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ABSTRACT This paper proposes an image formation model that jointly combines dichromatic and intrinsic
image decomposition models. The two decomposition models analyze image formation process from a
different perspective, and they can be combined synergistically. It is confirmed that the proposed method
performs better than the individual decomposition. The joint estimation and the study of the decomposition
order (‘intrinsic + dichromatic’ or ‘dichromatic + intrinsic’) are the first attempt to the best of our knowl-
edge. It was confirmed that the proposed ‘intrinsic + dichromatic’ is more optimal through experimental
evaluations. We also exploit the temporal property of AC light sources, which can further improve the
decomposition performance. The experimental results show that the proposed model can make an accurate
image decomposition and achieve a remarkable color constancy performance.

INDEX TERMS Intrinsic image decomposition, dichromatic model, color constancy, AC light, high-speed
video.

I. INTRODUCTION
There are two image decomposition models to inversely
find out the process of color image formation from the
observed image. They are the intrinsic image decomposi-
tion and dichromatic models which describe the properties
of surface reflection. The former assumes that the image
can be expressed as the product of reflectance (R) and
illumination (L):

I = R⊗ L, (1)

where ⊗ is pixel wise multiplication [1]. The latter assumes
that the reflected light is the sum of diffuse (D) and specular
(S) reflection [2]:

I = D+ S. (2)

The image formation of two model is described in Fig. 1.
They are one of the most fundamental tasks in computer
vision and graphics communities. The two models are
closely related to each other in that they commonly deal
with surface reflection in the image formation process. The
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FIGURE 1. Image formation scenario of the proposed model.

reflectance component of the intrinsic model and the diffuse
component of the dichromatic model represent the inher-
ent color of an object in common. The other illumina-
tion and specular components are dependent on illumination
environment.
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Because the reflected properties between objects and illu-
mination are described well with these models, they have
been popularly exploited for image quality enhancement. The
dichromatic model is useful for color constancy [3], [4], [5]
and highlight removal [6], while the intrinsic model is for
low-light enhancement [7] and relighting [8], [9]. However,
the two decomposition models have fundamental limitations
for unveiling image formation process thoroughly. The exist-
ing intrinsic model assumes Lambertian surface, and thus,
it works poorly for real scenes with highlight or saturation.
The dichromatic model focuses on surface reflection only.
It has difficulty in obtaining object intrinsic characteristics.
For shading regions, it is hard to recover chromaticity unlike
the intrinsic model as shown in Fig. 1. In other words, they
look into image formation process from a different perspec-
tive, and can be combined synergistically for understanding
its details.

Therefore, we propose to jointly learn the dichromatic and
intrinsic models in order to accurately separate the reflection
components from the observed image. This enables us to
deeply understand the details of color image formation pro-
cess. The proposed network learns the two models together,
and it decomposes an input image in two ways simultane-
ously. The simultaneous learning can further improve the
accuracy of the model estimation rather than the individ-
ual learning because the two inverse problems are highly
ill-posed.

The original intrinsic model often approximates the reflec-
tion component to diffuse reflection, and neglects specular
reflection. Recently, it is extended by considering the spec-
ular component as an additive residue term [10], [11]. The
extended model first removes highlight, and is followed by
the conventional intrinsic decomposition. However, in the
proposed method, intrinsic decomposition is first made, and
the separated reflectance is further decomposed into the dif-
fuse and specular components. This logically follows the
imaging process in sequence where incident light is reflected
on surface in two ways (diffuse and specular) [3], [12]. Our
work thoroughly studies the order of the decompositions
(i.e., ‘intrinsic + dichromatic’ or ‘dichromatic + intrinsic’).
It was confirmed that the proposed ‘intrinsic + dichromatic’ is
more optimal through experimental evaluations. Also, it was
found that the gain of the joint decomposition is superior to
individual decomposition. The joint estimation and the study
of the decomposition order are the first attempt to the best of
our knowledge.

Estimating the two models from a single image is a highly
ill-posed problem. Conventional methods [7], [13], [14], [15],
[16], [17], [18], [19] assume white-light environment for
simplicity, but the proposed method also attempts to estimate
illuminant chromaticity which is more general and practical.
As reported in the previous works, the sinusoidal variation
of AC (alternative current) powered light sources can be an
important clue for illumination chromaticity estimation and
image decomposition [5], [6], [20]. However, the previous

studies simply exploit this prior as the cost of the deep net-
work. In the proposed method, to exploit the temporal feature
more efficiently, knowledge distillation [21], [22], [23], [24],
[25] is used. The feature of a teacher network that learns
temporal feature is transferred to the student network that
learns image decomposition. By leveraging the AC variation,
the proposed network showed better image decomposition
performance.

II. RELATED WORKS
A. INTRINSIC IMAGE DECOMPOSITION
Although the intrinsic image decomposition has been
extended to I = R⊗L+S (Lambertian shading L, reflectance
R, and specularity S) recently [10], [11], [26], it decom-
poses an image into two components (R and L) by ignoring
specularity for simplicity in many previous works [27], [28],
[29], [30]. Therefore, intrinsic image decomposition in this
paper, means separation into reflectance and illumination.
Intrinsic image decomposition is an ill-posed problem, and
some priors have been studied in conventional methods. One
of the priors is the Retinexmodel [31], which has been widely
used. Recently, deep learning based intrinsic decomposition
has been popularly studied, and it achieves a superior per-
formance. However, these models are trained in a supervised
manner and require ground truth of intrinsic decomposi-
tion for training [32], [33], [34], [35], [36]. Because they
use synthetic images which are far from real scenes, there
exists a fundamental limitation from a perspective of practical
applications. Although the human-labeled real-world dataset
(IIW [37] and SAW [38]) were created, they have sparse
annotation and it is difficult to collect annotation in a large
scale [19]. On the other hand, there are several studies that
utilize time-lapse sequences [18], [39]. They assume varying
illumination and constant reflectance in a scene. However,
they require a large number of images and often fail in indoor
scenes, because the assumption works primarily for outdoors
[39]. Also, the conventional intrinsic model is commonly
inadequate for highlight, strong shadow regions, and colored
illumination [39]. No decomposition between specular and
diffuse reflection makes the model work poorly for strongly-
illuminated objects, leading to distorted visual quality (Fig. 8
(b - g)). The proposed method attempts to overcome these
challenges by jointly combining intrinsic decomposition,
dichromatic decomposition and color constancy tasks in a
cooperative way.

B. DICHROMATIC MODEL BASED DECOMPOSITION
Dichromatic model based decomposition separates diffuse
and specular reflection from an input image, and due to its
ill-posed property, various priors have been investigated. The
thresholded Value in the HSV color space [40], [41] and min-
imum intensity among the RGB channels for each pixel [42],
[43] were explored as the prior of specular reflection. Several
methods use color dictionary to recover the chromaticity of
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FIGURE 2. Reflection modeling of (a) single ray and (b) N multiple
segments.

diffuse reflection, based on the assumption that diffuse color
can be expressed as a linear combination of some representa-
tive colors [44], [45], [46]. There are previous studies that use
multiple images, which are captured in different viewpoints
or directions of a light source [47], [48], [49], [50], [51], while
our proposed method has no constraint on the position of a
camera and a light source. In these multiple images based
methods including the proposed, constant diffuse chromatic-
ity becomes a useful prior.While many conventional methods
rely on only spatial features of images, the proposed method
utilizes both temporal and spatial features which are obtained
from natural high-speed video frames.

There are few studies that have exploited temporal features
for dichromatic decomposition. The works in [6], [20], and
[52] use the intensity fluctuation of AC lights captured in high
speed video. Tsuji [20] assumes the linear relation between
minimum and maximum luminance of a high-speed video.
Yoo et al. [6] proposed a deep network that estimates all
parameters of the dichromatic model including illuminant
color. Ha et al. [52] introduced a new temporal dark prior
for dichromatic model based decomposition. However, Tsuji
[20] still showed color distortion on strong highlight regions
which is a common problem of highlight removal. Also, Yoo
et al. [6] have limitation on diffuse color recovery as other
dictionary based methods do.

C. MODEL IMPROVEMENT
Because intrinsic decomposition commonly assumes Lam-
bertian surface, specularity is hardly considered [10], [11],
[26]. Cheng et al. [26] simply assumes that diffuse reflection
is dominant over specular reflection as follows:

I ≈ D = R⊗ L (3)

Then, a couple of previous works [10], [11] extended the
intrinsic decomposition to accommodate specularity for high-
light removal, and (1) is extended by

I = R⊗ L + S. (4)

Modeling as (4) is similar to the proposed method in that it
combines the intrinsic model with the dichromatic one. How-
ever, it just treats the separation of the specular component
as the preprocess of intrinsic decomposition for Lambertian

surface input, while we model the image formation process
by closely combining both models.

III. THE PROPOSED METHOD
A. THE PROPOSED IMAGE FORMATION MODEL
The total reflected light on a surface point x, observed at
viewpoint ωp∗ under incident light Li(x, ωi) whose incident
direction is ωi can be expressed as follows:

L(x, ωp∗ ) =

∫
�+

fr (x, ωi, ωp∗ )Li(x, ωi)(ωi · n)dωi (5)

where �+ means positive hemisphere to sample the whole
incident light and n is a surface normal. In (5), fr (x, ωi, ωp∗ ) is
bidirectional reflectance distribution function (BRDF), which
is the fraction of reflected radiance observed from a direction
ωp∗ for each incident direction ωi. If non-Lambertian is con-
sidered more generally, BRDF in (5) is extended to the sum
of a diffuse isotropic lobe (fd ) and a specular lobe (fs) [53]:

fNL(x, ωi, ωp∗ ) = fd (x, ωi, ωp∗ ) + fs(x, ωi, ωp∗ ). (6)

To derive the proposed image decomposition model, assume
for a single ray environment as Fig. 2 (a), first. Under non-
Lambertian assumption, the reflected radiance caused by a
single ray that comes through the ith segment of �+ (denoted
by Ai) can be expressed as:

L(x, ωp∗ ,Ai)

=

∫
Ai

{
fd (x, ωi, ωp∗ ) + fs(x, ωi, ωp∗ )

}
Li(x, ωi)(ωi · n)dωi

(7)

Diffuse reflection does not depend on the incident direction
and fd has a constant value αd . Also, the intensity of specular
observed at ωp∗ can be assumed as constant reflectance (αs,i)
in a single ray environment. Then, the reflected radiance in
(7) can be re-expressed as:

L(x, ωp∗ ,Ai)

= αd

∫
Ai
Li(x, ωi)(ωi · n)dωi + αs,i

∫
Ai
Li(x, ωi)(ωi · n)dωi

= (αd + αs,i)LAi (8)

where LAi is total amount of light incident on Ai. Because
of the directional property of the specular reflection, the
specular reflection observed at ωp∗ is generated by incident
light that comes through the small area Ap. Therefore, the
specular reflectance by incident direction in Ap is assumed as
constant (αs) with respect toωi, and 0 for the other directions:

αs,i =

{
αs, ωi ∈ Ap
0, ωi /∈ Ap

(9)

ForN multiple incident rays (in Fig. 2 (b)), each ray generates
diffuse and specular reflection. The total reflected light is
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expressed as follows:

L(x, ωp∗ ) =

N∑
i=1

L(x, ωp∗ ,Ai) (10)

=

N∑
i=1

(αd + αs,i)LAi (11)

Then, by the relation of αs,i and ωi in (9):

L(x, ωp∗ ) = (αd + kαs)Lt (12)

where k is the ratio of incident light between Ap and positive
hemisphere (�+), and Lt is total illumination. From (12),
we derive the proposed joint decompositionmodel as follows:

I = (DR + SR) ⊗ L. (13)

With the proposed model, the image (I ) is decomposed as dif-
fuse reflectance (DR), specular reflectance (SR), and illumina-
tion (L). The specular reflectance is given by kαs that means
the ratio between specular reflection and whole incident light.
So, the specular reflectance is highly affected by the direction
of viewpoint, while the diffuse reflectance does not depend on
the direction. Reflectance in the conventional intrinsic image
decomposition model under Lambertian assumption corre-
sponds to the diffuse reflectance of the proposedmodel. Since
the intrinsic model assumes for the Lambertian reflection,
the specular term is ignored. In the proposed decomposition
model, the specular term is considered as specular reflectance
which means the ratio of illumination and specular reflection.

So many conventional works have dealt with the decom-
position of imaging formation process, which is a crucial
part for high-quality imaging. The intrinsic model mainly
describes the reflective phenomenon of incident light, while
the dichromatic model further analyzes the reflectance into
diffuse and specular reflection. The previous improved model
in (4) primarily concentrates on intrinsic decomposition, and
specular reflection is just added to intrinsic decomposition.
However, we attempt to estimate both models simultaneously
in a single deep network, targeting at improving the decom-
position accuracy better than the individual model estima-
tion. Following the order of imaging process, intrinsic image
decomposition is first made, and the resulting reflectance
component is further separated into the diffuse and specular
components based on the dichromatic model. This sequence
of the image decompositions is actually equal to the reflection
flow of the incident light for image formation. The integrated
model is cooperatively learned within a single deep network
for more accurate decomposition.

B. NETWORK STRUCTURE
Fig. 3 shows the overall network structure of the proposed
method. The proposed network consists of a Temporal Fea-
ture Network (Teacher, TF-Net) and Image Decomposition
Network (Student, ID-Net). The ID-Net consists of the Illu-
mination and Reflectance subnets that learn the features of
illumination and reflectance, respectively. The subnets adopt

a convolutional auto-encoder structure based on VGG16 as
[54]. In the most conventional teacher-student learning stud-
ies [21], [22], [23], [24] for the network compression, the stu-
dent network is a lightweight version of the teacher network.
However, the proposed method treats the Teacher network as
a temporal feature extractor, and VGG16 based auto-encoder
is used identically to the ID-Net.

TF-Net learns temporal feature by estimating AC fitting
map, MAC , generated with high-speed frames. The intensity
variation under AC light source can be modeled as a sine
curve [5], [6], [55]. Fig. 4 shows the estimated sine curves
of highly illuminated region (red) and low illuminated region
(blue). The more the regions are affected by the AC light
sources, the larger intensity variation is observed. Therefore,
we generated AC fitting map with amplitude of each pixel
variation, and it reflects the effect of illumination. Fig. 5
shows the examples of input video and its MAC . By training
TF-Net to estimate the AC fitting map with N frames of
high-speed video, it can learn the temporal variation of the
incident light. By transferring these features to the ID-Net,
it is expected that the temporal feature can be extracted more
efficiently than just reflecting it to the cost only.

The proposed method exploits high speed video as an
input, and estimates illuminant chromaticity, the achromatic
illumination component, and the specular and diffuse com-
ponents (corresponding to reflectance in (1)). The input
image It is t th frame of input video, and every frame of
input video is sequentially fed into the Illumination-encoder
and Reflectance-encoder. N is the number of frames of the
input video. For t th input frame, illumination Lgray,t and its
chromaticity 0t , the specular component of reflectance SR,t ,
and the diffuse component of reflectance DR,t are generated
through the proposed network.

With the Illumination subnet, the illumination Lgray,t and
its chromaticity are estimated. Motivated from FC4 [56],
the proposed method estimates illuminant as a weighted
sum of local illuminants and its confidence map. The Illu-
minant estimation decoder generates 4 channels of output
that represent local illuminant and confidence map with 1/8
resolution of the input. Note that the truncated decoder is
used for the Illuminant estimation decoder in order to effi-
ciently generate a single illuminant RGB. Recall that the
proposed method considers chromatic illumination. Since
the chromaticity of illumination probably leads to inaccu-
rate prediction of reflectance color [39], the input image
is white-balanced with the predicted illuminant, Iwb, and
then, it is put into the Reflectance subnet. The Reflectance
subnet generates diffuse and specular components separated
from the reflectance. As illustrated in Fig. 3, the Reflectance
decoder outputs 32 channels of features (F), which go to
the two different convolutional blocks. The concatenation of
F and the white-balanced input goes through convolutional
blocks, leading to the estimation of the specular compo-
nent, SR,t . Then, the concatenation of F , SR,t , and Iwb are
fed into another convolutional blocks, which generates the
diffuse component, DR,t . The prediction of SR,t is followed
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FIGURE 3. Overall architecture of the proposed network. The proposed network consists of Temporal Feature Network (Teacher, TF-Net) and Image
Decomposition Network (Student, ID-Net) that estimates illumination, specular and diffuse component of reflectance.

FIGURE 4. AC variations of highly (red) and low (blue) illuminated
regions.

by that of DR,t sequentially, and that is originally inspired
from [57].

As explained above, the proposed network finally esti-
mates the diffuse and specular reflection of the dichro-
matic model, and the reflectance and illumination of intrinsic
decomposition. These are clearly confirmed by deriving the
dichromatic model from (13) straightforwardly as follows:

I = DR ⊗ L + SR ⊗ L = D+ S (14)

FIGURE 5. Input frames of high-speed video and their AC fitting map
generated with amplitude of sinusoidal variation.

where D and S indicate the diffuse and specular components
of the dichromatic model.

C. LOSS FUNCTIONS
To train the network, several losses that reflect the character-
istics of the two models are exploited. The network is trained
with the weighted sum of losses as follows:

Ltot = Lrecon + w1LCC
+ w2Linvar + w3Lsmooth + w4LAC + w5LKD (15)
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The sub-losses Lrecon,LCC ,Linvar ,Lsmooth, LAC and LKD
mean the reconstruction, color constancy, invariant, smooth,
AC fitting, and knowledge distillation losses, respectively.

1) RECONSTRUCTION LOSS
Based on our proposed decomposition model, a target frame
It should be equal to the reconstructed frame with the net-
work output. The reconstructed frame of the input frame It
can be represented as (13). For saturated pixels, the recon-
structed value is larger than 255. This may lead the network
to be trained with inaccurate reconstruction loss. So, the
reconstruction loss is calculated on non-saturated regions as
follows:

Lrecon =

N∑
i=1

N∑
j=1

αij ∥ Msat · {(DR,j + SR,j) ⊗ Li · 0i − Ii} ∥1

(16)

where αij is 1 for i = j, and otherwise it is smaller than 1.Msat
is a saturated region mask. Objects in a scene and camera
are assumed to be static in the input video, and this is a
quite reasonable assumption because the time interval of the
high-speed video frames is very short. Thus, the reflectance
of all input frames should be constant. So, the reconstructed
frame with illumination Li and reflectance components(SR,j
and DR,j) should be the same as the input frame Ii.
To find saturated pixels, previous studies [6], [40], [41]

depend on only pixel intensity, while our proposed method
leverages temporal constraint additionally. Under AC light
sources, the intensity of a saturated pixel is constant, while
the non-saturated pixel varies sinusoidally. So, the saturated
pixels have zero temporal gradients, and it is used for deter-
mining saturated regions. The pixels with small temporal
gradient TG(i) and high intensity are determined as saturated
and it is expressed as follows:

Msat (i) =

{
0, I (i) > Th1, TG(i) < Th2
1, otherwise.

(17)

where Th1 and Th2 are threshold values of intensity and
temporal gradient and i is a pixel index.

2) COLOR CONSTANCY LOSS
Unlike other dichromatic and intrinsic decomposition
researches, our proposed model does not assume gray illu-
mination and estimating illumination chromaticity is crucial.
As a loss for illumination color estimation, angular error
which is the common quality measure of color constancy is
exploited. The angular error between the estimated illuminant
0i and ground truth illuminant 0gt is expressed as:

LCC = arccos
(

0i · 0gt

∥ 0i ∥∥ 0gt ∥

)
. (18)

3) INVARIANT LOSS
As described in ‘Reconstruction loss’, the reflectance for
all frames should be constant. The invariance of diffuse

reflectance is expressed with L1 loss as follows:

Linvar =

N−1∑
t=1

N∑
t ′=t+1

∥ DR,t − DR,t ′ ∥1 . (19)

4) SMOOTH LOSS
By the Retinex model, the illumination should be
smooth [59]. The large gradients of an image come from
reflectance variations and small gradients are relatively
related to illumination information. To reflect this property,
TV-L2 loss is applied to illumination [59]. Also, the specular
reflection is spatially smooth on surfaces [60], and it is
reflected to TV-L2 loss. These smoothness losses can con-
tribute to extract the reflection components closer to ground
truth, and Lsmooth is represented as:

Lsmooth =

N∑
t=1

(λ1 ∥ ∇Lt ∥2 +λ2 ∥ ∇SR,t ∥2). (20)

5) AC FITTING LOSS
As the input high-speed video is captured under AC light
source environments, the intensity of incident light varies
sinusoidally by double the AC standard frequency, and the
reflected light also fluctuates accordingly. This periodic vari-
ation is fit with the Gauss-Newton method [61], and the
regression error is measured as AC fitting loss. The mean
values of all the illumination frames are fit with a sinusoidal
function as in [6].

6) KNOWLEDGE DISTILLATION LOSS
The teacher network is pretrained with MSE loss between
the estimated AC fitting map and its groundtruth, and it
is not updated while training the student network. The
down-sampling layers of the network are used as the break-
points. Since the tasks of teacher and student are different,
the every feature channel of TF-Net might not be equally
beneficial. So, we use meta-network to decide which channel
of the teacher network is useful for the ID-Net. The features
after meta-network are transferred to the student with MSE
loss.

7) NETWORK TRAINING
The proposed network is trained with two types of losses:
temporal and spatial loss. To calculate the temporal loss (LAC
and Linvar ), the outputs of all input frames are required,
while the spatial loss (Lsmooth and LCC ) is calculated for
each frame. Therefore, the network is updated by every video
sequence (N frames), not by a single frame.

IV. EXPERIMENTAL RESULTS
The proposed network was trained with a high-speed video
dataset proposed in [6]. The Adam optimizer was used for
training with a batch size of 16. The initial learning rate was
1 × 10−4, and learning rate is decayed with epochs. The
number of frames (N ) used for training was 5.
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FIGURE 6. The dichromatic model results. (a) input image, the diffuse reflection of (b) Akashi et al. [13], (c) Yamamoto et al. [14],
(d) Yang et al. [58] (e) Tsuji [20], (f) Fu et al. [16], (g) JSHDR [57], (h) DDME [6] and (i) the proposed method.

A. COMPARISONS WITH CONVENTIONAL METHODS
The performance was compared with several conventional
methods that conduct dichromatic model, intrinsic image
decomposition and color constancy. Since the dataset has
no ground truth for dichromatic and intrinsic decomposi-
tion, a qualitative comparison is made for high-speed video
dataset. A quantitative evaluation for highlight removal was
conducted with SHIQ [57].

1) DICHROMATIC MODEL RESULT
The proposed method is compared with the dichromatic
based methods such as Akashi et al. [13], Yamamoto et al.

[14], Yang et al. [58], Fu et al. [16], and JSHDR [57]
which are the single-image approaches, and Tsuji [20]
and DDME [6] which are the multiple-image approach
that exploits high-speed video captured under AC light
source (close to our method). Since conventional methods
except DDME [6] assume gray illumination condition, the
white-balanced image with ground truth illuminant is used
for the input. Since JSHDR [57] is a supervised method
and there is no ground-truth in the high-speed video dataset,
the model is trained with the same loss as the proposed
method in an unsupervised manner. Network structure in
[57] was not changed. Note that the learning-based models
(JSHDR, DDME, and the proposed method) are trained with
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FIGURE 7. SHIQ result comparison. (a) input image, (b) ground truth, (c-h) the diffuse reflection of (c) Akashi et al. [13], (d) Yamamoto
et al. [14], (e) Yang et al. [58], (f) Fu et al. [16], (g) JSHDR [57], and (h) the proposed method.

TABLE 1. PSNR and SSIM comparison for the real dataset, SHIQ [57].

the high-speed video dataset. Fig. 6 compares the diffuse
reflection component. As shown in the red boxed regions
which have strong specularity, conventional methods suffer
from color distortion or fail to remove highlight properly,
while the proposed method successfully reconstructs the
inherent color. The methods that exploit both temporal and
spatial features have better performance than single image
methods with only spatial feature. As mentioned in the sec-
tion of ‘Introduction’, the dichromatic model has a funda-
mental limitation in reconstructing chromaticity of shadow
and dark regions. The proposed method further alleviates this
problem by jointly learning dichromatic and intrinsic image
decomposition, and this can be observed in the results of (a4)
in Fig. 6.

The quantitative comparison is made with the real image
dataset (SHIQ) proposed in [57], and it is shown in Table 1
and Fig. 7. Since SHIQ is a single image dataset, the
multi-image based methods, Tsuji [20] and DDME [6] can-
not be evaluated. Although the proposed method is trained
with multiple frames, the network can be evaluated with a
single frame. The proposed network was fine-tuned for the
gray illumination input. The performance of the proposed
method exceeds the conventional methods in both qualitative
and quantitative aspects by achieving the highest PSNR and
SSIM.

2) INTRINSIC IMAGE DECOMPOSITION MODEL RESULT
Li et al. [17], Lettry et al. [18], Wei et al. [7], JieP [62],
STAR [63], and UIDNet [64] are evaluated to compare their
performances with the proposed method. Wei et al. [7] and
Lettry et al. [18] take the multiple-image approach that
exploits low/normal light image pairs and time-lapse image
dataset. Since these conventional methods except STAR [63]
and JieP [62] require illumination chromaticity as a prior,
the white-balanced image with groundtruth illuminant is used

as an input. The reflectance of JieP [62] and STAR [63] is
white-balanced with its estimated illuminant calculated as
the global average of the illumination. The learning-based
methods (Lettry et al. [18], Wei et al. [7], UIDNet [64],
and the proposed method) are trained with high-speed video
dataset.

The experimental results are shown in Fig. 8. Our proposed
network generates the reflectance component (which con-
tains specularity) and its separated diffuse component, and
they are shown in (h) and (i). It is shown that the intrinsic
chromaticity is accurately recovered by removing specularity.
Since other intrinsic models do not consider the specularity
of real scenes, they often fail to recover the chromaticity of
strong specularity regions, as shown in red boxed regions
of Fig. 8. Also, the conventional methods cause severe arti-
facts around saturated regions, while the proposed method
accurately separates illumination and reflectance. One of the
weak points for intrinsic image decomposition is the fail-
ure on strong shadow regions. As shown in the blue boxed
region of Fig. 8, the strong shadow caused color distortion
and artifacts in previous studies, while the proposed method
successfully removes shadow and reconstructs the intrinsic
chromaticity.

3) COLOR CONSTANCY COMPARISON
The result of the proposed decomposition can usefully con-
tribute to color constancy, and its performance is compared
with the SOTA methods in Table 2. As shown in Table 2,
the proposed method achieved a remarkable performance.
Although the task of the proposed method is primarily on
image decomposition, its performance is better than the
color constancymethods thanks to its accurate decomposition
capability. DDME [6], JieP [62] and STAR [63] estimate
illuminant by decomposing image based on dichromatic and
intrinsic model.
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FIGURE 8. Intrinsic image decomposition results. (a) input image, the reflectance of (b) Li et al. [17] (c) Lettry et al.
[18], (d) Wei et al. [7], (e) JieP [62], (f) STAR [63], (g) UIDNet [19] and (h, i) the proposed method. Note that two
reflectance components w/wo specular are shown in the proposed method.

TABLE 2. Angular error comparisons with conventional color constancy methods.

B. ABLATION STUDY
To confirm the effectiveness of the proposed decomposition
model, three ablation studies were conducted. As shown in
Fig. 10, we evaluated several image decomposition models,

which are intrinsic decomposition, dichromatic decomposi-
tion, and the extended intrinsic decomposition. The decom-
position results are shown in Fig. 9 (b-d) and their color
constancy performances are compared at Table 3. The results
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FIGURE 9. (a) Input image and decomposition results for (b) the model A, (c) the model B, (d) the model C in Fig. 10, (e) without
white-balance in the Reflectance subnet, (f) a single frame input (no temporal feature), (g) without knowledge distillation, and (h) the
proposed method. Note that all methods except for (f) accept multiple video frames as an input.

TABLE 3. Average angular error comparisons of ablation studies.

show that our proposed method is superior to the other possi-
ble decompositionmodels for both color constancy and image
decomposition. Specularity is removed in the reflectance of
the model C and the proposed. Unlike other models, the
proposed method accurately separates specular components
and accurate reflectance is obtained. Since the original intrin-
sic decomposition (A in Fig. 10) does not consider spec-
ularity, color distortion happens in high specular regions.
It demonstrates the importance of considering specularity in
intrinsic decomposition. The result of dichromatic decom-
position (B in Fig. 10) is also degraded by severe color

distortion and fails to reconstruct inherent chromaticity on
saturated regions. Although the extended intrinsic decompo-
sition model (C in Fig. 10), which is the same assumption
as [10] and [11] accomplishes better performance than the
model A and B in Fig. 10, it showed over-smoothed result
as in the red boxes. The image details are not reconstructed
in reflectance, while the proposed method correctly classifies
the pattern to reflectance.

To examine the effect of illuminant color in the input
image of the reflectance subnet, the original input image
is used without white-balance. As shown in Fig. 9 (e), the
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FIGURE 10. A: intrinsic decomposition in (1), B: dichromatic
decomposition in (2), C: extended intrinsic decomposition in (4), and
D: the proposed decomposition in (13).

result without white-balance is suffered from severe color
distortion. By transferring illumination chromaticity from the
Illumination subnet to the Reflectance subnet, reflectance
chromaticity recovery is improved and the color distortion is
alleviated.

To confirm the importance of temporal features, we con-
ducted a couple of experiments. First, a single frame input
is used instead of N frames, and accordingly, the tempo-
ral losses (LAC and Linvar ) and LKD are removed. Second,
with N frames of input, only temporal feature distillation is
removed. Fig. 9 (f) and (g) are the results of a single input and
without distillation loss. It is confirmed that temporal features
are helpful for both color constancy and image decomposi-
tion. The single imagemethod is poor in separating the reflec-
tion components, and the intrinsic chromaticity the shadow
region is not reconstructed successfully. Also, Fig. 9 (g)
shows more blurred reflectance than the proposed method.
Unlike previous study [6] that reflects temporal variation in
training cost, the proposed method further improves perfor-
mance by exploiting the temporal feature more efficiently
with knowledge distillation.

C. LIMITATION
Although our proposed method performs superior to the
conventional methods, it still has limitation in some cases,
because of the ill-posed property of image decomposition.
The conventional methods reported that some regions (weak
texture, strong shadow and saturation) are incorrectly decom-
posed. Although this mis-classification has been further
improved in our method, there are still limitations for per-
fectly reconstructing intrinsic property for saturation and
strong shadow as shown in Fig. 6 and Fig. 8. This is because
saturated regions and weakly-illuminated shadow are lack of
AC variation. Note that the stronger the AC variation is, the
better temporal features are [70].

V. CONCLUSION
In this paper, we proposed a new image formation model that
conducts dichromatic and intrinsic decomposition jointly.
The experimental result shows that the proposed model per-
forms better than each single decomposition. Also, it was
experimentally found that the decomposition performance
depends on the order of the two decompositions. Namely, the
proposed method (‘intrinsic + dichromatic’) performs better
than the conventionalmodel (‘dichromatic + intrinsic’). Spec-
ular reflection is generally very weak and sparse, and thus,
its separation is more difficult than the illumination of the
intrinsicmodel. The fundamental limitation of intrinsic image
decomposition is Lambertian assumption and poor working
for real scenes, which is easily solved with the proposed
method. Unlike conventional methods, the proposed model
is trained in an semi-supervised manner with real scenes by
leveraging the temporal property of AC light sources. The
performance was further improved by temporal features. Illu-
mination chromaticity is estimated in the Illumination subnet,
and is used for white-balance in the Reflectance subnet, lead-
ing to the significant reduction of color distortion. Although
our main task is decomposition, color constancy performance
is better than SOTA methods.
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