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ABSTRACT Compressed sensing magnetic resonance imaging (CS-MRI) has made great progress in
speeding up MRI imaging. The existing non-local self-similarity (NSS) prior based CS-MRI models mainly
take similar image patches as the processing objects, this patch-level non-local sparse representation method
can not make full use of the self-similarity among pixels in the image, so it can not recover the weak
edge information in the undersampled MRI image well and there will still be some artifacts. In this paper,
a pixel-level non-local method based compressed sensing undersampled MRI image reconstruction method
is introduced. First, zero filling is performed on the undersampled k-space data to obtain a full-size 2D signal,
and IFFT is performed to obtain a preliminary reconstructed MRI image. Block-matching and row-matching
are successively performed on the reconstructed image in turn to obtain similar pixel groups, so as to
establish a better sparse representation under the non-local self-similarity (NSS) prior. The separable Haar
transform is performed on similar pixel groups, and the hard threshold of the transform coefficients and
Wiener filtering can effectively remove the artifacts introduced in the undersampled reconstructed MRI
images. The proposed pixel-level non-local iterative thinning model based on compressed sensing theory
can ensure the removal of artifacts and better restore the details in the image. The qualitative and quantitative
results under different undersampling modes and undersampling rates prove the advantages of the proposed
method in subjective visual quality and objective evaluation (peak signal to noise ratio and structure similarity
index). The performance of this method is not only superior to the existing traditional CS-MRI methods, but
also competitive with the existing deep neural network (DNN) based models. The code will be released at
https://github.com/HaoHou-98/PNCS.

INDEX TERMS Pixel-level non-local, compressed sensing, undersampled MRI image reconstruction.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is a widely used medi-
cal clinical imaging modality. However, it is usually limited

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masucci .

in the imaging speed by its k-space (i.e., Fourier space)
acquisition data mode. In the early stages, some accelerated
techniques such as fast sequence-based algorithms [1], [2],
[3], [4] and parallel imaging (PMRI)-based algorithms [5],
[6] must utilize full k-space coverage that satisfies the
Nyquist-Shannon sampling criterion. However, the above full
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sampling methods depend more on the quantity and per-
formance of the acquisition coils, showing limited poten-
tial for accelerating MRI. Directly reducing the sampling
rate can significantly speed up imaging, however, reduction
of the sampling rate inevitably introduces aliasing artifacts
in the reconstructed images, which significantly affects the
diagnosis of the doctors. Thus, a widely studied problem is
how to reconstruct MRI images from undersampled k-space
data that preserves as much information as possible from
fully-sampled data.

In the past two decades, the compressed sensing theory has
provided strong technical support for the accelerated recon-
struction of MRI image. In the CS theory, sparsity is a prereq-
uisite for reconstructing undersampled signals [7]. Existing
CS-MRImethods usually explore the sparse representation in
a specific transform domain, such as total variation (TV) [8],
[9], [10], discrete wavelet transform (DWT) [11], [12], [13],
and discrete cosine transform (DCT) [14], [15], [16], etc.
Additionally, sparse representation can be learned directly
from the data using dictionary learning [17], [18], [19].
Once the desired sparse representation matrix is obtained,
a nonlinear optimization algorithm can be used to obtain
better reconstruction results [7], [9], [20], [21]. However, the
above-mentioned conventional CS-MRI methods are usually
difficult to capture complex image details using predefined
or fixed sparse transformations, e.g., the TV-based meth-
ods may introduce staircase artifacts [22], and the wavelet
transform-based methods may introduce ring artifacts [23].
To alleviate the above problems, some dictionary learning-
based methods [17], [18], [19] learn sparse representation
directly from the data. Besides, [24] proposed using the
NSS prior to image patches to construct sparse transforma-
tion, nevertheless, the patch-level NSS methods still cannot
achieve satisfactory results in the reconstruction process of
contour or texture regions.

Recently, the powerful deep neural networks (DNNs) have
also been widely used in CS-MRI [23], [25], [26], [27],
[28], [29], [30], [31], [32], [33]. According to the learn-
ing method, DNN-based CS-MRI models can be roughly
divided into supervised [23], [25], [26], [27], [28], [29]
and unsupervised [30], [31], [32], [33] learning models.
Among supervised learning models, the initial deep end-
to-end (ETE) models introduced the image segmentation
model U-Net [34] to the task of undersampled MRI image
reconstruction and achieved promising performance. Later,
the self-attention mechanism was adopted to obtain higher
visual quality reconstruction results [27]. However, the ETE
models usually require large sample sizes to train networks.
In addition, some supervised models based on Unrolled
Optimization (UO) [26], [28] try to combine DNNs with
traditional iterative-based CS algorithms to constrain image
reconstruction by learning regularization methods, however,
its iterative reconstructionmethod requiresmore computation
time [35]. The supervised learning models usually require
large amounts of paired data to establish a mapping between

the undersampled to fully sampled image domains, however,
the paired data is challenging to obtain in the real world,
if not impossible. To alleviate this problem, unsupervised
learning models [30], [31], [32], [33], which proposed a new
solution using UO and alternately optimizing reconstructed
images and model parameters, have achieved impressive per-
formance. However, whether it is a supervised or unsuper-
vised model, they are usually more limited in generalization
ability than conventional CS-MRI methods, and they may not
adequately consider the sparsity of the data.

In this paper, pixel-level NSS prior [36] to CS-MRI is
introduced. Compared with previous patch-based NSS priors,
the self-similarity among pixels is beneficial to constructing
better sparse transformations. Besides, we design a pixel-
level non-local refinement model to utilize pixel-level NSS
prior to an iteratively refined model and reconstruct under-
sampled MRI images. The proposed model can achieve satis-
factory undersampledMRI image reconstruction results, both
objective evaluation and subjective visual quality are better
than existing methods.

II. METHODS
A. BACKGROUND OF CS-MRI
The approximate discrete linear system of the observation
model for undersampled MRI image reconstruction is as the
following:

y = Ux + ε (1)

where x ∈ CN represents the desired k-space data which
needs to be recovered, U ∈ CM×N (M ≪ N ) is the com-
pressed sensing matrix. For compressed sensing MRI, U
can be the undersampling operation on x ( Fourier trans-
form spectrum of the MRI image ) in various undersampling
modes [7], y ∈ CM is the actual undersampled k-space data,
and ε ∈ CM is the error between undersampled Fourier
spectrum and the Fourier spectrum of reconstructed image.
The classic CS-MRI reconstruction attempts to solve the
following problem [7]:

x̂ = argmin
x

{
∥ψT x∥1 +

λ

2
∥y−Ux∥22

}
(2)

where ψT is a sparsity transform of x, ∥ · ∥1 being the
ℓ1-norm is used to represent the sparsity of ψT x in com-
pressed sensing theory, and ∥ · ∥2 is the ℓ2-norm which
enforces the fidelity of the reconstruction to the measured
k-space data. The regularization parameter λ determines the
trade-off between the sparsity and the data fidelity.

From a Bayesian perspective, sparsity prior is of central
importance for CS-MRI. The existing CS-MRI methods are
more likely to use predefined sparse transformations to repre-
sent images sparsely. However, the reconstruction results of
these methods always introduce too many artifacts. To allevi-
ate this problem, PANO [24] attempts to exploit patch-based
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FIGURE 1. Flowchart of the proposed PNCS iteration refinement undersampled k-space data reconstruction. Where k (k = 1, · · · , K ) means the k-th step
iteration. The black line in the figure represents the initial step, the green line represents the iteration procedure.

non-local self-similarity priors to construct sparse transfor-
mations, however, it tends to introduce artifacts on the con-
tour/texture of the reconstruction results. To fully capture the
self-similarity of pixels in an image, we go one step further to
introduce a pixel-level self-similar prior to CS-MRI. We have
constructed a better sparse transformation and achieved better
performance than existing CS-MRI methods.

B. PIXEL-LEVEL NON-LOCAL ITERATION REFINEMENT
MODEL
1) OVERVIEW
Given an undersampled k-space data Du ∈ CM , as suggested
in [24], we use zero-filling as a pre-processing to complete
data, and get a full size 2-D k-space data D0 ∈ C

√
N×

√
N .

As shown in Fig 1, we implement preliminary reconstruction
on the zero-filled k-space data D0 by inverse fast Fourier
transform (IFFT), thus obtain a preliminary reconstructed
MRI image I0, which usually introduce strong aliasing arti-
facts. Once we obtained I0, we perform pixel-level non-local
refinement (the detailed implementation will be introduced
in §II-B2) to obtain the refinedMRI image I k (k ∈ 1, · · · , K),
which can restore the undersampled signal and eliminate
artifacts, as well as ensure the sparsity (the ℓ1-norm part in
Eq. 2). Then I k is transformed to k-space data Dk by fast
Fourier transform (FFT).

We always supplement the restored data by the k-th itera-
tion Dk to the zero-filled position of k-space D0, which is to
maintain the fidelity of the really sampled data (i.e. minimize
the ℓ2-norm part in Eq. 2). For this purpose, we generate a
map M according to the zero-filled undersampled k-space
data D0 by the following mapping function f :

f =

{
0, v ̸= 0;
1, v = 0.

(3)

where v is the element value of the original undersampled
k-space data D0.

In each step iteration, we use a dot product between the
refined k-space data Dk and the map M to obtain the desired
residual k-space dataMDk , and add the residual to the original
undersampled k-space data D0. Finally, we implement IFFT
to obtain the reconstructed image Ik which will be used as the
input of the next iteration.

2) PIXEL-LEVEL NON-LOCAL REFINEMENT
The proposed pixel-level non-local refinement model
includes the following four steps: 1) Patch-matching, 2) Row-
matching, 3) Bi-Hard Thresholding-Based Basic Refinement,
and 4) Improved Wiener Filtering-Based Final Refinement.
The detailed implementations are described below.

a: PATCH-MATCHING
As shown in Figure 2, we implement patch-matching to
obtain a certain number of similar patches in a given under-
sampled reconstruction MRI image x ∈ Rh×w. A refer-
ence image patch Br with the size of

√
n ×

√
n in the

image according to a given sliding step size is selected (We
assume that there are N reference image patches are selected,
the number of reference patches approximately equals to
hw
step2

). We implement patch-matching by Euclidean distance
between the reference image patchBr and each of other image
patches in a neighbor with the size ofW ×W , then select the
m − 1 smallest Euclidean distance with the reference image
patch Br as the most similar ones to the reference patch Br ,
thus obtain a similar patch group which has altogether m
image patches. The Euclidean distance is calculated as the
following:

DriB = ∥Br − Bi∥22 , (i = 1, · · · ,W ×W ) (4)

Each image patch with the size of
√
n×

√
n is stretched into

a column vector Mb,i ∈ Rn (i = 1, . . . ,m). Then all Mb,i are
stacked into a new matrixMb = [Mb,1, . . . ,Mb,m] ∈ Rn×m.
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FIGURE 2. Illustration of the similar pixel grouping procedure.

b: ROW-MATCHING
In order to effectively explore the pixel-level self-similarity
in the image, we also perform row-matching in all of the
Mb (see Figure 2). We use the reference row M r

b (the r-th
inMb) ∈ (Rm)T to calculate the Euclidean distance between
each of other rows, the smallest distance valuemeans themost
similar row, we can obtain similar q−1 rows by this method,
then put together M r

b with the most similar q − 1 rows to
construct the similar pixel groupMp ∈ Rq×m. The Euclidean
distance between the reference row and each of other rows is
also calculated as the following:

d rjB =

∥∥∥M r
b −M j

b

∥∥∥2
2
, (j = 1, · · · , n) (5)

c: BI-HARD THRESHOLDING-BASED BASIC REFINEMENT
As shown the upper part in Figure 3, we implement a sep-
arable Haar transform on each similar pixel group Mp ∈

Rq×m [37], [38]. The 2-D transform on the non-local similar
pixel group Mp obtains the transformed coefficient matrix
Cp ∈ Rq×m as the following:

Cp = HlMpHr (6)

where the two 2-D Haar transform matrices Hl ∈ Rq×q and
Hr ∈ Rm×m are both orthogonal.

The fully similarity on each similar pixel group ensures
the sparsity of the transformed spectrum Cp, so we can use a

hard-thresholding strategy to effectively remove the artifacts.
The proposed undersampled MRI image refinement recon-
struction is like image denoising, however, the noise level is
unknown in advance, so we use a set of noise level which take
values according to the decreasing logarithmic spacing vector
σs in each step iteration:

Ĉp = Cp ⊙ Xh (7)

where ⊙ means element-wise production, Xh ∈ Zq×m is
an indicator function which is used to the coefficient hard-
thresholding. The values of Xh are as follows:

Xh(i, j) =


1,

∣∣Cp(i, j)∣∣ ≥ τσs;

0,
∣∣Cp(i, j)∣∣ < τσs.

(i = 1, · · · , q; j = 1, · · · ,m.)

(8)

where τ is the hard-thresholding parameter. Additionally, the
fully similarity also ensures all the coefficients excepting
for the 1-st row and the 1-st column ones are all from the
artifacts. Tomore effectively remove the artifacts, we utilize a
structural hard-thresholding strategy, i.e., completely set 0 to
all the coefficients in the high frequency regions of Ĉp:

C̃p = Ĉp ⊙ Xs (9)

where Xs ∈ Zq×m is also an indicator function which is
used to the structural hard-thresholding. The values of Xs are
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FIGURE 3. Illustration of the pixel-level non-local method based MRI refinement.

as follows:

Xs(i, j) =

{
0, i = 2, · · · , q, j = 2, . . . ,m;

1, others.
(10)

The inverse 2-D separable Haar transforms on C̃p is used to
obtain the basicly estimated similar pixel group M̃p:

M̃p = HT
l C̃pH

T
r (11)

where HT
l ∈ Rq×q and HT

r ∈ Rm×m are inverse matrices of
2-D Haar transform matrices Hl and Hr due to the orthog-
onality, respectively. Finally, we aggregate all the basicly
estimated pixel groups {M̃p}

N
b=1 to obtain the basicly refined

MRI image reconstruction result Ĩk .

d: IMPROVED WIENER FILTERING-BASED FINAL
REFINEMENT
In the first stage, the reconstructed MRI image Ĩk is only
a basic refinement of the preliminary reconstructed MRI
image. In this stage (see the lower part of Figure 3), the basic
refinement result is used as a reference image to the Wiener
filtering to further refine reconstruction results. To better
remove artifacts and preserve more details, we employ an
improved Wiener filtering strategy by combining the basicly
refined image Ĩk with the previous iteration result image I k−1
to better restore image detail signals:

Ĩkc = αĨk + (1 − α)I k−1 (12)

where I k−1 is the reconstructed MRI image of the previous
iteration. Ĩkc is the combining of I k−1 and Ĩk , which is used
as the reference image in the actual implementation of the
Wiener filtering. We still use the predefined noise level σs

to perform an improved Wiener filtering process on the two
coefficients matrices C̃w

p and C
w
p , which are obtained by

the 2-D separable Haar transform on similar pixel groups
of basicly refined result image Ĩk and the previous iteration
result image I k−1, respectively. We implement the improved
Wiener filtering:

˜̃Cw
p (i, j) =

(
αC̃w

p (i, j) + (1 − α)C
w
p (i, j)

)2
(
αC̃w

p (i, j) + (1 − α)C
w
p (i, j)

)2
+ (σs)2

C
w
p (i, j)

(13)

where i, j means the i-th row and the j-th column element of
the corresponding matrices. It is to be noted that the Eq. 13
has a little bit difference from the classic Wiener filtering,
we add a part of the previous step coefficients to better
preserve the real signals. Considering that there are some real
signals in C̃w

p have been removed by the basic refinement
stage, we use αC̃w

p + (1 − α)C
w
p to take place of C̃w

p of the
traditional Wiener filtering method to avoid excessive detail
loss. The inverse 2-D separable Haar transform on ˜̃Cw

p is used
to obtain the final reconstructed pixel group M (p,k) in the
k-th iteration.We aggregate all the reconstructed pixel groups
{M (p,k)}

n
p=1 to obtain the k-th iteration reconstructed MRI

image I k .

3) ALGORITHM PSEUDOCODE
The proposed pixel-level non-local method based com-
pressed sensing magnetic image reconstruction model
includes two parts: pixel-level non-local refinement (PNR)
and compressed sensing (PNCS). The detailed two algo-
rithm pseudocodes is shown in Algorithm 1 and 2,
respectively.
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Algorithm 1 PNR: Pixel-Level Non-Local Refine-
ment
Data: The k-th pixel-level non-local refinement input

image I k ∈ R
√
N×

√
N

Result: The k-th refined image ˜̃Ik ∈ R
√
N×

√
N

Function PNR(I k , σ):
(1) Patch matching (Eq. 4): Acquiring similar
patch groupMb ∈ Rn×m from I k ;
(2) Row matching (Eq. 5): Acquiring similar pixel
group Mp ∈ Rq×m;
(3) 2-D transform and Bi-Hard thresholding
(Eq. 6∼Eq. 11): Acquiring basicly refined image
Ĩk ;
(4) Improved Wiener-filtering (Eq. 12∼Eq. 13):
Acquiring finally refined image ˜̃Ik in the k-th
iteration;

return ˜̃Ik .

Algorithm 2 PNCS: Pixel-Level Non-Local Com-
pressed Sensing
Data: The reconstructed zero-filled MRI image

I0 ∈ R
√
N×

√
N

Result: The reconstructed MRI image I ∈ R
√
N×

√
N

Function PNCS(I0, σ , M, stepnum, iternum):
I1 = I0;
for s = 1 → stepnum do

for l = 1 → iternums do
(1) I s,l = PNR(I s, σs), (§II-B2);
(2) FFT (I s,l) = FFT (I0) + FFT (I s,l) ⊙M ,
(Eq. 3);
(3) I s,l = IFFT (FFT (I s,l)), (§II-B1);
(4) I s = I s,l ;

I = I s;
return I .

4) COMPLEXITY ANALYSIS
The proposed PNCS model includes two parts: (1) In §II-B1,
the complexity of FFT and IFFT reconstruction is
O(hwlog(hw)). (2) For §II-B2, in each iteration, the complex-
ity of stage (1) and stage (2) is O(NW 2n), the complexity of
stage (3) and (4) is O(Nnqm). Since we haveW 2 > step2 and
n > log(hw), the complexity of our PNCS is O(KNW 2n),
where K means the total number of iterations.

III. RESULTS
The actual implementation of the proposed PNCS model
will be introduced in detail, including the data collection,
parameters, and evaluation metrics in §III-A.We then present
the comparison with the state-of-the-art CS-MRI methods on
differentMRI image datasets in §III-B1 both on objective and
subjective evaluation.

A. IMPLEMENTATION DETAILS
1) DATA COLLECTION
a: DATASETS
We conduct comparison experiments on simulated under-
sampled MRI image reconstruction with other state-of-the-
art methods on the fastMRI [41]1 single-coil knee dataset
and multi-coil brain dataset, respectively. Among them, the
single-coil knee dataset consists of two parts, coronal proton
density with (PDFS) or without (PD) fat saturation, while
the multi-coil brain dataset consists of four parts, AXT1,
AXT2, AXT1POST, and AXFLAIR. For each part of the
single-coil knee and the multi-coil brain dataset mentioned
above, 6 volumes were randomly selected for testing. Note
that, in order to avoid the influence of less informative slices
on the accuracy of the overall results, we removed the first
5 slices and the last 5 slices of each volume in the single-coil
knee dataset, and only removed the last slice in the multi-coil
brain dataset.

b: MASKS
We test undersampled data on Cartesian sampling method.
Each mask simulates 25% and 12.5% of the original k-space
data retained, representing 4× and 8× acceleration, respec-
tively. According to the settings in fastMRI [41], the mask
retains full sampling in the middle part and random sampling
in the rest. For the 4× accelerated reconstruction task, the
central fully sampled area of the mask used accounts for 8%
of all k-space lines, while in the 8× accelerated reconstruc-
tion task, the central fully sampled area accounts for 4%.

main

2) PARAMETERS
The pixel-level non-local refinement stage includes 6 main
parameters in basic refinement and final refinement, respec-
tively. Where patch size is

√
n, window size for searching

similar patches isW , number of similar patches is m, number
of similar pixel row is q, regularization parameter is α, hard-
thresholding parameter is τ , and reference patch sliding step
size is Nstep. The concrete parameter values of steps 1) - 3) in
§II-B2 are as follows,

√
n = 13, W = 23, m = 16, q = 4,

τ = 6.0, and Nstep = 12. In the 4) step in §II-B2, we set
√
n = 21, W = 13, m = 64, q = 8, α = 0.5, and Nstep =

21. The maximum noise standard deviation σ1 = 80 in the
first step iteration, but the minimum noise standard deviation
is just σK = 1.33, others σk take the values respectively
according to the decreasing logarithmic spacing vector. The
number of inner cycles of each iteration according to the
minimum value smin = 5 and the maximum value smax =

21 takes the increasing logarithmic spacing vector values.
Where the number of maximum iteration K = 100.

3) METRICS
To validate the performance of different methods, we calcu-
late the Peak Signal-to-Noise Ratio (PSNR) and Structural

1https://fastmri.med.nyu.edu/
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TABLE 1. Quantitative results (PSNR and SSIM) of a comparative study using 4× and 8× accelerations on the fastMRI single-coil knee dataset. The best
and second best results are highlighted in red and blue, respectively.

TABLE 2. Quantitative results (PSNR and SSIM) of a comparative study using 4× and 8× accelerations on the fastMRI multi-coil brain dataset. The best
and second best results are highlighted in red and blue, respectively.

Similarity Index (SSIM) [42] for all reconstructed images.
We take the reconstructed fully sampled MRI images as
the ground-truth. Note that, considering that the inter-image
calculation may ignore the overall image structure.We follow
the fastMRI [41] recommendation to calculate PSNR and
SSIM in terms of volumes. The PSNR value is calculated as
the following:

PSNR(v̂, v) = 10 log10
max(v)2

MSE(v̂, v)
(14)

where v̂ is the reconstructed volume, v is the ground truth
volume, max(v) is the largest entry in the ground truth volume
v,MSE(v̂, v) is the mean square error between v̂ and v defined
as 1

n

∥∥v̂−v∥∥22, and n is the number of entries in the ground
truth volume v. The higher value of PSNR indicates the better
reconstruction.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
1) RESULTS ON SINGLE-COIL KNEE DATA
a: COMPARISON METHODS
We compared our PNCS model with conventional CS-MRI
methods, including TV [7], and the state-of-the-art methods,
including BM3D-AMP [39], PANO [24], U-Net [34], and
MC-DDPM [40]. Here, except for the random noise filling
reconstruction used in the BM3D-AMP [39] to initialize, the
other methods and our PNCS model are initialized with the

baseline zero-filling (ZF) reconstruction of the undersampled
k-space data.

b: RESULTS
Table 1summarizes the PSNR and SSIM scores of the recon-
structions obtained by conventional CS-MRI and some repre-
sentative state-of-the-art methods on the fastMRI single-coil
knee datasets. The 4× accelerated reconstruction results
show that the simple zero-padded images do not achieve
satisfactory PNSR or SSIM scores for PD or PDFS images.
TV [7] shows good performance in both PD and PDFS
reconstruction. The BM3D-AMP [39] achieves significant
improvement compared to the baseline ZF, but it can only
achieve similar performance to TV. The patch-based non-
local operator proposed by PANO [24] significantly improves
the performance of undersampled MRI reconstruction, how-
ever, it is still slightly weaker than our PNCS model.
U-Net [34] does not obtain very satisfactory results in the
4× task. Although MC-DDPM [40] achieves a high PSNR
score, the SSIM score is not very high in comparison. In con-
trast, our PNCS model achieves the highest scores in PD
and PDFS image reconstruction tasks. The 8× accelerated
reconstruction results show that the PSNR and SSIM scores
of all methods have decreased significantly due to the further
reduction of the k-space signal. It is worth noting that the
performance of the DNN-based methods (U-Net [34] and
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FIGURE 4. Reconstructions of PD images from the fastMRI single-coil knee dataset at 4× acceleration. The 1-st and 3-rd rows show the
reconstruction results of different methods, respectively. The 2-nd and 4-th rows show the corresponding error maps.

MC-DDPM [40]) in the 8× accelerated reconstruction task
is significantly improved, however, the overall performance
of our PNCS method is still competitive to these DNN-based
methods.

The visually qualitative results of 4× accelerated recon-
structions of PD and PDFS images are shown in Figure 4
and Figure 5, respectively. Due to space limitations, the 8×
accelerated reconstruction results for PD and PDFS images
will be presented in the supplementary material. One can
see that the reconstructions obtained by the baseline ZF

contain many artifacts, covering most of the details of the
MRI image. TV [7] can eliminate some artifacts in the
reconstructions, however, the reconstructions tend to be over-
smoothed. BM3D-AMP can maintain good structural consis-
tency but unsatisfactory performance on artifact reduction.
The reconstructions of PANO [24] appear to have fewer
artifacts as a whole, however, the edge and detail information
is not well preserved. U-Net [34] achieves decent results,
however, as can be seen from the corresponding error maps,
its performance is still not better than our PNCS model.
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FIGURE 5. Reconstructions of PDFS images from the fastMRI single-coil knee dataset at 4× acceleration. The 1-st and 3-rd rows show the
reconstruction results of different methods, respectively. The 2-nd and 4-th rows show the corresponding error maps.

The results obtained by MC-DDPM [40] are acceptable in
subjective visual quality, however, the corresponding error
maps show a significant deviation from the ground-truth.
In contrast, our PNCS model shows the best results on both
subjective visual quality and corresponding error maps.

2) RESULTS ON MULTI-COIL BRAIN DATA
a: COMPARISON METHODS
In this study, we cancel the comparison with MC-DDPM
because it lacks a pre-trained model for the multi-coil brain

dataset, and we cannot retrain themodel due to computational
constraints. The other methods compared are the same as
those described in §III-B1.

b: RESULTS
In the results of the 4× accelerated reconstruction, it can be
seen that the baseline ZF still exhibits the weakest perfor-
mance. The overall performance of the TV [7] is acceptable,
but the reconstruction results of the AXT2 images achieve
slightly lower scores. The reconstruction performance of
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FIGURE 6. Reconstructions of AXT1 images from the fastMRI multi-coil brain dataset at 4× acceleration. The 1-st and 3-rd rows show the reconstruction
results of different methods, respectively. The 2-nd and 4-th rows show the corresponding error maps.

BM3D-AMP [39] for AXT2 images is slightly more robust
than that of TV [7], however, the reconstruction perfor-
mance of other kinds of sequence images is still not better
than that of TV, which is especially obvious in the recon-
struction of AXFLAIR images. PANO [24] achieves satis-
factory scores overall, but the reconstruction performance
for AXT2 and AXFLAIR images is still not better than
U-Net. The overall performance of U-Net [34] is better than

that of PANO [24], but it exhibits some disadvantages in
reconstructing AXT1POST images. In contrast, our PNCS
method achieves the highest PSNR and SSIM scores in all
four sequence image reconstruction tasks, shows relatively
better performance then each of the comparison methods.
The overall performance ranking of the different methods
of the 8× accelerated reconstruction is similar to the results
of 4× accelerated reconstruction. The difference is that the
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FIGURE 7. Reconstructions of AXT2 images from the fastMRI multi-coil brain dataset at 4× acceleration. The 1-st and 3-rd rows show the
reconstruction results of different methods, respectively. The 2-nd and 4-th rows show the corresponding error maps.

overall performance of PANO [24] has a significant gap with
U-Net [34]. U-Net [34] achieves the highest PSNR score
in the reconstruction task of AXFLAIR images, however,
in general, our PNCS method still shows the most robust
performance.

The qualitative results of the visual quality of the AXT1,
AXT2 image reconstruction results are shown in Figure 6,
Figure 7, respectively. Due to space limitations, the 4× accel-
erated reconstruction results for AXT1 andAXT2 images and

the 8× accelerated reconstruction results for AXT1, AXT2,
AXT1POST, and AXFLAIR images are all presented in the
supplementary material. It can be seen that ZF not only fails
to preserve the image details but also the artifacts are not
effectively removed in the reconstructed images. Its corre-
sponding error maps produce very noticeable deviations at
the edges of the image. Although the reconstruction results of
TV [7] can remove some artifacts, there is still much room for
improvement in preserving image details. The reconstruction
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results of BM3D-AMP [39] are slightly better than TV, but
the image details are not well preserved either. PANO [24]
achieves good results in artifacts removal and details preser-
vation, however, its results are still not better than our PNCS
model. U-Net [34] removes artifacts well, however, its results
still lack some details compared to the results obtained by our
PNCS method, which can be seen from the corresponding
error maps. In contrast, our PNCS effectively removes arti-
facts introduced by undersampling reconstruction and outper-
forms other methods in detail preservation.

IV. DISCUSSION
In the proposed pixel-level non-local method based com-
pressed sensing undersampled MRI image reconstruction
model, the pixel-level non-local method is used to remove
the artifacts gradually in each iteration. The main goal of
the original non-local idea is to be used for image denois-
ing [43], [44], [45]. PANO [24] proposed a patch-level non-
local method based undersampled CS-MRI reconstruction,
however, the artifacts introduced by the undersampling recon-
struction usually tends to be mistaken for the real signals,
so effectively removing artifacts inevitably over-smoothing
image details.

In recent years, manyDNN-basedmethodswere developed
to deal with the undersampled MRI image reconstruction
problem. Although these methods can achieve competitively
reconstruction results, they have a common problem that each
kind of undersampling mode should be trained respectively,
this limits the generalization of these methods.

Although, the pixel-level non-local self-similarity has
been proposed to deal with the image denoising problem
initially [36], especially for real-world image denoising.
As described in this method [36], the noise in a real-world
image is generally not Gaussian distribution ones, the noise in
real- world images appear plaques or line-like, the procedure
of block-matching and row-matching operations, especially
the row-matching can effectively change this kind of noise to
pseudo-Gaussian noise. Inspired by this opinion, the artifacts
in undersampled reconstruction images also looks like the
above mentioned noise, so we propose to apply this idea
to deal with the undersampled MRI image reconstruction
problem.

We use fewer and smaller parameters in the proposed
method than the pixel-level denoising method [36]. In each
iteration refinement step, we remove the iteration steps and
just implement one step hard-thresholding and one step
Wiener filtering in each iteration refinement step. The utiliza-
tion of the original sampled signals also plays an important
role, if this part of the signal is not reused in each iteration,
the reconstructed image will be gradually smoothed, and the
main details in the image will be lost.

Despite achieving desirable performance, our study has
several limitations. Compared with the DNN-based methods
optimized by GPU acceleration, the proposed method needs
a much longer running time. There is a lack of optimal iter-
ation times for different images and undersampling modes.

We have tried to solve this problem with ℓ0-norm or ℓ1-
norm of the reconstructed MRI image, but they are not very
successful. It is not practical to use PSNR or SSIM values
to determine the number of iterations. Fortunately, through a
large number of experiments, we found that almost all images
and sampling modes can achieve sub-optimal results using
the proposed algorithm for 30 iterations. All our experimental
results are based on this number of iterations. In the future,
we will further research these problems to reduce the algo-
rithm complexity and find an optimal iteration termination
rule.

V. CONCLUSION
In this study, we propose an iterative refinement recon-
struction model based on a pixel-level non-local method for
CS-MRI reconstruction. This method can better explore the
non-local self-similarity of images than the patch-level non-
local method, and thus better represent the sparsity of MRI
images. Enhanced sparsity representation can help remove
artifacts in undersampled MRI image reconstruction. The
main contribution of this method is that, compared with
similar patch grouping methods, similar pixel grouping can
better separate artifacts from real signals. In fact, this method
can change artifacts into pseudo-random noise. Simple Haar
transform can further effectively separate noise from the real
signal, so this method can better achieve undersampled MRI
image reconstruction than traditional patch-level non-local
methods.
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