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ABSTRACT This study calibrated a refined split-window algorithm for land surface temperature (LST)
retrieval based on Fengyun-2D (FY-2D) meteorological satellite. First, FY-2D land surface emissivity
(LSE) was predicted fromModerate-resolution Imaging Spectroradiometer (MODIS) LSE based on sensors
spectral similarities. The retrieved FY-2D LST data were validated in an arid region where the traditional
split-window algorithm generally performed unsatisfactorily. Validation results show R2 (coefficient of
determination) and RMSE (root mean square error) values range 0.53–0.67 and 2.86–6.21 K, respectively,
against ground observed LST. Better LST retrievals were observed over vegetated regions with an RMSE
value of ∼2.8 K. Spatially, the FY-2D LST was highly correlated (R2

= 0.83) with and showed marginal
differences (±2 K) from MODIS LST for ∼40% of the whole area.

INDEX TERMS Calibration and validation, FY-2D, land surface temperature, refined split-window
algorithm.

I. INTRODUCTION
As an important component of water and energy budget for
surface, land surface temperature (LST) is a key parameter for
the meteorology, hydrology, ecology and urban climate [1],
[2], [3]. Owning to the development of remote sensing, LST
can be obtained at a large spatio-temporal scale in the way
of various algorithms, such as single-channel methods, split-
window algorithms, land surface temperature and emissivity
separation methods [4], [5], [6], [7], [8].

As the algorithm used in the production of moderate-
resolution imaging spectroradiometer (MODIS) LST prod-
uct, split-window algorithms were most widely used to
retrieve LST based on the differential water vapor absorption
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in two adjacent infrared channels since the McMillin’s esti-
mation attempt [9].

To improve the applicability of split-window algorithm,
Wan improve his split-window algorithm, called refined split-
window algorithm, to obtain the MODIS LST product of
V6.3.0 [6], [7]. The accuracy of V6.3.0 LSTwas significantly
better than that of V5with the errors decrease from 2K to less
than 1 K at some bare soil sites. Similarly, this algorithm was
also used to retrieve LST using other polar-orbit satellite data
(e.g. AVHRR, GF-5), and improve the performance of split-
windows [10], [11], [12].

Relative to the widely used polar-orbit satellites, geosta-
tionary satellites can obtain various images in a day for a cer-
tain region, which is beneficial for understanding water and
energy budgets [13]. Therefore, several researchers retrieved
LST using geostationary satellites such as Meteosat Second
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Generation (MSG), Geostationary Operational Environmen-
tal Satellite (GEOS) Himawari and Fengyun [14], [15], [16],
[17], [18], [19]. Considering that Fengyun is almost the only
satellite to derive the continual diurnal and regional LST in
China, especially in the western of China, some researchers
applied the split-window algorithm to LST retrieval in China
using Fengyun satellite. Tang initially retrieved LST from
FengYun-2C (FY-2C) data using the split-window algorithm
of Wan and Dozier [6], [20]. Zhang and Wang subsequently
retrieved LST from FY-2D data based on a split-window
algorithm with a correlation coefficient of 0.5 and a root
mean square error (RMSE) of 4.4 K between the retrieval
and the MODIS product [21]. Song et al. also used
FY-2E data and split-window algorithm of Wan and Dozier
to retrieve LST of source region of the Yellow River with a
correlation coefficient (R) varying from 0.60 to 0.94 and a
root mean square error ranging from 1.89 to 3.71 K between
retrieved and MODIS LST [22]. Worth noting, those studies
were focused on the LST retrieval of FY-2 in the vegetated
region using the previous split-window algorithm ofWan and
Dozier [6].

For split-window algorithm of Wan, the coefficient and
lookup table are different for each sensor. The coefficient
and lookup table of refined split-window algorithm are not
simulated for FY-2. Considered that the long time series of
FY-2 and the successful application of refined split-window
algorithm in Himawari-8 [18], it is valuable to regress the
coefficient and build lookup table for the refined split-window
algorithm for FY-2D, and apply the refined split-window
algorithm of Wan to LST retrieval of FY-2D data in a
region [7]. Section II presents information regarding the
study area and data gathered. The Section III describes the
algorithm of Wan and simulates the numerical values of the
coefficients in that algorithm for FY-2D. Section IV performs
the result of LST retrieval, and evaluates the results. SectionV
discusses the reason of the difference of retrieval and
MODIS LST. Section VI concludes the paper.

II. STUDY AREA AND DATA
A. STUDY AREA
The study areas are located in a part of Zhangye city
which is an oasis-desert ecotone (31◦14′ –32◦37′N, 118◦22′

–119◦14′E) within the middle reaches of Heihe Basin in
Northwest China. The area experiences an arid continental
climate with the annual mean temperature and precipitation
with values of 280.5 K and 115.6 mm, respectively [23].
There are three main land cover types, namely, wetland,
vegetation and desert, which are located in the north, middle,
and northwest (southeast, southwest) parts, respectively. Four
ground sites (wetland, crop, desert1 and desert2 sites) were
chosen (Figure 1), including two vegetated sites (wetland and
crop sites) and two desert sites (desert1 and desert2 sites),
which are belong to the Heihe Watershed Allied Telemetry
Experimental Research (HiWATER). All ground observation
data were provided by the Cold and Arid Regions Science
Data Center at Lanzhou [24], [25]. With field observations,

FIGURE 1. Sites and underlying surfaces of the study in Zhangye city.

the homogeneity around sites is relatively good within the
scope of 5km.

B. DATA DESCRIPTION
The data used for LST estimation were obtained from
FY-2D data and MODIS product. FY-2D which can obtain
one full disc image covering the area of 80◦ N-80◦ S and
26.5◦E-146.5◦E is one of five geostationary meteorologi-
cal satellites of China, namely, FY-2C/2D/2E/2F/2G [26].
The upgraded Stretched-Visible and Infrared Spin-Scan
Radiometer (S-VISSR) onboard on FY-2D include one visi-
ble channel and four infrared channels. The FY-2D satellite
data in two thermal infrared channels (IR1, 10.3-11.3µm and
IR2, 11.5-12.5 µm) which can be used in the spilt-window
algorithm, were provided by China Meteorological Admin-
istration (CMA). The spatio-temporal resolution of FY-2D
in IR1 and IR2 is 5km and 30min [27]. All selected images
(11 images) were acquired from June 20, 2012 to
July 20, 2012.

MODIS products were provided by the Level 1 and
Atmosphere Archive and Distribution System (LAADS)
of the National Aeronautics and Space Administration
(NASA) [28]. In our study, MOD11 was selected to obtain
LST and land surface emissivity (LSE) in temporal-spatial
resolution of 1 day and 1 km. The temporal and spatial
resolutions of these products are listed in Table 1.

TABLE 1. Available datasets in our study.
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Accordingly, the ground observations spanning from
June 20, 2012 to July 20, 2012 were also provided by the
Cold and Arid Regions Science Data Center at Lanzhou [24].
They were used for validation. The LST reference is esti-
mated from the upwelling and downwelling longwave radi-
ation measured by pyranometers/pyrgeometers using this
equation [29]:

Ts =

[
Rlu − (1 − εb) · Rld

εb · σ

]1/4
(1)

where Rlu (Rld ) is the surface upwelling (downwell) long-
wave radiation, σ is the Stefan–Boltzmann’s constant, εb is
the broadband LSE [30], [31].

III. METHODS
A. REFINED SPLIT-WINDOW ALGORITHM
Based on refined split-window algorithm proposed by Wan,
LST can be expressed as [6]

LST = b0 +

(
b1 + b2

1 − ε

ε
+ b3

δε

ε2

)
TIR1 + TIR2

2

+

(
b4 + b5

1 − ε

ε
+ b6

δε

ε2

)
TIR1 − TIR2

2

+ b7 (TIR1 − TIR2)2 (2)

where ε and δε are the mean and difference of LSE in band 31
and 32 of MODIS, TIR1 and TIR2 are the top of atmosphere
(TOA) brightness temperature in band 31 and 32 of MODIS,
respectively. b1 - b7 are the unknown coefficients which will
be derived in the following from simulated FY-2D data.

Then, atmospheric radiative transfer simulations were
made with MODTRAN4 code in wide atmospheric and
LST conditions using the 1413 selected data (in clear sky)
of Thermodynamic Initial Guess Retrieval (TIGR) database
TIGR2002 which represents a worldwide set of atmospheric
situations (2311 radio soundings) from polar to tropical atmo-
sphere [32], [33].In detail, considering that the reasonable
variations of LST are varied in a wide range according to the
atmospheric temperature T0 in the first boundary layer of the
atmospheric profiles used, the LST in the simulation for each
profile was changed between T0 + 5 K and T0 + 30 K at
intervals of 5 K [34]. Moreover, considering the most land
covers, the averaged emissivity ε was divided into two types,
ε varying from 0.90 to 0.96 in a step of 0.1 and ε varying from
0.94 to 0.99 in a step of 0.1, and the emissivity difference 1ε

from -0.025 to 0.015 with a step of 0.005, were used in our
simulation. In addition, WVC was divided into six subranges
with an overlapping range of 0.5 g/cm2: [0–1.5], [1–2.5],
[2–3.5], [3–4.5], [4–5.5], [5–6.5]. Six view zenith angles
(VZAs) were considered: 0◦, 33.56◦, 44.42◦, 51.32◦, 51.2◦,
56.25◦ and 60◦. Subsequently, with atmospheric parameters
(atmospheric transmittance, upwelling radiance, and down-
welling radiance), LSTs, and emissivities as inputs, the
brightness temperature of the top-of-atmosphere (TOA) in
the two TIR bands were obtained. Finally, the algorithm

FIGURE 2. Spectral response functions of IR1 and IR2 channels of FY-2D
and those of channels 31 and 32 in MODIS.

FIGURE 3. Statistical relationship of the emissivities between the FY-2D
channels IR1 and IR2 and the MODIS channels 31 (a) and 32 (b),
respectively.

coefficients in Equation (2) were obtained using multiple
linear regressions.

In the split-window algorithm, the LSE and WVC are the
two key parameters, then we simulate these two parameters
in the following.

B. DETERMINATION OF LSEs
Based on the relationships of spectral response functions
between IR1 of FY-2D and band 31 of MODIS, IR2 of FY-
2D and band 32 of MODIS, the LSEs in bands IR1 and IR2
of FY-2D can be estimated from the LSEs in bands 31 and
32 of MODIS provided by the MODIS LST product. The
emissivities in the two split-window bands of MODIS and
FY-2D can be calculated using the integrals of the spectral
emissivity with the channel response functions, as shown in
Figure 2, over the spectral range of the bands. Therefore,
the statistical relationships of (3) and (4) between MODIS
bands and FY-2D bands are established by a linear regression
analysis as shown in Figure 3

εIR1 = 1.09 × εb31 − 0.0895 (3)

εIR2 = 0.919 × εb32 + 0.0775 (4)

where εIR1 and εIR2 are LSE in IR1 and IR2 of FY-2D, and
εb31 and εb32 are LSE in band 31 and 32 of MODIS
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C. DETERMINATION OF ATMOSPHERIC WVC
The atmosphericWVC can be derived from the transmittance
ratio of the split-window bands [20], [35]. Considering that
the transmittance ratio of the split-window bands is related to
the emissivity ratio of the split-window bands, thenWVC can
be simulated as:

WVC = C1+C2
εIR1

εIR2

∑N
K=1

(
TIR1,k − T IR1

) (
TIR2,k − T IR2

)∑N
K=1

(
TIR1,k − T IR1

)2
(5)

where C1 and C2 are the coefficients determined in Tang’s
research [20], the subscript k denotes pixel k , TIR1,k and
TIR2,k are the TOA brightness temperatures measured in
bands IR1 and IR2 of the k pixel, and T̄IR1 and T̄IR2
are the TOA mean channel brightness temperatures of the
N neighboring pixels of bands IR1 and IR2, respectively.

D. ASSESSMENT INDICATORS
In this paper, the mean error (bias) was used to evaluate the
system error of themodel, the root mean square error (RMSE)
was used to reflect the sampling standard deviation between
the retrieval value and the true value. The consistency index
describes the consistency between the retrieval value and the
true value, and is often evaluated by liner fitting. In this paper,
the coefficient of determination (R2) is used as the evaluation
index.

IV. RESULTS
A. SENSITIVITY ANALYSIS OF LSE AND WVC
Based on the approach of sensitivity analysis [30], [36], [37],
the influence of MODIS_LSE on FY-2D_LSE and the influ-
ence of FY-2D_LSE on WVC were analyzed, respectively in
Figure 4. With the error value of ± 0.01 for MODIS LSE, the
error estimates of FY-2D_LSE was within ±0.015, as shown
in Figure 4a. In addition, when the εIR1 and εIR2 errors are
[−0.01,0.01], the WVC errors are less than ±0.1g/cm2 and
±0.15g/cm2, respectively. This indicates that εIR2 is more
sensitive to WVC estimation, as shown in Figure 1b.

B. LST ESTIMATION USING FY-2D
The LST was retrieved from June 20, 2012 to July 20, 2012.
Figure 5 showed an example of retrieved LST in June 20,
2012. There is a relatively low value of LST in the oasis,
located in themiddle of study area.Meanwhile, the high value
LST appeared in the region (non-vegetated desert region)
around the oasis. The distribution of the retrieved LST is in
accordance with that of oasis and desert. The low LST was
observed in the oasis region (the middle part of Figure 4), the
high LST was observed in the desert region (surrounding part
of oasis).

C. VALIDATION OF LST ESTIMATION
In the study area, the retrieved LST was validated by the
ground measured LST at the four selected sites, namely crop,
wetland, desert 1 and desert 2 site, in Figure 6 and Table 2.
In general, the basis, RMSE and R2 were -3.48 K – 2.61 K,

FIGURE 4. Sensitivity analysis of LSE and WVC.

FIGURE 5. LST retrieval at 11:45, 12:45 and 13:45 (Beijing time)
for 6.20, 2012.

2.86 K – 6.21 K and 0.53 - 0.67, respectively. In details,
a more satisfactory accuracy of retrieved LST appeared at the
two vegetated sites (crop and wetland sites) with RMSE of
about 2.8 K. By contrast, there is a relatively lower accuracy
of retrieved LST at the two non-vegetated sites (two desert
sites) with RMSE of about 6.0 K. Obviously, even though
that the refined split-window algorithm has improved the
performance in the arid region, the LST still did not have a
satisfactory accuracy in the non-vegetated regions.

D. COMPARISON WITH THE LST ESTIMATION WITH
MODIS LST
Considered that the refined split-window algorithm is the
official algorithm of MODIS LST product, the retrieved LST
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FIGURE 6. Relationship between ground-measured and FY-2D-derived
LST at 4 sites: (a) crop site, (b) wetland site, (c) desert site1 and (d) desert
site2.

TABLE 2. Comparison between ground-measured and FY-2D-derived LST.

was compared with the MOD11 LST in the study region.
Eleven MOD11 LSTs were selected due to their availability
under clear sky during June 20 – July 20, 2012. The figure 7
showed the relationship of the retrieved LST and MOD11
LST at all 4 sites. The MODIS LST pixels were averaged
within a window size of 5 × 5 to match with the spatial
resolution of FY-2D. The R2 is 0.83 with the bias (−0.4K)
and RMSE (2.75K), respectively. The retrieved LST was in a
relatively good accordance with the MOD11 LST.

Figure 8 revealed the spatial distribution of the differences
between FY-2D-derived LST and MODIS LST product.
At the most of the moments, the underestimation appeared
in the oasis region (the middle part of the study area), and
an overestimation appeared in the desert region (around the
oasis). The amount of pixels with deference of less than
± 2 K accounted for about 40% of the total (Figure 9). And
the amount of pixels with difference of more than ± 6 K
accounted for less than 20% of the total.

V. DISCUSSION
In general, the coefficient of the refined split-window algo-
rithm was calibrated to match with FY-2D initially. The algo-
rithm can be used to retrieve LST and get a relatively accuracy
in the arid region, especially in the vegetated region. How-
ever, the ability of the algorithm for FY-2D still seems to be
improved in the desert region, even though the algorithm has

FIGURE 7. Relationship between MODIS and FY-2D-derived LST at all
4 sites.

FIGURE 8. Differences between FY-2D-derived LST and MODIS LST.

FIGURE 9. The percentage of Differences between FY-2D-derived LST and
MODIS LST.4.

improved the performance in the sandy region [7]. The similar
performance of the proposed coefficients was also studied
for the other Fengyun sensors, for example FY-2C, FY-2E
and FY-4A [38] The relatively unsatisfactory performance
in the desert region was also reported in those studies [38].
Although the performance of the proposed coefficients was
not so good because of the limitation of the quality of the
sensors, the goal of this study is to make use of the old sensors
and to try the best to get a relatively accurate performance.

Besides the limitation of the algorithm, there are several
reasons why there are discrepancies between the FY-2D
retrieved and MOD 11 LST. Firstly, the spatial resolution
of them are significantly different (FY-2D, 5km vs MOD11
1km). The heterogeneity of the pixel with low resolution is
obviously larger than that with high resolution, and it affect
possibly reliability of cross validation. Secondly, they are
not temporally matched exactly in the same moment. The
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discrepancy of the imaging moment can be up to 30 minutes,
and the difference of FY LST and MOD 11 LST can be
more than 10 K in extreme cases [39]. Thirdly, the weak
signal-to-noise ratio of the FY-2D data could also cause sig-
nificant discrepancies between FY-2D-derived and MODIS
LSTs [20], [22].

In the future, to improve the accuracy of LST retrieval
using FY-2D data, there are some potential approaches that
can be made use of: (1) the component LST retrieval or
the spatial downscaling of LST can be used to eliminate
the influence of the heterogeneity on accuracy of LST [29],
[40], [41], [42], [43]. (2)The temporal-effect normalization
model or the approach of temporal component decomposi-
tion can be introduced to match the imaging time of FY-2D
with that of MODIS [44], [45]. (3) The more reliable land
surface emissivity can be derived from other kind of sensors
to retrieve LST considered about the less dramatic variation
of emissivity during a period [31], [46]. It is believed that
those further improvements can boost the performance of our
algorithm for FY-2D in the future study.

VI. CONCLUSION
As the official algorithm of MODIS LST product, the refined
split-window algorithm was used to retrieve LST by MODIS
and was excepted to improve its performance in the arid
desert regions. To explore the applicability of that algorithm
for FY-2D, this paper initially simulated and calibrated the
coefficient of the refined split-window algorithm for FY-2D.
Specially, LSE in the two thermal infrared channels (IR1,
10.3-11.3 µm and IR2, 11.5-12.5 µm) is estimated from the
LSE in channels 31 and 32 of the MODIS product. In addi-
tion, the FY-2D LSEwas derived fromMODIS LSE based on
the linear fitting of the two thermal infrared channels between
FY-2D and MODIS.

Then the LSTwas retrieved and validated in the arid region.
Visually, the spatial pattern of retrieval was similar to that
of oasis and desert. At the ground sites, the retrieved LST
showed a relatively satisfactory accuracy with the RMSE
and R2 were 2.86 K – 6.21 K and 0.53 - 0.67, respectively.
A higher (lower) accuracy of retrieval was observed at the
vegetated (non-vegetated) sites with RMSE of 2.8K (6.0K).
In addition, the retrieval was also compared with theMOD11,
and revealed the general similarity between them with the
R2 of 0.83. There are about 40% of all pixel where less than
±2 K difference was observed. In addition, there is only less
than 20% of all pixels where more than ± 6 K difference was
existed. This paper is helpful to the exploration of the ability
of refined split-window algorithm for Chinese Geostationary
Meteorological Satellite and the production of hourly LST
datasets.
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