussman [26], and tomada
de decisao interativa e multicrit’erio (TODIM) dispatched
by Gomes and Lima [27]. Highlighting the shortcomings
of TOPSIS, ELECTRE, and PROMOTHEE approaches,
Opricovic and Tzeng [28] expounded an extended VIKOR
method. Among the differentMCGDMapproaches published
by numerous writers in the literature, the VIKOR [28] has
attained widespread acceptance. Considering the criteria, this
strategy aims to find a compromise solution for ranking the
options. A compromise solution is a workable solution that
comes closest to the ideal solution. The conventional VIKOR
approach has been expanded to its fuzzy counterparts by
supplying FSs such as type-2 fuzzy VIKOR [29], hesitant
fuzzy VIKOR [30], fermatean hesitant fuzzy VIKOR [31].
To the best of our information, t-spherical VIKOR approach
has not yet been reported in the literature.

The prime reasons for conducting this research are as
follows:

1). The existing t-SFS is based on the rule that the sum of the
tth power of membership, neutral, and non-membership
grades should be bounded by 1. To get reasonable
results, DEs must pick the lowest integer t meeting the
inequality 0 ≤ σ t + ϑ t

+ ϱt ≤ 1 since, in most
problems, the higher value of t affects the results [32],
[33]. In practice, however, we may face situations where
the aforesaid inequality may satisfy for different powers
of σ , ϑ and ϱ. For instance, if we take σ = 0.6, ϑ = 0.7,
and ϱ = 0.5, then in the light of t-SFS, t = 3 is
the lowest possible integer that satisfies the condition
0 ≤ σ t + ϑ t

+ ϱt ≤ 1, but it also satisfies if we fix the
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power of σ , ϑ and ϱ to 2, 3 and 2, respectively. Since
t-SFS only has a single parameter, t , it is not possible
to specify various powers for membership, neutral, and
non-membership grades. To overcome this issue, there is
a need to add two more parameters to the existing t-SFS.

2). To use the full potential of the multi-parameter spherical
fuzzy set, there is a need to extend the known literature
on t-SFS and investigate a number of novel conceptions.

3). VIKOR is an important method for modeling decision
ranking problems; however, in the literature, there is no
research related to VIKOR regarding t-SFS. To fill this
gap in the literature, it is necessary to explore theVIKOR
to the environment of t-SFS or its extension.

This study mainly aims to devise a novel fuzzy tool from
the viewpoint of capturing uncertainties in a better way. The
following are some of this study’s contributions:

1). The key goal is to introduce a more effective concep-
tion, namely r, s, t-spherical fuzzy set (r, s, t-SFS) by
expanding the range of t-SFS parameters to aid DEs
in developing their viewpoints in an authentic manner
when dealing with decision-making challenges.

2). To lays a solid foundation for r, s, t-spherical fuzzy set-
ting, some basic theory, including operational laws, the
score and accuracy functions, and distance measures are
studied.

3). We design some arithmetic and geometric aggregation
operators for aggregating r, s, t-spherical fuzzy data and
to verify several valuable properties associated with
them.

4). Using the maximum deviation model and the Hamming
distance measure on r, s, t-SFSs, we create a weighting
approach for determining criteria weights.

5). An integrated assessment framework combining the
VIKOR method and maximum deviation model is
brought forward on the basis of the proposed r, s, t-SFS.

6). A thorough application example is presented to illustrate
the application impact of the suggested approach. Com-
pared to the previous MAGDM approaches, our method
offers much larger constraints, more stability, a broader
application range, and greater adaptability.

The subject contents of this paper are ordered as follows:
Section II describes the primary purpose of presenting the
article, the source of inspiration, and the work described by
previous writers in the area. Section III initiated the notion
of r, s, t-SFS, along with its basic theory, including opera-
tion rules, ranking rule, and distance measures. Section IV
comprises some fundamental weighted aggregation operators
along with their pertinent results. Section V summarizes
the stepwise procedure of r, s, t-spherical fuzzy maximizing
deviation and VIKOR to work out practical MCGDM prob-
lems with unknown weight information. Section VI discuss
an application of the developed VIKOR methodology by
means of an explanatory numerical example. In addition,
it also conducts a detailed sensitivity analysis. In Section VII,
we highlight the validity and potentiality of the frame

approach by dint of comparison study. In the last section,
some concluding remarks are drawn.

II. PRELIMINARIES
The notion of t-SFS is propounded by Mahmood et al. [18]
as a synthesis of SFS to offer a broader range of preferences
for DEs and enable them to express their hesitation about
an alternative. Some basic definitions of t-SFS and terms
relevant to planned work are delineated as follows.
Definition 1 ([18]): Let Z be a given nonempty set.

A t-spherical fuzzy set (t-SFS) S on Z is given by

S = {⟨z, σ (z), ϑ(z), ϱ(z)⟩ |z ∈ Z} , (1)

where σ (z), ϑ(z), ϱ(z) ∈ [0, 1] denote the membership, neu-
tral and non-membership grades of z ∈ Z to the set S, respec-
tively, with the restriction that 0 ≤ σ t (z)+ϑ t (z)+ϱt (z) ≤ 1.
The degree of refusal is π (z) =

t
√
1 − σ t (z) − ϑ t (z) − ϱt (z).

For convince, ⟨σ (z), ϑ(z), ϱ(z)⟩ is called a t-spherical fuzzy
number (t-SFN), labeled by S = ⟨σ, ϑ, ϱ⟩.
Remark 1: • The Definition 1 reduced to SFS if we set
t = 2.

• The Definition 1 reduced to PFS if we set t = 1.
• The Definition 1 reduced to q-ROFS if we set ϑ = 0.
• The Definition 1 reduced to PyFS if we set t = 2 and

ϑ = 0.
• The Definition 1 reduced to IFS if we set t = 1 and

ϑ = 0.
Definition 2 ([19]): Let S1 = ⟨σ1, ϑ1, ϱ1⟩ and S2 =

⟨σ2, ϑ2, ϱ2⟩ be two t-SFNs and η > 0, then

1) S1 ⊕ S2 =

〈
t
√

σ t1 + σ t2 − σ t1σ
t
2, ϑ1ϑ2, ϱ1ϱ2

〉
;

2) S1 ⊗ S2 =

〈
σ1σ2,

t
√

ϑ t
1 + ϑ t

2 − ϑ t
1ϑ

t
2,

t
√

ϱt1 + ϱt2 − ϱt1ϱ
t
2

〉
;

3) Sη
1 =

〈
σ

η
1 , t
√
1 − (1 − ϑ t

1)
η, t
√
1 − (1 − ϱt1)

η
〉
;

4) ηS1 =

〈
t
√
1 − (1 − σ t1)

η, ϑ
η
1 , ϱ

η
1

〉
;

5) Sc1 = ⟨ϱ1, ϑ1, σ1⟩.

Definition 3 ([18], [34]): S1 = ⟨σ1, ϑ1, ϱ1⟩ and S2 =

⟨σ2, ϑ2, ϱ2⟩ be any two t-SFNs, let S (S1) = σ t1 − ϑ t
1 −

ϱt1 +

(
expσ t1−ϑ t1−ϱt1

expσ t1−ϑ t1−ϱt1 +1
−

1
2

)
π t and S (S2) = σ t2 − ϑ t

2 − ϱt2 +(
expσ t2−ϑ t2−ϱt2

expσ t2−ϑ t2−ϱt2 +1
−

1
2

)
π t be the score values of S1 and S2,

respectively, and let A (S1) = σ t1 + ϑ t
1 + ϱt1 and A (S2) =

σ t2+ϑ t
2+ϱt2 be the accuracy values of S1 and S2, respectively.

Then,
1) If S (S1) < S (S1), then S1 < S2;
2) If S (S1) = S (S1), then

a. If A (S1) < A (S1), then S1 < S2;
b. If S (S1) = S (S1), then S1 = S2.

As an important tool in information fusion, t-spherical
fuzzy aggregation operator has received much attention,
Mahmood et al. [35] propound the t-spherical fuzzy weighted
averaging (t-SFWA) operator and the T-spherical fuzzy
weighted geometric (t-SFWG) operator as follows:
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Definition 4 ([35]): Let Si (i = 1, 2, . . . , n) be a collec-
tion of t-SFNs, then the t-spherical fuzzy weighted averaging
(t-SFWA) operator is a mapping Sn −→ S such that, as
in (2), shown at the bottom of the next page, where w =

{w1,w2, . . . ,wn}T is the weight vector of (S1,S2, . . . ,Sn)
such that 0 ≤ wi ≤ 1 and

n∑
i=1

wi = 1.

Definition 5 ([35]): Let Si (i = 1, 2, . . . , n) be a collec-
tion of t-SFNs, then the t-spherical fuzzy weighted geometric
(t-SFWG) operator is a mapping Sn −→ S such that, as
in (3), shown at the bottom of the next page, where w =

(w1,w2, . . . ,wn)T is the weight vector of (S1,S2, . . . ,Sn)
such that 0 ≤ wi ≤ 1 and

n∑
i=1

wi = 1.

III. r, s, t-SPHERICAL FUZZY SET
This section is devoted to propound a novel fuzzy tool and its
fundamental concepts.

A. NOTION OF r, s, t-SFSs
In what follows, we constitute the concept of r, s,
t-SFS and investigate its idiosyncrasies to a larger extent.
Definition 6: Let Z be a given nonempty set. A r, s,

t-spherical fuzzy set (r, s, t-SFS) G on Z is given by

G = {⟨z, σ (z), ϑ(z), ϱ(z)⟩ |z ∈ Z} , (4)

where σ : Z −→ [0, 1] , ϑ : Z −→ [0, 1] , and ϱ :

Z −→ [0, 1] , characterizes membership grades, neutral
grades and non-membership grades, respectively, such that
for some natural numbers r, s, and t, 0 ≤ σ r(z) + ϑs(z) +

ϱt(z) ≤ 1 ∀ z ∈ Z. The degree of indeterminacy is π (z) =

ℓ
√
1 − σ r(z) − ϑs(z) − ϱt(z), where ℓ is the least common

multiple (LCM) of r, s and t.
For convince, ⟨σ (z), ϑ(z), ϱ(z)⟩ is called a generalized

spherical fuzzy number (GSFN), labeled by g = ⟨σ, ϑ, ϱ⟩. g
In the following lines, we explain the selection procedure

of r, s and t in the suggested r, s, t-SFS.
Remark 2: Consider the case where we have to find the

minimum value of r, s, t ≥ 1 for a given triplet ⟨σ, ϑ, ϱ⟩ so
that σ r

+ ϑs
+ ϱt

≤ 1. It is always possible to find a unique
solution to these problems using some iterative computing
techniques even though they have no closed-form solution.
We shall refer to the minimum values of r,s, and t satisfying
σ r

+ ϑs
+ ϱt

≤ 1 as the r, s, t−niche of ⟨σ, ϑ, ϱ⟩ . We note
that if r1, s1, t1 is the r, s, t−niche of ⟨σ, ϑ, ϱ⟩ , then ⟨σ, ϑ, ϱ⟩

is valid for all r ≥ r1, s ≥ s1, and t ≥ t1.
Remark 3: Consider the case where σ r

+ ϑs
+ ϱt > 1,

andwe have to find r, s, t−niche. Suppose r∗, s∗ and t∗ are the
minimum values for which σ r∗

+ϑs
+ϱt

≤ 1, σ r
+ϑs∗

+ϱt
≤

1, and σ r
+ ϑs

+ ϱt∗
≤ 1. In such a situation, we shall refer

to that minimal value that meets the condition with a larger
grade.

Suppose Z = {z1, z2, . . . , zn} be given data set and F be
some fuzzy concept. Suppose a DE express his preference as
a triplet ⟨σi, ϑi, ϱi⟩ for each zi ∈ Z.Now the challenge is how

to estimate the correct values of r, s and t to represent the
information appropriately. Here we can proceed as follows:

i). For each triplet ⟨σi, ϑi, ϱi⟩ determine its r, s, t−niche,
say ri, si,ti.
ii). Ascertain the r∗, s∗, t∗−niche such that r∗ = maxi {ri} ,

s∗
= maxi {si} , and t∗ = maxi

{
ti
}
.

iii) Represent G as a r∗, s∗, t∗−SFS.
Deduction:

• The Definition 6 reduced to PFS [17] if we set
r = s = t = 1.

• The Definition 6 reduced to SFS [18] if we set
r = s = t = 2.

• The Definition 6 reduced to t-SFS [18] if we set
r = s = t .

• The Definition 6 reduced to p,q-QOFS [36] if we set
ϑ = 0.

• The Definition 6 reduced to FFS [37] if we set r = t =

3 and ϑ = 0.
• The Definition 6 reduced to PyFS [9] if we set r = t =

2 and ϑ = 0.
• The Definition 6 reduced to IFS [8] if we set r = t =

1 and ϑ = 0.

Thereby, the devised r, s, t-SFS is the generalization of
IFS [8], PyFS [9], FFS [37], p, q-QOFS [36], PFS [17],
SFS [18], and t-SFS [18].

Nowwe observe that, for any natural numbers ‘n1’ and ‘n2’
with n1 > n2, an1 < an2 , ∀ a ∈ [0, 1]. We can derive a
fundamental relationship betwixt two r, s, t-SFSs from this
observation.
Theorem 1: Let G be the r, s, t-SFS and r1, s1, t1 be the

r∗, s∗, t∗−niche of G then for r2 ≥ r1, s2 ≥ s1, t2 ≥ t1, G is
also a r, s, t-SFS with r2, s2, t2−niche.

Proof: Since σ r1 (z) + ϑs1 (z) + ϱt1 (z) ≤ 1, ∀ z. Now
r2 ≥ r1 implies that σ r2 (z) ≤ σ r1 (z), s2 ≥ s1 implies that
ϑ r2 (z) ≤ ϑ r1 (z) and t2 ≥ t1 implies that σ t2 (z) ≤ σ t1 (z) as
σ (z), ϑ(z), ϱ(z) ∈ [0, 1]. So we get σ r2 (z)+ϑs2 (z)+ϱt2 (z) ≤

σ r1 (z) + ϑs1 (z) + ϱt1 (z) ≤ 1.
Now, we emphasize the following fact as remark.
Remark 4: If r2 ≥ r1, s2 ≥ s1, t2 ≥ t1 and G is a

r2, s2, t2−SFS then G is not necessarily r1, s1, t1−SFS
In the following, we present the relationships betwixt the

spaces of r, s, t-SFS based on the values of r, s and t.
Theorem 2: If r1 > s1 > t1, then we have the following

twelve cases:
i). r1, s1, t1 − SFS < s1, s1, t1 − SFS < t1, s1, t1 − SFS;

ii). r1, t1, s1 − SFS < s1, t1, s1 − SFS < t1, t1, s1 − SFS;

iii). r1, s1, s1 − SFS < s1, s1, s1 − SFS < t1, s1, s1 − SFS;

iv). r1, t1, t1 − SFS < s1, t1, t1 − SFS < t1, t1, t1 − SFS;

v). s1, r1, t1 − SFS < s1, s1, t1 − SFS < s1, t1, t1 − SFS;

vi). t1, r1, s1 − SFS < t1, s1, s1 − SFS < t1, t1, s1 − SFS;

vii). s1, r1, s1 − SFS < s1, s1, s1 − SFS < s1, t1, s1 − SFS;

viii). t1, r1, t1 − SFS < t1, s1, t1 − SFS < t1, t1, s1 − SFS;

ix). s1, t1, r1 − SFS < s1, t1, s1 − SFS < s1, t1, t1 − SFS;

x). t1, s1, r1 − SFS < t1, s1, s1 − SFS < t1, s1, t1 − SFS;
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xi). s1, s1, r1 − SFS < s1, s1, s1 − SFS < s1, s1, t1 − SFS;

xii). t1, t1, r1 − SFS < t1, t1, s1 − SFS < t1, t1, t1 − SFS.

Proof: If r1 > s1 > t1, then we have
σ r1 (z) < σ s1 (z) < σ t1 (z), ϑ r1 (z) < ϑs1 (z) < ϑ t1 (z), and

ϱr1 (z) < ϱs1 (z) < ϱt1 (z).
Now

σ r1 (z) < σ s1 (z) < σ t1 (z),

⇒ σ r1 (z) + ϑs1 (z) + ϱt1 (z) < σ s1 (z) + ϑs1 (z) + ϱt1 (z)

< σ t1 (z) + ϑs1 (z) + ϱt1 (z)

σ r1 (z) + ϑ t1 (z) + ϱs1 (z) < σ s1 (z) + ϑ t1 (z) + ϱs1 (z)

< σ t1 (z) + ϑ t1 (z) + ϱs1 (z)

σ r1 (z) + ϑs1 (z) + ϱs1 (z) < σ s1 (z) + ϑs1 (z) + ϱs1 (z)

< σ t1 (z) + ϑs1 (z) + ϱs1 (z)

and

σ r1 (z) + ϑ t1 (z) + ϱt1 (z) < σ s1 (z) + ϑ t1 (z) + ϱt1 (z)

< σ t1 (z) + ϑ t1 (z) + ϱt1 (z).

Next

ϑ r1 (z) < ϑs1 (z) < ϑ t1 (z),

⇒ σ s1 (z) + ϑ r1 (z) + ϱt1 (z) < σ s1 (z) + ϑs1 (z) + ϱt1 (z)

< σ s1 (z) + ϑ t1 (z) + ϱt1 (z)

σ t1 (z) + ϑ r1 (z) + ϱs1 (z) < σ t1 (z) + ϑs1 (z) + ϱs1 (z)

< σ t1 (z) + ϑ t1 (z) + ϱs1 (z)

σ s1 (z) + ϑ r1 (z) + ϱs1 (z) < σ s1 (z) + ϑs1 (z) + ϱs1 (z)

< σ s1 (z) + ϑ t1 (z) + ϱs1 (z)

and

σ t1 (z) + ϑ r1 (z) + ϱt1 (z) < σ t1 (z) + ϑs1 (z) + ϱt1 (z)

< σ t1 (z) + ϑ t1 (z) + ϱs1 (z).

And

ϱr1 (z) < ϱs1 (z) < ϱt1 (z),

⇒ σ s1 (z) + ϑ t1 (z) + ϱr1 (z) < σ s1 (z) + ϑ t1 (z) + ϱs1 (z)

< σ s1 (z) + ϑ t1 (z) + ϱt1 (z)

σ t1 (z) + ϑs1 (z) + ϱr1 (z) < σ t1 (z) + ϑs1 (z) + ϱs1 (z)

< σ t1 (z) + ϑs1 (z) + ϱt1 (z)

σ s1 (z) + ϑs1 (z) + ϱr1 (z) < σ s1 (z) + ϑs1 (z) + ϱs1 (z)

< σ s1 (z) + ϑs1 (z) + ϱt1 (z)

and

σ t1 (z) + ϑ t1 (z) + ϱr1 (z) < σ t1 (z) + ϑ t1 (z) + ϱs1 (z)

< σ t1 (z) + ϑ t1 (z) + ϱt1 (z).

Theorem 3: If r1 < s1 < t1, then we have the following
twelve cases:
i). r1, s1, t1 − SFS > s1, s1, t1 − SFS > t1, s1, t1 − SFS;

ii). r1, t1, s1 − SFS > s1, t1, s1 − SFS > t1, t1, s1 − SFS;

iii). r1, s1, s1 − SFS > s1, s1, s1 − SFS > t1, s1, s1 − SFS;

iv). r1, t1, t1 − SFS > s1, t1, t1 − SFS > t1, t1, t1 − SFS;

v). s1, r1, t1 − SFS > s1, s1, t1 − SFS > s1, t1, t1 − SFS;

vi). t1, r1, s1 − SFS > t1, s1, s1 − SFS > t1, t1, s1 − SFS;

vii). s1, r1, s1 − SFS > s1, s1, s1 − SFS > s1, t1, s1 − SFS;

viii). t1, r1, t1 − SFS > t1, s1, t1 − SFS > t1, t1, s1 − SFS;

ix). s1, t1, r1 − SFS > s1, t1, s1 − SFS > s1, t1, t1 − SFS;

x). t1, s1, r1 − SFS > t1, s1, s1 − SFS > t1, s1, t1 − SFS;

xi). s1, s1, r1 − SFS > s1, s1, s1 − SFS > s1, s1, t1 − SFS;

xii). t1, t1, r1 − SFS > t1, t1, s1 − SFS > t1, t1, t1 − SFS.

Proof: Based on the lines of Theorem 2, one can easily
get its proof.

Based on Theorems 2 and 3, we may deduce that the
proposed r, s, t-SFS can capture uncertainty more precisely
than the current t-SFS owing to the extra parameters r and s.

B. BASIC OPERATIONS OF r, s, t-SFNs
We suggest the following operations for r, s, t-SFNs, based
on the concept of Definition 2.
Definition 7: Let g1 = ⟨σ1, ϑ1, ϱ1⟩ and g2 = ⟨σ2, ϑ2, ϱ2⟩

be two r, s, t-SFNs and η > 0, then

1) g1 ⊕ g2 =

〈
r∗
√

σ r∗
1 + σ r∗

2 − σ r∗
1 σ r∗

2 , ϑ1ϑ2,

ϱ1ϱ2

〉
;

2) g1 ⊗ g2 =

〈
σ1σ2,

s∗
√

ϑs∗

1 + ϑs∗

2 − ϑs∗

1 ϑs∗

2

,
t∗
√

ϱt∗
1 + ϱt∗

2 − ϱt∗
1 ϱt∗

2

〉
;

T − SFWA (S1,S2, . . . ,Sn) = w1S1 ⊕ w2S2 ⊕ . . . ⊕ wnSn

=

〈(
1 −

n∏
k=1

(
1 − σ tk

)wk)1/t

,

n∏
k=1

(ϑk)
wk ,

n∏
k=1

(ϱk)
wk

〉
, (2)

T − SFWG (S1,S2, . . . ,Sn) = w1S1 ⊗ w2S2 ⊗ . . . ⊗ wnSn

=

〈
n∏

k=1

(σk)
wk ,

(
1 −

n∏
k=1

(
1 − ϑ t

k
)wk)1/t

,

(
1 −

n∏
k=1

(
1 − ϱtk

)wk)1/t〉
, (3)

46458 VOLUME 11, 2023



J. Ali, M. Naeem: r, s, t-Spherical Fuzzy VIKOR Method and Its Application

3) gη
1 =

〈
σ

η
1 , s∗

√
1 − (1 − ϑs∗

1 )η,
t∗
√
1 − (1 − ϱt∗

1 )
η

〉
;

4) ηg1 =

〈
r∗
√
1 − (1 − σ r∗

1 )η, ϑη
1 , ϱ

η
1

〉
;

5) gc1 = ⟨ϱ1, ϑ1, σ1⟩;
6) g1 ⪯ g2 if and only if ϱ1 ≤ ϱ2, ϑ1 ≥ ϑ2 and σ1 ≥ σ2;

7) g1 = g2 if and only if ϱ1 = ϱ2, ϑ1 = ϑ2 and σ1 = σ2.

We investigate the following results using the operational
laws defined in Definition 7.
Theorem 4: Let gi = ⟨σi, ϑi, ϱi⟩ (i = 1, 2, 3) be any three

r, s, t-SFNs, and η, η1, η2 > 0, then
1) g1 ⊕ g2 = g2 ⊕ g1;
2) g1 ⊗ g2 = g2 ⊗ g1;
3)
(
g1 ⊕ g2

)
⊕ g3 = g1 ⊕

(
g2 ⊕ g3

)
;

4)
(
g1 ⊗ g2

)
⊗ g3 = g1 ⊗

(
g2 ⊗ g3

)
;

5) η
(
g1 ⊕ g2

)
= ηg1 ⊕ ηg2;

6)
(
g1 ⊗ g2

)η
= gη

1 ⊗ gη
2;

7) η1g1 ⊕ η2g1 = (η1 + η2) g1;
8) gη1

1 ⊗ gη2
1 = gη1+η2

1 ;
9) (η1η2) g1 = η1

(
η2g1

)
.

Proof: We just verify components 1, 3, 5, 7 and 9, and
accordingly for the remainder.
1). As

g1 ⊕ g2 =

〈
r∗
√

σ r∗
1 + σ r∗

2 − σ r∗
1 σ r∗

2 , ϑ1ϑ2, ϱ1ϱ2

〉
=

〈
r∗
√

σ r∗
2 + σ r∗

1 − σ r∗
2 σ r∗

1 , ϑ2ϑ1, ϱ2ϱ1

〉
.

3).(
g1 ⊕ g2

)
⊕ g3

=

〈
r∗
√

σ r∗
1 + σ r∗

2 − σ r∗
1 σ r∗

2 , ϑ1ϑ2, ϱ1ϱ2

〉
⊕ ⟨σ3, ϑ3, ϱ3⟩

=

〈
r∗
√(

σ r∗
1 +σ r∗

2 −σ r∗
1 σ r∗

2

)
+σ r∗

3 −
(
σ r∗
1 +σ r∗

2 −σ r∗
1 σ r∗

2

)
σ r∗
3 ,

(ϑ1ϑ2) ϑ3, (ϱ1ϱ2) ϱ3

〉
.

g1 ⊕
(
g2 ⊕ g3

)
= ⟨σ1, ϑ1, ϱ1⟩ ⊕

〈
r∗
√

σ r∗
2 + σ r∗

3 − σ r∗
2 σ r∗

3 , ϑ2ϑ3,

ϱ2ϱ3

〉

=

〈
r∗
√

σ r∗
1 +

(
σ r∗
2 +σ r∗

3 −σ r∗
2 σ r∗

3

)
−σ r∗

1

(
σ r∗
2 + σ r∗

3 −σ r∗
2 σ r∗

3

)
, ϑ1 (ϑ2ϑ3) , ϱ1 (ϱ2ϱ3)

〉
=
(
g1 ⊕ g2

)
⊕ g3.

5).

η
(
g1 ⊕ g2

)
= η

(〈
r∗
√

σ r∗
1 + σ r∗

2 − σ r∗
1 σ r∗

2 , ϑ1ϑ2, ϱ1ϱ2

〉)
=

〈
r∗
√
1 −

(
1 − σ r∗

1 − σ r∗
2 + σ r∗

1 σ r∗
2

)η
, ϑ

η
1ϑ

η
2 , ϱ

η
1ϱ

η
2

〉
=

〈
r∗
√
1 −

(
1 − σ r∗

1

)η (1 − σ r∗
2

)η
, ϑ

η
1ϑ

η
2 , ϱ

η
1ϱ

η
2

〉
.

ηg1 ⊕ ηg2

=

〈
r∗
√
1 − (1 − σ r∗

1 )η, ϑη
1 , ϱ

η
1

〉
⊕

〈
r∗
√
1 − (1 − σ r∗

2 )η, ϑη
2 , ϱ

η
2

〉
=

〈
r∗
√
1 −

(
1 − σ r∗

1

)η (1 − σ r∗
2

)η
, ϑ

η
1ϑ

η
2 , ϱ

η
1ϱ

η
2

〉
= η

(
g1 ⊕ g2

)
.

7).

η1g1 ⊕ η2g1 =

〈
r∗
√
1 − (1 − σ r∗

1 )η1 , ϑη1
1 , ϱ

η1
1

〉
⊕

〈
r∗
√
1 − (1 − σ r∗

1 )η2 , ϑη2
1 , ϱ

η2
1

〉
=

〈
r∗
√
1 − (1 − σ r∗

1 )η1+η2 , ϑ
η1+η2
1 , ϱ

η1+η2
1

〉
= (η1 + η2) g1.

9).

(η1η2) g1 =

〈
r∗
√
1 − (1 − σ r∗

1 )(η1η2), ϑ (η1η2)
1 , ϱ

(η1η2)
1

〉
.

η1
(
η2g1

)
= η1

(〈
r∗
√
1 − (1 − σ r∗

1 )η2 , ϑη2
1 , ϱ

η2
1

〉)
=

〈
r∗
√
1 − (1 − σ r∗

1 )(η2η1), ϑ (η2η1)
1 , ϱ

(η2η1)
1

〉
= (η1η2) g1.

C. COMPARISON RULE
To compare r, s, t-SFNs, this section discusses the compari-
son rule based on the proposed score and accuracy function.
Definition 8: Let g = ⟨σ, ϑ, ϱ⟩ be any r, s, t-SFNs, then

its score function is denoted and defined as

S (g) =
1
2

(
1 +

(
σ r

− ϑs
− ϱt

))
. (5)

Now, we justify the suggested scoring function’s subse-
quent characteristics.
Property 5: For any r, s, t-SFN g = ⟨σ, ϑ, ϱ⟩, the score

function lies betwixt 0 and 1.
Proof: We know for any r, s, t-SFN g = ⟨σ, ϑ, ϱ⟩, σ r

+

ϑs
+ ϱt

≤ 1. Now σ r
− ϑs

− ϱt
≤ σ r

≤ 1, and
ϑs

+ϱt
−σ r

≤ ϑs
+ϱt

≤ 1 ⇒ σ r
−ϑs

−ϱt
≥ −1. Hence

−1 ≤ σ r
− ϑs

− ϱt
≤ 1 ⇒ 0 ≤

1+
(
σ r

−ϑs
−ϱt

)
2 ≤ 1.

Property 6: If g = ⟨1, 0, 0⟩ , then S (g) = 1 and if g =

⟨0, 0, 1⟩ , then S (g) = 0.
Property 7: For any r, s, t-SFN g = ⟨σ, ϑ, ϱ⟩, S (g)

monotonically increases as σ increases and monotonically
decreases as ϑ and ϱ increases.

Proof: Differentiating Eq. (5) partially with respect to
σ , ϑ , and ϱ, we get

∂S(g)
∂σ

=
r
2σ

r−1,
∂S(g)
∂ϑ

= −
s
2σ

s−1,
∂S(g)
∂ϱ

= −
t
2σ

t−1. Since

σ, ϑ, ϱ ∈ [0, 1] so ∂S(g)
∂σ

≥ 0, ∂S(g)
∂ϑ

≤ 0 and ∂S(g)
∂ϱ

≤ 0. Hence
the result follows.
The following definition describes the accuracy function

for r, s, t-SFNs.
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Definition 9: Let g = ⟨σ, ϑ, ϱ⟩ be any r, s, t-SFN; then its
accuracy function is denoted and defined as

A (g) =
1
2

(
1 +

(
σ r

+ ϑs
+ ϱt

))
. (6)

It is evident that 0 ≤ A (g) ≤ 1.
Definition 10: For any two r, s, t-SFNs, gi = ⟨σi, ϑi, ϱi⟩

(i = 1, 2), the comparison scheme is defined as follows:
i) If S

(
g1
)

< S
(
g2
)
, then g1 ≺ g2;

ii) If S
(
g1
)

> S
(
g2
)
, then g1 ≻ g2;

iii) If S
(
g1
)

= S
(
g2
)
, and

a) If A
(
g1
)

< A
(
g2
)
, then g1 ≺ g2;

b) If A
(
g1
)

> A
(
g2
)
, then g1 ≻ g2;

c) If A
(
g1
)

= A
(
g2
)
, then g1 ≃ g2.

D. DISTANCE MEASURE
The distance measure is a crucial instrument in fuzzy set
analysis. It is frequently employed in decision-making issues.
Generalized distance, Euclidean distance, and Hamming dis-
tancemeasure are themost widely utilized distancemeasures.
In this part, we give the aforesaid distance measure between
r, s, t-SFNs that will be used later on.
Definition 11: Let gi = ⟨σi, ϑi, ϱi⟩ (i = 1, 2, 3) be any

three r, s, t-SFNs, Then, a distance measure has the following
characteristics:

i). 0 ≤ d
(
g1, g2

)
≤ 1.

ii). d
(
g1, g2

)
= 0 if and only if g1 = g2.

iii). d
(
g1, g2

)
= d

(
g2, g1

)
.

iv). If g1 ⪯ g2 ⪯ g3, then d
(
g1, g3

)
> d

(
g1, g2

)
and

d
(
g1, g3

)
> d

(
g2, g3

)
.

Definition 12: Let g1 = ⟨σ1, ϑ1, ϱ1⟩ and g2 =

⟨σ2, ϑ2, ϱ2⟩ be any two r, s, t-SFNs, then the Hamming dis-
tance between g1 and g2 is given by

d
(
g1, g2

)
=

1
3

(∣∣σ r
1 − σ r

2

∣∣+ ∣∣ϑs
1 − ϑs

2

∣∣+ ∣∣∣ϱt
1 − ϱt

2

∣∣∣) , (7)

the Euclidean distance between g1 and g2 is given by

d
(
g1, g2

)
=

√
1
3

((
σ r
1 − σ r

2

)2
+
(
ϑs
1 − ϑs

2

)2
+

(
ϱt
1 − ϱt

2

)2)
,

(8)

the generalized distance between g1 and g2 is given by

d
(
g1, g2

)
=

λ

√
1
3

(∣∣σ r
1 − σ r

2

∣∣λ +
∣∣ϑs

1 − ϑs
2

∣∣λ +

∣∣∣ϱt
1 − ϱt

2

∣∣∣λ),

(9)

where ℓ is the LCM of r, s, t, and λ is any real number.
Theorem 8: The devised generalized distance measure

Eq. (9) fulfills the characteristics of Definition 11.
Proof:

i). The condition d
(
g1, g2

)
≥ 0 obviously holds. Next,

consider

d
(
g1, g2

)
=

λ

√
1
3

((
σ r
1 − σ r

2

)λ
+
(
ϑs
1 − ϑs

2

)λ
+

(
ϱt
1 − ϱt

2

)λ
)

≤
λ

√
1
3

(1 + 1 + 1) = 1.

Therefore, 0 ≤ d
(
g1, g2

)
≤ 1.

Conditions ii) and iii) are straightforward.
To prove iv), grounded on Definition 8, we have
σ r
1 < σ r

2 < σ r
3 ≤ 1, 1 ≥ ϑs

1 > ϑs
2 > ϑs

3, 1 ≥

ϱt
1 > ϱt

2 > ϱt
3. Therefore,

∣∣σ r
1 − σ r

2

∣∣λ <
∣∣σ r

1 − σ r
3

∣∣λ ,∣∣ϑs
1 − ϑs

2

∣∣λ <
∣∣ϑs

1 − ϑs
3

∣∣λ , and
∣∣∣ϱt

1 − ϱt
2

∣∣∣λ <

∣∣∣ϱt
1 − ϱt

3

∣∣∣λ .

Thereby, d
(
g1, g2

)
≤ d

(
g1, g3

)
. Analogously, d

(
g2, g3

)
≤

d
(
g1, g3

)
.

IV. AGGREGATION OPERATORS OF r, s, t-SPHERICAL
FUZZY DATA
In this section, r, s, t-spherical fuzzy weighted averaging,
and r, s, t-spherical fuzzy weighted geometric operators
for aggregating the r, s, t-SFNs are concocted to extend
the fundamental aggregation operators to the r, s, t-SFS
environment.

A. r, s, t-SPHERICAL FUZZY AVERAGING OPERATORS
This subpart presents the novel notion of the weighted aver-
aging operator for aggregating r, s, t-SFNs and investigates
its core characteristics.
Definition 13: Let gi = ⟨σi, ϑi, ϱi⟩ (i = 1, 2, . . . , n) be

any collection of r, s, t-SFNs, then the r, s, t-spherical fuzzy
weighted averaging (r, s, t-SFWA) operator is formulated as
follows:

r, s, t − SFWA
(
g1, g2, . . . , gn

)
= ⊕

n
i=1

(
ϖigi

)
, (10)

where ϖ = (ϖ1, ϖ2, . . . ,ϖn)
T is the weight vector of

gi (i = 1, 2, . . . , n) , and ϖi > 0,
∑n

i=1 ϖi = 1.
Based on r, s, t-SFNs operational rules, we deduce the

following theorems.
Theorem 9: Let gi = ⟨σi, ϑi, ϱi⟩ (i = 1, 2, . . . , n) be any

collection of r, s, t-SFNs, then the result of r, s, t-SFWAoper-
ator is still a r, s, t-SFN, shown as follows:

r, s, t − SFWA
(
g1, g2, . . . , gn

)
= ⊕

n
i=1

(
ϖigi

)
=

〈
r

√√√√1 −

n∏
i=1

(
1 − σ r

i

)ϖi ,

n∏
i=1

ϑ
ϖi
i ,

n∏
i=1

ϱ
ϖi
i

〉
, (11)

Proof: To verify Eq. (11), we use the mathematical
induction principle.

For n = 2,

r, s, t − SFWA
(
g1, g2

)
= ϖ1g1 ⊕ ϖ2g2

=

〈
r
√
1 −

(
1 − σ r

1

)ϖ1
(
1 − σ r

2

)ϖ2 , ϑ
ϖ1
1 ϑ

ϖ2
2 , ϱ

ϖ1
1 ϱ

ϖ2
2

〉

=

〈
r

√√√√1 −

2∏
i=1

(
1 − σ r

i

)ϖi ,

2∏
i=1

ϑ
ϖi
i ,

2∏
i=1

ϱ
ϖi
i

〉
.

Therefore, the result is true for i = 2.

46460 VOLUME 11, 2023



J. Ali, M. Naeem: r, s, t-Spherical Fuzzy VIKOR Method and Its Application

Suppose the result is true for i = k . Thus, we have

r, s, t − SFWA
(
g1, g2, . . . , gk

)
= ⊕

k
i=1

(
ϖigi

)
=

〈
r

√√√√1 −

k∏
i=1

(
1 − σ r

i

)ϖi ,

k∏
i=1

ϑ
ϖi
i ,

k∏
i=1

ϱ
ϖi
i

〉
.

Now, for i = k + 1

r, s, t − SFWA
(
g1, g2, . . . , gk+1

)
= ⊕

k+1
i=1

(
ϖigi

)
= ⊕

k
i=1

(
ϖigi

)
⊕ ϖk+1gk+1

=

〈
r

√√√√1 −

k∏
i=1

(
1 − σ r

i

)ϖi ,

k∏
i=1

ϑ
ϖi
i ,

k∏
i=1

ϱ
ϖi
i

〉

⊕

〈
r∗
√
1 − (1 − σ r∗

k+1)
ϖk+1 , ϑ

ϖk+1
k+1 , ϱ

ϖk+1
k+1

〉

=

〈
r

√√√√1 −

k+1∏
i=1

(
1 − σ r

i

)ϖi ,

k+1∏
i=1

ϑ
ϖi
i ,

k+1∏
i=1

ϱ
ϖi
i

〉
.

Hence, the result is true for n = k + 1. Therefore, the
mathematical induction process ensures that the stated result
holds true for all natural numbers.
Theorem 10: If all r, s, t-SFNs gi = ⟨σi, ϑi, ϱi⟩

(i = 1, 2, . . . , n) are equal, i.e., gi = g = ⟨σ, ϑ, ϱ⟩ for all
i, then

r, s, t − SFWA
(
g1, g2, . . . , gn

)
= g. (12)

Proof: Since gi = g = ⟨σ, ϑ, ϱ⟩ for all i = 1, 2, . . . , n,
then

r, s, t − SFWA
(
g1, g2, . . . , gn

)
=

〈
r

√
1 −

n∏
i=1

(
1 − σ r

i

)ϖi ,
n∏
i=1

ϑ
ϖi
i ,

n∏
i=1

ϱ
ϖi
i

〉

=

〈
r

√√√√1 −

n∏
i=1

(1 − σ r)ϖi ,

n∏
i=1

ϑϖi ,

n∏
i=1

ϱϖi

〉

=

〈
r

√
1 − (1 − σ r)

n∑
i=1

ϖi
, ϑ

n∑
i=1

ϖi
, ϱ

n∑
i=1

ϖi

〉
= ⟨σ, ϑ, ϱ⟩ = g.

Theorem 11: Let gi = ⟨σi, ϑi, ϱi⟩ and g′
i =〈

σ ′
i , ϑ

′
i , ϱ

′
i

〉
(i = 1, 2, . . . , n) be two collections of r, s, t-SFNs,

if gi ≤ g′
i, for all i then

r, s, t − SFWA
(
g1, g2, . . . , gn

)
≤ r, s, t − SFWA

(
g′

1, g
′

2, . . . , g
′
n
)
. (13)

Proof: Since gi ≤ g′
i, for all i = 1, 2, . . . , n, then we

have

n∏
i=1

(
1 − σ r

i
)ϖi

≥

n∏
i=1

(
1 − σ

′r

i

)ϖi
⇒ r

√√√√1 −

n∏
i=1

(
1 − σ r

i

)ϖi

≤ r

√√√√1 −

n∏
i=1

(
1 − σ

′r

i

)ϖi
,

n∏
i=1

ϑ
ϖi
i ≥

n∏
i=1

ϑ
′ϖi

i

and
n∏
i=1

ϱ
ϖi
i ≥

n∏
i=1

ϱ
′ϖi

i . Therefore,

〈
r
√
1 −

∏n
i=1

(
1 − σ r

i

)ϖi ,
∏n

i=1 ϑ
ϖi
i ,∏n

i=1 ϱ
ϖi
i

〉

≤

〈
r

√
1 −

∏n
i=1

(
1 − σ

′r

i

)ϖi
,
∏n

i=1 ϑ
′ϖi

i ,∏n
i=1 ϱ

′ϖi

i

〉
.

Hence r, s, t − SFWA
(
g1, g2, . . . , gn

)
≤ r, s, t −

SFWA
(
g′

1, g
′

2, . . . , g
′
n
)
.

Theorem 12: Let gi = ⟨σi, ϑi, ϱi⟩(i = 1, 2, . . . , n) be a
collection of r, s, t-SFNs, and let g−

= min
{
g1, g2, . . . , gn

}
and g+

= max
{
g1, g2, . . . , gn

}
; then

g−
≤ r, s, t − SFWA

(
g1, g2, . . . , gn

)
≤ g+. (14)

Proof: According to Theorem 11,

r, s, t − SFWA
(
g−, g−, . . . , g−

)
≤ r, s, t − SFWA

(
g1, g2, . . . , gn

)
≤ r, s, t − SFWA

(
g+, g+, . . . , g+

)
.

Next, in line with Theorem 10, g−
≤ r, s, t −

SFWA
(
g1, g2, . . . , gn

)
≤ g+.

B. r, s, t-SPHERICAL FUZZY GEOMETRIC OPERATORS
The present subsection introduces the novel notion of the
weighted geometric operator for aggregating r, s, t-SFNs and
investigates its core features.
Definition 14: Let gi = ⟨σi, ϑi, ϱi⟩ (i = 1, 2, . . . , n) be

any collection of r, s, t-SFNs, then the r, s, t-spherical fuzzy
weighted geometric (r, s, t-SFWG) operator is formulated as
follows:

r, s, t − SFWG
(
g1, g2, . . . , gn

)
= ⊗

n
i=1

(
gϖi
i

)
, (15)

where ϖ = (ϖ1, ϖ2, . . . ,ϖn)
T is the weight vector of

gi (i = 1, 2, . . . , n) , and ϖi > 0,
n∑
i=1

ϖi = 1.

Based on r, s, t-SFNs operational rules, we derive the fol-
lowing results.
Theorem 13: Let gi = ⟨σi, ϑi, ϱi⟩ (i = 1, 2, . . . , n) be any

collection of r, s, t-SFNs, then the result of r, s, t-SFWG
operator is still a r, s, t-SFN, shown as follows:

r, s, t − SFWG
(
g1, g2, . . . , gn

)
= ⊗

n
i=1

(
gϖi
i

)
=

〈
n∏
i=1

σ
ϖi
i , r

√√√√1−

n∏
i=1

,
(
1 − ϑ r

i

)ϖi , r

√√√√1−

n∏
i=1

,
(
1 − ϱr

i

)ϖi ,

〉
,

(16)

Proof: To verify Eq. (16), we use the mathematical
induction principle.
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For n = 2,

r, s, t − SFWG
(
g1, g2

)
= gϖ1

1 ⊗ gϖ2
2

=

〈
σ

ϖ1
1 σ

ϖ2
2 , r

√
1 −

(
1 − ϑ r

1

)ϖ1
(
1 − ϑ r

2

)ϖ2 ,

r
√
1 −

(
1 − ϱr

1

)ϖ1
(
1 − ϱr

2

)ϖ2

〉

=

〈
2∏
i=1

σ
ϖi
i ,

r

√√√√1 −

2∏
i=1

(
1 − ϑ r

i

)ϖi ,
r

√√√√1 −

2∏
i=1

(
1 − ϱr

i

)ϖi

〉
.

Therefore, the result is true for i = 2.
Suppose the result is true for i = k . Thus, we have

r, s, t − SFWG
(
g1, g2, . . . , gk

)
= ⊗

k
i=1

(
gϖi
i

)
=

〈
k∏
i=1

σ
ϖi
i ,

r

√√√√1 −

k∏
i=1

(
1 − ϑ r

i

)ϖi ,
r

√√√√1 −

k∏
i=1

(
1 − ϱr

i

)ϖi

〉
.

Now, for i = k + 1

r, s, t − SFWG
(
g1, g2, . . . , gk+1

)
= ⊗

k+1
i=1

(
gϖi
i

)
= ⊗

k
i=1

(
gϖi
i

)
⊗ gϖk+1

k+1

=

〈 k∏
i=1

σ
ϖi
i , r

√
1 −

k∏
i=1

(
1 − ϑ r

i

)ϖi ,

r

√
1 −

k∏
i=1

(
1 − ϱr

i

)ϖi

〉

⊗

〈
σ

ϖk+1
k+1 , r

√
1 −

(
1 − ϑ r

k+1

)ϖk+1 ,

r
√
1 −

(
1 − ϱr

k+1

)ϖk+1

〉

=

〈 k+1∏
i=1

σ
ϖi
i , r

√
1 −

k+1∏
i=1

(
1 − ϑ r

i

)ϖi ,

r

√
1 −

k+1∏
i=1

(
1 − ϱr

i

)ϖi

〉
.

Hence, the result is true for n = k + 1. Therefore, the
mathematical induction process ensures that the stated result
holds true for all natural numbers.
Theorem 14: If all r, s, t-SFNs gi = ⟨σi, ϑi, ϱi⟩

(i = 1, 2, . . . , n) are equal, i.e., gi = g = ⟨σ, ϑ, ϱ⟩ for all
i, then

r, s, t − SFWG
(
g1, g2, . . . , gn

)
= g. (17)

Proof: Since gi = g = ⟨σ, ϑ, ϱ⟩ for all i = 1, 2, . . . , n,
then

r, s, t − SFWG
(
g1, g2, . . . , gn

)

=

〈 n∏
i=1

ϱ
σi
i , r

√
1 −

n∏
i=1

(
1 − ϑ r

i

)ϖi ,

r

√
1 −

n∏
i=1

(
1 − ϱr

i

)ϖi

〉

=

〈 n∏
i=1

σϖi , r

√
1 −

n∏
i=1

(1 − ϑ r)ϖi ,

r

√
1 −

n∏
i=1

(1 − ϱr)ϖi

〉

=

〈
σ

n∑
i=1

ϖi
,

r
√
1 − (1 − ϑ r)

n∑
i=1

ϖi
,

r
√
1 − (1 − ϱr)

n∑
i=1

ϖi

〉

= ⟨σ, ϑ, ϱ⟩ = g.

Theorem 15: Let gi = ⟨σi, ϑi, ϱi⟩ and g′
i =〈

σ ′
i , ϑ

′
i , ϱ

′
i

〉
(i = 1, 2, . . . , n) be two collections of r, s, t-SFNs,

if gi ≤ g′
i, for all i then

r, s, t − SFWG
(
g1, g2, . . . , gn

)
≤ r, s, t − SFWG

(
g′

1, g
′

2, . . . , g
′
n
)
. (18)

Proof: Since gi ≤ g′
i, for all i = 1, 2, . . . , n, then we

have
n∏
i=1

σ
ϖi
i ≥

n∏
i=1

σ
′ϖi

i ,

n∏
i=1

(
1 − ϑ r

i
)ϖi

≥

n∏
i=1

(
1 − ϑ

′r

i

)ϖi

⇒ r

√√√√1 −

n∏
i=1

(
1 − ϑ r

i

)ϖi
≤ r

√√√√1 −

n∏
i=1

(
1 − ϑ

′r

i

)ϖi
,

and
n∏
i=1

(
1 − ϱr

i
)ϖi

≥

n∏
i=1

(
1 − ϱ

′r

i

)ϖi
⇒ r

√√√√1 −

n∏
i=1

(
1 − ϱr

i

)ϖi

≤ r

√√√√1 −

n∏
i=1

(
1 − ϱ

′r

i

)ϖi
.

Therefore,〈
n∏
i=1

σ
ϖi
i , r

√√√√1 −

n∏
i=1

(
1 − ϑ r

i

)ϖi , r

√√√√1 −

n∏
i=1

(
1 − ϱr

i

)ϖi

〉

≤

〈
n∏
i=1

σ
′ϖi

i , r

√√√√1 −

n∏
i=1

(
1 − ϑ

′r

i

)ϖi
, r

√√√√1 −

n∏
i=1

(
1 − ϱ

′r

i

)ϖi

〉
.

Hence r, s, t − SFWG
(
g1, g2, . . . , gn

)
≤ r, s, t −

SFWG
(
g′

1, g
′

2, . . . , g
′
n
)
.

Theorem 16: Let gi = ⟨σi, ϑi, ϱi⟩(i = 1, 2, . . . , n) be a
collection of r, s, t-SFNs, and let g−

= min
{
g1, g2, . . . , gn

}
and g+

= max
{
g1, g2, . . . , gn

}
; then

g−
≤ r, s, t − SFWG

(
g1, g2, . . . , gn

)
≤ g+. (19)

Proof: According to Theorem 15,

r, s, t − SFWG
(
g−, g−, . . . , g−

)
≤ r, s, t − SFWG

(
g1, g2, . . . , gn

)
≤ r, s, t − SFWG

(
g+, g+, . . . , g+

)
.

Next, in line with Theorem 14, g−
≤ r, s, t −

SFWG
(
g1, g2, . . . , gn

)
≤ g+.
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V. MCGDM BASED ON THE MAXIMIZING DEVIATION
AND VIKOR METHOD
This segment introduces a novel way for determining the
weight of criteria based on the deviation measure and extends
the VIKOR method to r, s, t-spherical fuzzy settings in order
to tackle MCGDM issues.

A. r, s, t-SPHERICAL FUZZY MAXIMIZING DEVIATION
METHOD
Due to the complexity and intricacy of the decision-making
environment, it is often impossible to gather complete infor-
mation on criteria and their respective weights. Therefore,
identifying and distributing the criterion weights is a cru-
cial problem [38], [39]. The maximizing deviation approach,
proffered by Yingming [40], has been used to such MCGDM
issues in order to identify and describe each criterion’s suit-
able value [41].

Suppose that Ol = {Ol1,Ol2, . . . ,Olm} is the set of ‘m’
alternatives and Cr = {Cr1, Cr2, . . . , Crn} is the set of criteria
‘n’ so that the weights of criteria are entirely unrecognized.
Let ϖ = (ϖ1, ϖ2, . . . ,ϖn), be the weight vector of criteria,
so that 6n

j=1ϖi = 1, ϖj ≥ 0. Thereby, for the criterion Crj ∈

Cr , the deviation of alternativeOli to all the other alternatives
under the criteria Crj can be described as shown:

Dij
(
ϖj
)

=

m∑
k=1

d
(
gij, gkj

)
ϖj, i = 1, 2, . . . ,m,

j = 1, 2, . . . , n, (20)

where gij and gkj are the evaluation values stated by r, s,
t-SFNs, and d

(
gij, gkj

)
is the Hamming distance between

them ascertained by Eq. (7). The total deviation among all
the alternatives under attribute Crj is represented and defined
as

Dj
(
ϖj
)

=

m∑
i=1

Dij
(
ϖj
)

=

m∑
i=1

m∑
k=1

d
(
gij, gkj

)
ϖj. (21)

Next the total deviation among all the alternatives in
respect of all the criteria is symbolized and formulated as

D
(
ϖj
)

=

n∑
j=1

Dj
(
ϖj
)

=

n∑
j=1

m∑
i=1

m∑
k=1

d
(
gij, gkj

)
ϖj. (22)

Then, the following optimal model (named as M) is con-
structed:

M =


maxD

(
ϖj
)

=

n∑
j=1

m∑
i=1

m∑
k=1

d
(
gij, gkj

)
ϖj,

ϖj ≥ 0, j = 1, 2, . . . , n,
n∑
j=1

ϖ 2
j = 1.

For the solution of the preceding model M , we utilize the
Lagrange multiplier function:

L
(
ϖj, ℸ

)
=

n∑
j=1

m∑
i=1

m∑
k=1

d
(
gij, gkj

)
ϖj + ℸ

 n∑
j=1

ϖ 2
j − 1

 .

(23)

Then, the partial derivatives of the Lagrange function with
respect to ϖj and ℸ are computed and set to zero:


∂L
(
ϖj, ℸ

)
∂ϖj

=

m∑
i=1

m∑
k=1

d
(
gij, gkj

)
+ 2ℸϖj = 0,

∂L
(
ϖj, ℸ

)
∂ℸ

=

n∑
j=1

ϖ 2
j − 1 = 0, .

(24)

Solving Eq. (24), we get

2ℸ =

√√√√√ n∑
j=1

(
m∑
i=1

m∑
k=1

d
(
gij, gkj

))2

,

ϖj =

m∑
i=1

m∑
k=1

d
(
gij, gkj

)
√

n∑
j=1

(
m∑
i=1

m∑
k=1

d
(
gij, gkj

))2
, .

(25)

After normalizing the vector ϖ = (ϖ1, ϖ2, . . . ,ϖn), one
obtains the weight vector.

ϖj =
ϖj
n∑
j=1

ϖj

=

m∑
i=1

m∑
k=1

d
(
gij, gkj

)
n∑
j=1

m∑
i=1

m∑
k=1

d
(
gij, gkj

) . (26)

B. VIKOR APPROACH FOR MCGDM UNDER
r, s, t-SPHERICAL ENVIRONMENT
This section purposes to devise the VIKOR approach for the
r, s, t-spherical fuzzy environment to take into consideration
the MCGDM issues. Our primary objective is to provide
a compromise solution that optimizes group utility while
minimizing individual regret.

Consider anMCGDM issue withm alternatives as depicted
by Oli (i = 1, 2, . . . ,m). Suppose there are l number of DEs
Dk (k = 1, 2, . . . , l) who need to choose the best choice
based on n number of criteria Crj (j = 1, 2, . . . , n). Let each
of the l DEs be given a weight wk (k = 1, 2, . . . , l) so that

wk > 0 and
l∑

k=1
wk = 1.

The mechanism of the r, s, t-spherical fuzzy VIKOR
approach is described in detail below:
Step 1: Creation of individual r, s, t-spherical fuzzy deci-

sion matrices:
The DEs examine the capabilities of alternatives in rela-
tion to the chosen criteria and record their opinions
in the form of r, s, t-SFNs. The judgments of the DE
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Dk (k = 1, 2, . . . , l) are systematically organised as a
decision matrixM (k)

=

(
gkij
)
m×n

(see Table 1).
wherein the subscript i (i = 1, 2, . . . ,m) corresponds
to the alternative Oli, subscript j(j = 1, 2,
. . . , n) corresponds to the criteria Crj, and superscript
k symbolize the decision made by the DE Dk . Further,
an entry gkmn =

〈
σ kmn, ϑ

k
mn, ϱ

k
mn
〉
presents r, s, t-SFN

allocated to the alternative Oli relative to the criteria
Crj by the DE Dk . Analogously, l independent deci-
sion matrices M (1),M (2), . . . ,M (l) are created by plac-
ing r, s, t-SFNs, assigned by DEs D(1),D(2), . . . ,D(l),
respectively, into decision matrices.

Step 2: Formation of the aggregated r, s, t-spherical fuzzy
decision matrix:
Aggregate the individual decision matrices M (k)

=(
gkij
)
m×n

(k = 1, 2, . . . , l) into collective decision

matrixM =
(
gij
)
m×n

by the aid of r, s, t-SFWAoperator
given in Eq. (11). Thus, the aggregated r, s, t-spherical
fuzzy rating gij of each alternative with respect to differ-
ent criteria can be obtained as given in Eq. (27).

gij = r, s, t − SFWA
(
g1ij, g

2
ij, . . . , g

l
ij

)
= ⊕

l
k=1wkg

k
ij

=

〈
r

√
1 −

∏l
k=1

(
1 − σ k

r
ij

)wk
,∏l

k=1

(
ϑk
ij

)wk
,
∏l

k=1

(
ϱkij

)wk
〉

;

i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (27)

Then, the aggregated r, s, t-spherical fuzzy decision
matrix corresponding to given MCGDM problem is
designed as Table 2:

Step 3: Criteria weights determination:
Ascertain the weight vector of criteria ϖ =

(ϖ1, ϖ2, . . . ,ϖn) by the method outlined in
Section V-A.

Step 4: Determination of relative ideal solutions:
The objective of an MCGDM issue is to choose the opti-
mal solution that meets the specified criteria. In accor-
dance with the VIKOR technique, this objective is
attained by picking the alternative closest to the positive
ideal solution (or ideal solution) and furthest from the
negative ideal solution. In actuality, however, there are
no optimal answers. To analyze the alternatives, we for-
mulate the following relative ideal solutions:
Define the r, s, t-spherical fuzzy positive ideal solu-
tion Ol+ =

(
Ol+1 ,Ol+2 , . . . ,Ol+n

)
and the r, s,

t-spherical fuzzy negative ideal solution Ol− =(
Ol−1 ,Ol−2 , . . . ,Ol−n

)
as follows:

Ol+j =

max
i
gij, for benefit criteria

min
i
gij, for cost criteria

;

j = 1, 2, . . . , n, (28)

and

Ol−j =

min
i
gij, for benefit criteria

max
i
gij, for cost criteria

;

j = 1, 2, . . . , n. (29)

Step 5: Ascertainment of group utility measure and indi-
vidual regret measure:
This steps aims to calculate the group utility mea-
sure and individual regret measure for each alternative.
Group utility measure Si and individual regret measure
Ri for the alternative Oli can be found using Euclidean
distance and criterion weights as follows:

Si =

n∑
j=1

ϖj

d
(
Ol+j ,Olij

)
d
(
Ol+j ,Ol−j

) , (30)

Ri = max
j

ϖj

d
(
Ol+j ,Olij

)
d
(
Ol+j ,Ol−j

) . (31)

Step 6: Determination of VIKOR index:
Determine the VIKOR index Vi for the alternative Oli
as follows:

Vi = ¶
(

Si − S∗

S ∗ − S∗

)
+ (1 − ¶)

(
Ri − R∗

R∗ − R∗

)
, (32)

wherein S ∗
= max

i
Si, S∗ = min

i
Si, R∗

= max
i

Ri,

R∗ = min
i

Ri. The coefficients ¶ and (1−¶) indicate the
weight-age assigned to group utility Si and individual
regret Ri, and play a key role in the appraisal of the
compromise solution. It takes a value from the closed
unit interval [0, 1], but often 0.5, such that the com-
promise solution simultaneously has both properties,
namely maximum group utility andminimum individual
regret of opponent. However, it may be used by DEs in
accordance with the MCGDM issue. When ¶ = 1, the
compromise solution focuses on maximising the group
utility, whereas when ¶ = 0, the compromise solution
focuses on minimising individual regret.

Step 7: Compromise solution and ranking of alternatives:
In this stage, the alternatives are arranged in increasing
order based on the group utility measure, the individual
regret measure, and the VIKOR index. Here, we acquire
three rating lists that can be used to assess the compro-
mise solution.
The alternatives listed at the first and second posi-
tion with regard to V are indicated by Ol(1) and
Ol(2), respectively, for further assessments. The com-
promise solution includes alternativeOl(1) if the follow-
ing requirements are met:
Requirement 1 Acceptable advantage: V

(
Ol(2)

)
−

V
(
Ol(1)

)
≥

1
m−1 , where m is the number of alterna-

tives.
Requirement 2 Acceptable stability in decision

making: The alternative Ol(1) is also at the top of
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TABLE 1. Assessment information provided by Dk .

TABLE 2. Aggregated r, s, t-spherical fuzzy decision matrix: M =

(
gij

)
m×n

.

the list with regard to either S or R(S and R).
This compromise solution is stable within a decision-
making procedure: ‘‘voting by majority rule’’ (if ¶ >

0.5), ‘‘by consensus’’ (if ¶ = 0.5), or ‘‘with veto’’ (if
¶ < 0.5).

If any of the requirements are not met, the following
compromise solutions are proposed:
• The compromise solution set consists of both Ol(1)
and Ol(2) if only Requirement 2 is not met.

• If the Requirement 1 is not satisfied, the set of com-
promise solutions consists of Ol(1), Ol(2),. . . ,Ol(v),
where Ol(v) is determined by the inequality
V
(
Ol(v)

)
− V

(
Ol(1)

)
< 1

m−1 , for maximum v.

VI. CASE STUDY
In this part, a case study regarding the robot selection problem
(adopted from [42]) is presented to demonstrate the deci-
sion procedure of the provided r, s, t-spherical fuzzy VIKOR
approach.

The most apparent embodiment of modern welding tech-
nology is robotic welding. The initial generation of robotic
welding systems used a two-pass weld process, with the
first pass devoted to learning the geometry of the seam
and the second run dedicated to tracking and welding the
seam. The second generation of robotic welding systems
used technology breakthroughs to monitor seams in real-time
while simultaneously learning and tracking seams. Third-
generation robotic welding systems are the most sophisti-
cated in robotic welding technology since they operate in
real-time and comprehend the seam’s rapidly changing shape
while functioning in disorganized environments. According
to the selection of industrial arc welding robots, higher prod-
uct quality requirements should result in cheaper costs and
a more trustworthy weld. Robots may be characterized by
their mass density, duplicability, cargo capacity, maximum
reach, average energy consumption, and motion. All of these
factors must be considered while selecting robots for a cer-
tain application. Based on the workspace geometry, the most

common form of robot for industrial robotic arc welding
is one with a revolute (or jointed arm) configuration. This
research investigates the selection of industrial robots for arc
welding processes using the VIKOR method. Four separate
robots with five programmable axes and different controllers
from their respective manufacturers were used to collect the
data for arc welding robots. These nine robots are allocated
five characteristics. After reviewing several datasheets pro-
vided by robot manufacturers to define their products, the
selection criteria were assessed. Additionally, the views of
industry specialists are considered. The criteria for selection
were determined after a debate between the research group
and an industry expert. The final selection matrix was eval-
uated based on the consensus of both groups, with the major
characteristics of each robot serving as assessment criteria.
Table 3 lists the fivemost significant factors to consider when
selecting an arc welding robot:

The set of four alternatives Ol = {Ol1,Ol2,Ol3,Ol4}
is reviewed by three DEs D = {D1,D2,D3}, which are
comprised of experienced engineers and consumers in the
assessment stage and with weights w = (0.3, 0.4, 0.3)T .
The three DEs employ the five criteria listed in Table 3 to
determine the optimal additive manufacturing choices for the
linear delta robot.

A. THE DECISION-MAKING STEPS
In this part, we use the framed VIKOR approach to choose
the optimal solution. The computational steps are as follows:
Step 1: The assessment information of the three DEs

Dk (k = 1, 2, 3) are shown in Tables 4-6.
Step 2: With the aid of Eq. (11), the original decision matri-

ces 4-6 are aggregated using the DEs’ weight w =

(0.3, 0.4, 0.3)T into a single decision matrix, which is
depicted in Table 7.

Step 3: The computed values of criteria weights using the
maximizing deviation (outlined in Section V-A) are
given as follows:
ϖ1 = 0.1478, ϖ2 = 0.2000, ϖ3 = 0.2950, ϖ4 =

0.2063, ϖ5 = 0.1509.
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TABLE 3. Description of evaluation criteria.

TABLE 4. Evaluation matrix provided by D1.

TABLE 5. Evaluation matrix provided by D2.

TABLE 6. Evaluation matrix provided by D3.

TABLE 7. Aggregated r, s, t-spherical fuzzy decision matrix.

Step 4: In this step, positive ideal solutionOl+ and negative
ideal solutionOl− are obtained using Eqs. (28) and (29),
respectively. It is worth mention that in the considered
problem, only criteria Cr1 is of the cost type, while the
rest Cri(i = 2, 3, . . . , 5) are of the benefit type, as shown
in the equation at the bottom of the next page.

Step 5: In the light of Eqs. (30) and (31), the values ofSi and
Ri are computed for each alternative as given below:

S1 = 0.2000, S2 = 0.6986,

S3 = 0.9494, S4 = 0.8231,

R1 = 0.2000, R2 = 0.2063,

R3 = 0.2950, R4 = 0.2464.

Step 6: According to Eq. (32), obtain the VIKOR index Vi
(taking ¶ = 0.5) of each alternative is obtained as listed
below:

V1 = 0, V2 = 0.3658, V3 = 1.000, V4 = 0.6599,

Step 7: Ranking the alternatives according to the values of
Si, Ri and Vi in ascending order, the results are demon-
strated as follows:

Ol(1) = V1 = 0,

Ol(2) = V2 = 0.3658,

V4 = 0.6599, V3 = 1.000,

V
(
Ol(2)

)
− V

(
Ol(1)

)
= 0.3658 > 1/m− 1
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TABLE 8. Sensitivity analysis results w.r.t r∗.

Ol(1) is also at the top with respect toR or/andS . Thus,
the compromise solution is

{
Ol(1)

}
.

B. INFLUENCE OF THE PARAMETER VALUES ON THE
MCGDM RESULTS
This section is devoted to perform a sensitivity analysis by
changing r∗, s∗, t∗ and ¶ in order to examine the robustness
of the framed approach.

1) INFLUENCE OF THE PARAMETER r∗ ON THE DECISION
MAKING RESULTS
Here, we investigate how the parameter r∗ impacts the
decision-making process. To do this, we fix the values of
s∗ and t∗ while varying the value of r∗. Next, we solve

the numerical case described in Section VI employing the
propound VIKOR approach for r∗ = 4, 6, 8, 10, and 12.
Because 4 is the smallest feasible value of r∗ for which all
inputs of the DEs shown in Tables 4-6 become r, s, t-SFNs.
The values of the revised Si, Ri, Vi, ranking order and
compromise solution of the alternatives for different values
of r∗ acquired by the presented method have been listed in
Table 8. Table 8 demonstrates that different values of the
parameter r∗ yield different revised Si, Ri, and Vi, but the
rank ordering is almost same. For r∗ = 4, 10, 12, the ranking
order of the four available alternatives is Ol1 > Ol2 >

Ol4 > Ol3 and for r∗ = 6, 8, the ranking order is Ol1 >

Ol2 > Ol3 > Ol4. Consequently, the sole distinction in the
ranking order is between Ol3 and Ol4. For r∗ = 4, 10, 12,

Ol+ =

(
⟨0.5337, 0.3270, 0.3669⟩ , ⟨0.7665, 0.5000, 0.6000⟩ ,

⟨0.8207, 0.4000, 0.3000⟩ , ⟨0.6354, 0.5681, 0.4573⟩ , ⟨0.4337, 0.4676, 0.4373⟩

)
,

Ol− =

(
⟨0.6645, 0.4290, 0.3923⟩ , ⟨0.5017, 0.2259, 0.5578⟩ ,

⟨0.3642, 0.6000, 0.5651⟩ , ⟨0.5100, 0.2462, 0.4315⟩ , ⟨0.5640, 0.4277, 0.5030⟩

)
.
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Ol4 > Ol3 and for r∗ = 6, 8, Ol3 > Ol4. Moreover, for
r∗ = 6, 8, 10, 12 the only compromise solution is Ol1 while
only for r∗ = 4, Ol2 is also the compromise solution. Thus,
the devised approach is quite stable regarding different values
of r∗.

2) INFLUENCE OF THE PARAMETER s∗ ON THE DECISION
MAKING RESULTS
Here, we investigate the effect of parameters on the decision-
making outcomes. To do this, we solve the same numeri-
cal example described in Section VI with previous values
of r∗ and t∗ and changeable values of s. Consider s∗

=

4, 6, 8, 10, 12 and 12 the values of the redesigned Si, Ri, Vi,
ranking order, and compromise solution of the alternatives for
various values of s∗ derived using the suggestedmethodology
are summarized in 9. From Table 9, we can see that for s∗

=

4; the proposed approach is highly sensitive since Ol1 has
been moved from the first to the third place. The compromise
solution is also extended from {Ol1} to {Ol1,Ol2,Ol3}. For
the remaining cases, i.e., for s∗

= 6, 8, 10, 12, we get the
same ranking order and compromise solution of the alterna-
tives as in Subsection VI-A. Thus, the parameter s∗ does not
affect the overall decision making results except for s∗

= 4.

3) INFLUENCE OF THE PARAMETER t∗ ON THE DECISION
MAKING RESULTS
In this subsection, we study how the parameter r∗ affects
the decision-making process. To do this, we fix the previous
values of r∗ and s∗ while varying the value of t∗. Next,
we work out the numerical case described in Section VI
employing the propound VIKOR approach (from Step 4) for
t∗ = 4, 6, 8, 10, and 12. Because 4 is the smallest feasible
value of t∗ for which all inputs of the DEs displayed in
Tables 4-6 become r, s, t-SFNs. The values of the revised Si,
Ri, Vi, ranking order and compromise solution of the four
alternatives for various values of t∗ acquired by the provided
method have been depicted in Table 10. Table 10 illustrates
that different values of the parameter t∗ yield different revised
Si, Ri, and Vi. For t∗ = 4, 6, 8, the ranking order of the four
available alternatives is Ol1 > Ol4 > Ol3 > Ol2 and for
t∗ = 10, 12, the ranking order is Ol1 > Ol2 > Ol4 > Ol3.
For t∗ = 8, the only compromise solution is Ol1 while for
t∗ = 4, 10, 12, the compromise solution consist of Ol1 and
Ol2 and for t∗ = 6 the compromise solution is {Ol1,Ol4}.
Thus for the parameter t∗, the proposed r, s, t-spherical fuzzy
VIKOR approach is quite sensible.

4) INFLUENCE OF THE PARAMETER ¶ ON THE DECISION
MAKING RESULTS
This section discusses in depth the effect of parameter ¶
on model outcomes. The parameter ¶ reflects the degree of
preference of DEs regarding utility measure and individual
regret measure.When ¶ = 0.5, DEs consider the difference in
utilitymeasure and the difference in individual regretmeasure
to be of equal importance. Here, we analyze this situation for
various possible values of ¶.

From Table 11, we can see that ¶ = 0.1, 0.2, 0.3, 0.4,
alternative Ol1 is the optimal ranked by V and satisfies the
Requirement 2, but it does not meet the Requirement 1 i.e.,
V
(
Ol(2)

)
−V

(
Ol(1)

)
< 1

m−1 . Here, because of V
(
Ol(3)

)
−

V
(
Ol(1)

)
≥

1
m−1 , set of compromise solution consist of

Ol1 and Ol2. The reason is that in these cases, DEs pay
enough attention to the difference in individual regret mea-
sures and are less concerned about utility measure.

Table 11 further illustrates that when 0.5 ≤ ¶ ≤ 1, the
raking result attained by the proposed VIKOR approach is
Ol1 > Ol2 > Ol4 > Ol3 which is the same as that obtained
for 0 ≤ ¶ < 0.5. Hoverer, the compromise consist of just
Ol1. This is because, when ¶ = 0.5, 0.6, . . . , 1.0, alternative
Ol1 is the top-ranked by V and also the top-ranked by S
and/or R. In addition,Ol1 meets the following requirements:

V¶=0.5 (Ol2) − V¶=0.5 (Ol1) = 0.3658 − 0.000

= 0.3658 > 1
3−1 ,

V¶=0.6 (Ol2) − V¶=0.6 (Ol1) = 0.4257 − 0.000

= 0.4257 > 1
3−1 ,

V¶=0.7 (Ol2) − V¶=0.7 (Ol1) = 0.4856 − 0.000

= 0.4856 > 1
3−1 ,

V¶=0.8 (Ol2) − V¶=0.8 (Ol1) = 0.5455 − 0.000

= 0.5455 > 1
3−1 ,

V¶=0.9 (Ol2) − V¶=0.9 (Ol1) = 0.6054 − 0.000

= 0.6054 > 1
3−1 ,

V¶=1.0 (Ol2) − V¶=1.0 (Ol1) 0.6653 − 0.000

= 0.6653 > 1
3−1 .

Thereby, Ol1 is the compromise solution for these six
cases.

The results listed in Table 11 show that when the parameter
¶ changes, the ranking results remain the same. Thus the
framed approach has good stability regarding the parameter
¶. Though for ¶ < 0.5, the compromise solution is changed.
This change reflects the influence of different preferences of
DEs on the decision outcomes. Therefore, the parameter ¶ is
necessary, and the developed VIKOR approach is reasonable.

VII. COMPARATIVE STUDY
To validate the predictability and efficacy of the proposed
MCGDM method, we compare it to previous decision-
making approaches [43], [44]. We apply the t-spherical fuzzy
TOPSIS technique [43] and the t-spherical fuzzy MULTI-
MOORA technique [44] to the problem presented in Sec-
tion VI and compare the results obtained to those of the
framed method.

A. COMPARISON WITH TOPSIS METHOD
This part employs the prevailing technique [43], namely
TOPSIS, on the data provided in Table 7.
The t-spherical fuzzy TOPSIS technique comprises the

following steps:
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TABLE 9. Sensitivity analysis results w.r.t s∗.

Step 1. Normalized the decision matrix based on the nature
of each criteria as follows:

Sij =
〈
σij, ϑij, ϱij

〉
=

{ 〈
σij, ϑij, ϱij

〉
, for benefit criteria〈

ϱij, ϑij, σij
〉
, for cost criteria

;

j = 1, 2, . . . , n, (33)

Based on Eq. (33), the data of Table 7 is normalized and
is arranged in Table 12.

Step 2: Determine the criteria weights according to Eq. (34)

ϖj =
1 − Hj

n−
∑n

j=1 Hj
, (34)

where Hj ∈ [0, 1], j = 1, 2, . . . , n is defined as

Hj =
1
m

m∑
i=1


sin

(
π×

(
2+σ tij−ϑ tij−ϱtij

)
8

)
+

sin

(
π×

(
2−σ tij+ϑ tij+ϱtij

)
8

)
− 1


×

1

2
1
t − 1

. (35)

According to formulation (34), we work out the weights
of five criteria as given below.
ϖ1 = 0.1998, ϖ2 = 0.2004, ϖ3 = 0.1988, ϖ4 =

0.2005, ϖ5 = 0.2005.
Step 3: Find positive ideal solution (PIS) and negative

ideal solution (NIS), according to Eqs. (36) and (37),
respectively.

S+
=
(
s+i1, s

+

i2, . . . , s
+

in

)
, (36)

where S+
=
(
max

(
σij
)
,min

(
ϑij
)
,min

(
ϱij
))

.

S−
=
(
s−i1, s

−

i2, . . . , s
−

in

)
, (37)

where S−
=
(
min

(
σij
)
,min

(
ϑij
)
,max

(
ϱij
))

.

Thus, we have, as shown in the equation at the bottom
of the next page.

Step 4: Determine the alternatives measure from PIS by the
following formula, as in (38), shown at the bottom of the
next page.
Also, determine the alternatives measure from NIS by
the following formula, as in (39), shown at the bottom
of the next page.
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TABLE 10. Sensitivity analysis results w.r.t t∗.

Using Eq. (38), themeasure between the alternatives and
PIS is calculated as follows:

K1
(
g1j, S

+
)

= 0.3307,K2
(
g2j, S

+
)

= 0.3837,

K3
(
g3j, S

+
)

= 0.2609,K4
(
g4j, S

+
)

= 0.4012.

And the measure between the alternatives and NIS based
on Eq. (39), is calculated as follows:

K1
(
g1j, S

−
)

= 0.2174,K2
(
g2j, S

−
)

= 0.2942,

K3
(
g3j, S

−
)

= 0.3259,K4
(
g4j, S

−
)

= 0.2569.

S+
=

(
⟨0.5281, 0.3270, 0.5337⟩ , ⟨0.7665, 0.2259, 0.5030⟩ ,

⟨0.8207, 0.3669, 0.3000⟩ , ⟨0.6354, 0.2462, 0.2980⟩ , ⟨0.6656, 0.3270, 0.4373⟩

)
and

S−
=

(
⟨0.3669, 0.3270, 0.6645⟩ , ⟨0.4000, 0.2259, 0.6000⟩ ,

⟨0.3642, 0.3669, 0.5651⟩ , ⟨0.4000, 0.2462, 0.5000⟩ , ⟨0.4103, 0.3270, 0.5378⟩

)

Ki
(
gij, S

+
)

=

n∑
j=1

ϖj

(
σ tijσ

+t
ij , ϑ t

ijϑ
t
ij, ϱ

t
ijϱ

+t
ij

)
(

n∑
j=1

ϖj

(
σ 2t
ij , ϑ2t

ij , ϱtij

))( n∑
j=1

ϖj

(
σ+2t
ij , ϑ+2t

ij , ϱ+2t
ij

)) 1
n

(38)

Ki
(
gij, S

−
)

=

n∑
j=1

ϖj

(
σ tijσ

−t
ij , ϑ t

ijϑ
t
ij, ϱ

t
ijϱ

−t
ij

)
(

n∑
j=1

ϖj

(
σ 2t
ij , ϑ2t

ij , ϱtij

))( n∑
j=1

ϖj

(
σ−2t
ij , ϑ−2t

ij , ϱ−2t
ij

)) 1
n

(39)
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Step 5: Determine the closeness of each alternative utilizing
Eq. (40).

Qi =
Ki
(
gij, S

+
)

Ki
(
gij, S+

)
+ Ki

(
gij, S−

) (40)

Using Eq. (40), we find the closeness coefficient of each
alternative as given below:
Q1 = 0.6034,Q2 = 0.5660,
Q3 = 0.4446,Q4 = 0.6096.

Step 6: Based on the closeness coefficients, rank the alter-
natives in decreasing order:

Ol4 > Ol1 > Ol2 > Ol3.

B. COMPARISON WITH MULTIMOORA METHOD
This section aims to address the considered problem via t-
spherical fuzzy MULTIMOORA [44] described in the below
phase.
Step 1: Normalized the decision matrix based on the nature

of each criteria as follows:

Sij =
〈
σij, ϑij, ϱij

〉
=

{ 〈
σij, ϑij, ϱij

〉
, for benefit criteria〈

ϱij, ϑij, σij
〉
, for cost criteria

;

j = 1, 2, . . . , n. (41)

Based on Eq. (41), the data of Table 7 is normalized and
is arranged in Table 12.

Step 2: Aggregate the normalized data by employing
t-spherical fuzzy Dombi prioritized weighted arithmetic
(t-SFDPWA) operator given in Eq. (42).

S̃i = t − SFDPWA (Si1,Si2, . . . ,Sin)

=

〈
t

√√√√√√√
1 −

1

1+


n∑
j=1

 ϖjwij
n∑
j=1

wij


(

σ tij
1−σ tij

)4


1
4

,

t

√√√√√√√
1 −

1

1+


n∑
j=1

 ϖjwij
n∑
j=1

wij


(

1−ϑ tij
ϑ tij

)4


1
4

,

t

√√√√√√√
1 −

1

1+


n∑
j=1

 ϱjwij
n∑
j=1

wij


(

1−ϱtij
ϱtij

)4


1
4

〉
(42)

where 4 is prioritized parameter, wij =
ℸij
n∑
j=1

ℸij

,

ℸij =
∏j−1

k=1 Crk (Oli), (j = 1, 2, . . . , n), ℸi1 = 1, and
Crj (Oli) is the performance of alternative Oli under
criteria Crj.
Using Eq. (42) by taking 4 = 2, the aggregated values
are obtained as:

S̃1 = ⟨0.5712, 0.3610, 0.5021⟩ ,

S̃2 = ⟨0.5390, 0.4580, 0.6712⟩ ,

S̃3 = ⟨0.3885, 0.5462, 0.6994⟩ ,

S̃4 = ⟨0.4884, 0.5753, 0.5602⟩ .

Step 3: Apply the score function Eq. (43), on the above
aggregated values. Sij =

〈
σij, ϑij, ϱij

〉
S
(
S̃i
)

=
1 + σ̃ tij − ϑ̃ t

ij − ϱ̃tij

2
; i = 1, 2, . . . ,m, (43)

we have S
(
S̃1
)

= 0.5064, S
(
S̃2
)

= 0.3791, S
(
S̃3
)

=

0.2768, S
(
S̃4
)

= 0.3751.
Next, we normalized the above score values via Eq. (44)

Ŝ (Si) =
S
(
S̃i
)

max
i
S
(
S̃i
) ; i = 1, 2, . . . ,m. (44)

Using Eq. (44), the normalized score valued are com-
putes as follows:
Ŝ
(
g1
)

= 1.000, Ŝ
(
g2
)

= 0.7486, Ŝ
(
g3
)

=

0.5466, Ŝ
(
g4
)

= 0.7407.
Step 4: List the ranking alternatives according to their nor-

malized score values in increasing order.
Based on the normalized score values, the ranking order
of alternatives is given as:

Ol1 > Ol2 > Ol4 > Ol3.

Step 5: Calculate the weighted distance between t-SFNs and
the ideal solution using Eq. (45).

dij = dH
(
ϖjSij, ϖjs

+

ij

)
; i = 1, 2, . . . , n,

j = 1, 2, . . . ., n (45)

here dH represent the t-spherical fuzzy Hamming dis-
tance. Moreover, for each alternative, the maximum
hamming distance from the ideal solution is detected
following Eq. (46)

di = max
i
dij. (46)

According to Eqs. (45) and (46), we get
d1 = 0.4764, d2 = 0.3710, d3 = 0.4806, d4 = 0.2420.

Step 6: Normalize each di via Eq. (47)

d̂i =

min
i
di

di
i = 1, 2, . . . ,m. (47)

In the light of Eq. (47), we have d̂1 = 0.5080, d̂2 =

0.6523, d̂3 = 0.5035, d̂4 = 1.000.
Step 7: Based on the computed d̂i(i = 1, 2, . . . ,m, rank the

alternatives in decreasing order.
Hence, the ranking order of alternatives is obtained as:
Ol4 > Ol2 > Ol1 > Ol3.

Step 8: Aggregate the normalized data by employing t-
spherical fuzzy Dombi prioritized weighted geometric
(t-SFDPWG) operator given in Eq. (48).

S̃i = t − SFDPWG (Si1,Si2, . . . ,Sin)

VOLUME 11, 2023 46471



J. Ali, M. Naeem: r, s, t-Spherical Fuzzy VIKOR Method and Its Application

TABLE 11. Sensitivity analysis results w.r.t ¶.

TABLE 12. Normalized r, s, t-spherical fuzzy decision matrix.

=

〈
t

√√√√√√√
1 −

1

1+


n∑
j=1

 ϖjwij
n∑
j=1

wij


(

1−σ tij
σ tij

)4


1
4

,

t

√√√√√√√
1 −

1

1+


n∑
j=1

 ϖjwij
n∑
j=1

wij


(

ϑ tij
1−ϑ tij

)4


1
4

,

t

√√√√√√√
1 −

1

1+


n∑
j=1

 ϱjwij
n∑
j=1

wij


(

ϱtij
1−ϱtij

)4


1
4

〉
(48)

where 4 is prioritized parameter, wij =
ℸij
n∑
j=1

ℸij

,

ℸij =
∏j−1

k=1 Crk (Oli), (j = 1, 2, . . . , n), ℸi1 = 1, and
Crj (Oli) is the performance of alternative Oli under
criteria Crj.
Using Eq. (48) by taking 4 = 2, the aggregated values
are obtained as:

S̃1 = ⟨0.5301, 0.3210, 0.4025⟩ ,

S̃2 = ⟨0.6471, 0.3356, 0.4553⟩ ,

S̃3 = ⟨0.5200, 0.3812, 0.4932⟩ ,

S̃4 = ⟨0.5990, 0.3903, 0.4060⟩ .

Step 9: Apply the score function Eq. (49), on the above
aggregated values. Sij =

〈
σij, ϑij, ϱij

〉
S
(
S̃i
)

=
1 + σ̃ tij − ϑ̃ t

ij − ϱ̃tij

2
; i = 1, 2, . . . ,m, (49)

we have S
(
S̃1
)

= 0.5253, S
(
S̃2
)

= 0.5694, S
(
S̃3
)

=

0.4826, S
(
S̃4
)

= 0.5443.
Next, we normalized the above score values via Eq. (50)

Ŝ (Si) =
S
(
S̃i
)

max
i
S
(
S̃i
) ; i = 1, 2, . . . ,m. (50)

Using Eq. (50), the normalized score values are com-
puted as follows:
Ŝ (S1) = 0.9226, Ŝ (S2) = 1.000, Ŝ (S3) =

0.8476, Ŝ (S4) = 0.9559.
Step 10: List the ranking alternatives according to their nor-

malized score values in increasing order.
Based on the normalized score values, the ranking order
of alternatives is given as: Ol2 > Ol4 > Ol1 > Ol3.
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TABLE 13. Comparative analysis.

Step 11: Based on the ranking order of alternatives, obtained
in Steps 4, 7, and 10, obtain the final ranking order of
alternatives by applying dominance theory [45].
Thus, by applying the dominance theory [45], the final
ranking is obtained as:

Ol4 > Ol2 > Ol1 > Ol3.

C. RESULTS DISCUSSION
In this section, we compare the results of the propound
VIKOR approach with the existing ones [43], [44] to further
elaborate on the benefits of the established MCGDM tech-
nique, as presented in Table 13.

From Table 13, we can observe that the ranking result
derived by the framed approach is different from the existing
ones. According to the proposed approach, the alternative
Ol1 is the optimal alternative, but the ranking results given
by [43] and [44] reveal that Ol4 is the most preferable alter-
native. Further, the difference between the TOPSIS [43], and
MULTIMOORA [44] on the ranking result is reflected in
the position of alternative Ol2 where the ranking position of
Ol2 changes from the second by the TOPSIS method to the
third position. These differences may be caused due to the
following aspects:

• The existing methods utilize t-spherical fuzzy data in
which the term level of σ , ϑ , and ϱ are taken the same.
But in practice, the term level of σ , ϑ , and ϱ may be dif-
ferent. For example, the decision information provided
by DE D1 regarding Ol4 with respect to criteria Cr5 is
⟨0.7, 0.6, 0.5⟩. Clearly, 0.72 + 0.62 + 0.52 = 1.1 > 1.
Therefore, we should next check 0.73 + 0.63 + 0.53 =

0.684 < 1. But since 0.73 + 0.62 + 0.52 = 0.953 < 1.
Thus the situation can be more successfully captured if
the term level of σ , ϑ , and ϱ are allowed to be different,
as is the proposed method. The proposed method’s abil-
ity to use various term levels may be the key factor of the
ranking difference between it and preexisting t-spherical
fuzzy methods.

• The weight vector derived by the proposed maximizing
deviation method is
(0.1478, 0.2000, 0.2950, 0.2063, 0.1509), whereas the
weight vector derived by the Entropy-based method [43]
is (0.1998, 0.2004, 0.1988, 0.2005, 0.2005). Theweight
vector of criteria Cr1, Cr3, and Cr5 obtained by the
maximizing deviation method differs significantly from
the weight vector computed using an entropy-based
method. This is due to the fact that the entropy measure

worked in the existing entropy-based model is invalid.
It does not take into account the degree of indeterminacy,
has various counterintuitive instances, and may produce
misleading findings [15]. The decision-making process
largely relies on these assigned weights of criteria. Thus,
the ranking variation may also be attributable to the
varying weights.

• In addition to differences in the obtained weights,
the provided method takes into account the weighted
distance between decision components. The compar-
ison approach [43] uses unweighted distance mea-
sures, which may not effectively depict the differ-
ences between decision components and have a negative
impact on the final decision findings.

Based on the preceding comparison, the provided method
has the following superiorities.
1) The developed approach is based on r, s, t-spherical

fuzzy setting. Due to multi-parameters the usage of
r, s, t-SFS makes the information more flexible and has
the capability to capture the uncertaintymore accurately.
Many existing structures of FS become special cases
of proposed set after certain conditions are added (see
III-A). The presence of the parameters enable DEs to
provide their assessments regarding any object in a
broadened way.

2) Existing methods are based on a single opinion matrix,
however the suggested method works with opinion
matrices from multiple experts. Moreover, in the previ-
ous method [44], the weight of each criterion must be
known in advance, but the suggested method uses max-
imizing deviation model to determine objective criteria
weights that improve the reliability of decision results.

3) The proposed methodology not only delivers a solution
that is closer to the ideal, but it also achieves a balance
between the minimum individual regret for the ‘‘oppo-
nent’’ and the maximum group utility of the ‘‘majority.’’
Thus, the r, s, t-spherical fuzzyVIKORgivesmore prac-
ticable results than the existing approaches.

VIII. CONCLUSION
This study initiated the notion of r, s, t-SFSs as an expan-
sion to several preexisting FSs. In r, s, t-SFS, the sum of
the rth power of membership grade, the sum of the sth
power of neutral grade and the sum of the tth power of non-
membership grade is bounded by 1. The r, s, t-SFS enables
DEs to articulate their evaluations more extensively in order
to handle ambiguous data more effectively. Keeping these
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advantages in mind, we came up with basic operational laws
and discussed their properties. Based on the devised score and
accuracy function, ranking order between two r, s, t-SNs was
defined for comparison purposes. Besides r, s, t-spherical
fuzzy distance measure was defined, and its required axioms
were proved mathematically. In addition, r, s, t-SFWA and
r, s, t-SFWG operators were introduced along with their
characteristics. Based on the devised fundamental concepts,
VIKOR method is extended to r, s, t-spherical fuzzy set-
ting in which criteria weights are determined objectively
via developed maximizing deviation model. To illustrate the
practicality, a case study related to robot selection using r, s,
t-spherical fuzzy data was solved by the developed approach.
Meanwhile, detailed sensitive analysis and comparison with
previous methods were carried out to elaborate on the robust-
ness and feasibility of the propound approach.
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