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ABSTRACT With the development of cognitive science and brain science, brain-computer interface
technology can use Electroencephalogram (EEG) signals to better represent the inner changes of emotions.
In this paper, A video-induced emotional stimulation experimental paradigm was designed, and the EEG
signals of 15 hearing-impaired subjects under three emotions (positive, neutral, and negative) were col-
lected. Considering the flow diffusion properties of EEG signals, we used the diffusion effect based on
horizontal representation and vertical representation forms to obtain the spatial domain features. After EEG
preprocessing, the differential entropy feature (DE) in the frequency domain is extracted. The frequency
domain features of 62 channels are delivered to two Bi-directional Long Short-Term Memory (BiLSTM)
to obtain spatial domain features of horizontal and vertical representations respectively, and then two kinds
of domain features are fused by the residual network. The attention mechanism is applied to effectively
extract emotional representational information from the fused features. To solve the cross-subject problem of
emotion recognition, the domain adaptation method is utilized, and a center alignment loss function is applied
to increase the distance of inter-class and reduce the distance of intra-class. According to the experimental
results, the average accuracies of 75.89% (subject- dependent) and 69.59% (cross-subject) are obtained.
Moreover, the validation was also performed on the public dataset SEED, achieving average accuracies of
93.99% (subject-dependent) and 84.22% (cross-subject), respectively.

INDEX TERMS EEG signals, emotion recognition, domain adaptation, deep learning.

I. INTRODUCTION

Emotion is a complex psychological and physiological activ-
ity that occurs when people are confronted with objective
things. It affects people’s cognitive and decision-making abil-
ities [1]. Emotion recognition is an interdisciplinary subject
that integrates several types of disciplines such as computer
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science, psychology, cognitive science, and medicine. The
main purpose of emotion recognition is to achieve a more
comprehensive intelligent interaction by giving machines
the ability to recognize and understand emotions, which in
turn can lead to a better human-computer interaction (HCI)
experience [2].

Psychologists have used two emotion models to charac-
terize different affective states, namely the discrete model
and the dimensional model [3]. The discrete emotion model
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focuses on assessing emotions by roughly classifying them
into several common emotional states, while the continuous
emotion model focuses on mapping emotions to different
dimensions. In emotion recognition, researchers mainly use
discrete models. Ekman et al. [4] proposed six basic emotion
states, namely anger, fear, sadness, disgust, surprise, and joy.
Based on this, Plutchik et al. [5] added anticipation, trust, and
accepted for nine categories of basic emotion states.

Emotion recognition is a fundamental problem in affective
computing, and its tasks are divided into two main types:
emotion recognition based on non-physiological signals and
emotion recognition based on physiological signals [6]. Non-
physiological signals are mainly used for emotion recognition
tasks using facial expression images [7], body poses [8],
text [9], speech [10], etc. This type of approach is mainly used
in the field of HCI, where it is hoped that the robot can deter-
mine the current emotional state by these common signals
obtained in life to obtain a more intelligent and harmonious
HCI environment. However, in practice, it has been found that
such non-physiological signals are easily controlled by sub-
jective subjects, and even the opposite emotion recognition
results are obtained [11].

Related studies have shown that, compared to non-
physiological signals, physiological signals such as EEG [12],
Electromyogram (EMG) [13], Electrocardiogram (ECG) sig-
nals [14], etc., are spontaneously generated by multiple
organs of the body after receiving relevant stimuli. These
signals are not easily influenced by subjective will. Among
them, EEG signals have been widely used in the field of
emotion recognition because they are collected directly from
the surface layer of the scalp, reflecting changes in the central
nervous system, and having richer emotional information.

At this stage, there are two main steps for emotion recogni-
tion of EEG signals, feature extraction, and feature classifica-
tion [15]. The feature extraction methods are mainly divided
into the time domain, frequency domain, time-frequency
domain, and spatial domain [16]. Yang et al. [17] used
first-order difference and second-order difference for emo-
tion recognition and found that the frontal, temporal, and
occipital lobes have higher energy in emotional activities.
Frequency domain information is mainly used to describe the
details of the signal from the perspective of the frequency
domain, where Power Spectral Density (PSD) is a widely
used method for frequency domain features [18]. Luetal. [19]
proposed a time-frequency domain feature, which focuses
on calculating the differential entropy (DE) feature at five
different frequency band frequencies. Li et al. [20] proposed
a space-time hypergraph convolutional network to explore
spatial and temporal correlations in specific emotional states,
and found that spatial domain information can effectively
improve the accuracy of emotion recognition.

As the excellent performance of deep learning in the
fields of image processing and natural language processing,
it has attracted the attention of many emotion recogni-
tion researchers [21]. Researchers have started to use deep
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learning models for emotion classification tasks and achieved
good results, such as convolutional neural networks [22],
deep belief networks [19], graph convolutional neural net-
works [24], and domain adversarial networks [25]. Although
the current research can classify emotions to a certain extent,
EEG signals have the characteristics of circulation and inter-
channel interaction, so the influence of these factors should
be considered in the research.

For hearing-impaired subjects, the lack of hearing function
may easily lead to problems such as emotional expression dis-
orders and emotional cognition deviations [26]. In this paper,
we collected the EEG signals of 15 hearing-impaired subjects
when they were watching emotional movie clips. A domain-
adapted emotion recognition model was proposed with hor-
izontal and vertical flow. At the feature level, we combined
original frequency domain features (DE) and the horizontal
flow representation and vertical flow representation of fre-
quency domain feature by attention mechanism, to obtain the
EEG emotion representational information. For cross-subject
emotion recognition, we construct the domain discriminator
using the method of domain adaptation in transductive trans-
fer learning where the main goal is to reduce the difference
in distribution between the source and target domain.

The rest of the paper is organized as follows: in Section II,
we present the related work. Section III presents the
construction work of the dataset and the introduction of
the public dataset. In Section IV, we describe the fea-
ture extraction methods and classifier construction in detail.
Section V presents the experimental results. Section VI evalu-
ates the performance of the proposed method. The VII section
concludes.

Il. RELATED WORK
In this section, we introduce the relevant content of EEG

emotional representation feature extraction.

Feature extraction is an important part of emotion
recognition, different features are applied to classification.
Lietal. [27] verified the effectiveness of PSD features in
emotion recognition using 11 classifiers. Delin et al. [28]
explored the effect of different time window lengths on
DE features in the frequency domain with short time win-
dows. Cui et al. [29] used DE features to construct a
four-dimensional network to obtain spatial features of the
brain and used CNN-BiLSTM to deeply decode EEG signals
to extract key features. Although the above studies obtained
high accuracy, they did not consider the channel correlation
of EEG. Therefore, this paper proposes horizontal and ver-
tical flow features to fully characterize the EEG circulation
characteristics. The EEG signals contain rich temporal and
channel information which mainly includes the existence of
certain connections between adjacent electrodes, and how
to effectively characterize channel connections is a key fac-
tor considered by many researchers. Hao et al. [30] used a
CNN approach to consider the connections between adjacent
electrodes. Li et al. [31] introduced an attention mechanism
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to adaptively discriminate emotional information to obtain
channels with strong emotional channels with high represen-
tational power. Li et al. [32] used a domain discriminator to
induce the generation of emotionally relevant but invariant
features to facilitate EEG emotion recognition and validated
the model performance on three datasets.

The above studies increased certain accuracy of emotion
recognition but did not consider the characteristics of EEG
flow and diffusion. In this paper, based on the proposed
feature extracted strategy, a combination of self-attention and
domain adaptation is used to further capture representative
features from the frequency domain and spatial domain for
classification.

Ill. EXPERIMENTAL SETUP

This section describes the experimental setup for emo-
tion elicitation in hearing-impaired people, including subject
selection, elicitation video selection, and design of the exper-
imental paradigm. To evaluate the proposed model, we also
used the public dataset SEED.

A. SUBJECT SELECTION
The emotion elicitation experiment was approved by the
Ethics Committee of Tianjin University of Technology.
To validate the effect of the model among different subjects,
15 hearing-impaired sophomore college students (mean age:
22.0 years, 12 males and 3 females) from the School of
Deaf Engineering of Tianjin University of Technology were
recruited. Before participating in the experiment, basic infor-
mation about each subject was collected, including personal
information, auditory information, and family medical his-
tory, etc. Three of the subjects were born with congenital
hearing impairment (two males and one female), and the rest
had acquired hearing impairment due to disease. They all
had normal vision or corrected vision, and were right-handed,
could communicate normally with the sign language teacher.
The day before the experiment, the subjects were asked
to get enough sleep, not to engage in strenuous physical
activities, and not to eat or drink stimulating foods such as
coffee and cola for a period before the experiment. Before the
experiment, we invited a sign language teacher to participate
in the experiment to ensure that the 15 subjects understood
the purpose, procedure, and precautions of the experiment.

B. STIMULUS CLIPS SELECTION

The EEG signals of the hearing-impaired subjects were
collected in three emotional states (positive, neutral, and
negative). Our emotional movie clips selection and experi-
mental procedure design refer to the SEED dataset [23]. The
selection and experimental procedures of the movie clips in
the SEED dataset have been shown to be effective in target
emotion eliciting. There are 15 video clips as stimulus sources
for positive (“Lost in Thailand, “Pandora’s Box™, and
“Flirting Scholar’’), negative (‘““Tangshan Earthquake” and
“Back to 1942”), and neutral (‘““World Heritage in China’’).
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FIGURE 1. The schematic diagram of the experimental paradigm flow.

C. EXPERIMENTAL PARADIGM

To help the subjects understand the experimental process
and to ensure that the subjects understand the purpose of
the experiment, we added a pre-experiment. In the pre-
experiment, the positive emotion clip, neutral emotion clip,
and negative emotion clip were played sequentially, and
the pre-experiment process was basically the same as the
formal process. Figure 1 illustrates the basic experimental
procedure. For each trial, a 5-s emotion hint was played
to inform the subjects of the emotion induced by the clip
to adjust their state. When the subject was calm and there
was no obvious interference signal in the EEG signals, the
EEG signals recording was started. A movie clip approaching
3-4 minutes was then played, and after the clip ended, the
subject completed a self-assessment form to rate the current
clip for preference and familiarity. If the subject was not
induced with the corresponding emotion, the set of data was
excluded. Finally, after a 15-s break, the next movie clip was
moved to the next movie clip. The EEG signals acquisition
device in this experiment was SymAmps2, a 64-lead EEG
acquisition device manufactured by Neuroscan (Australia).

D. THE INTRODUCTION OF PUBLIC DATASET

The SEED emotion dataset is widely used for emo-
tion recognition tasks of EEG signals and recognized by
researchers [23]. The dataset contains 15 subjects (7 males
and 8 females, a mean age of 23.27, and a standard deviation
of 2.37), and each student collected data from three experi-
ments, each separated by one week, so the experimental data
contains a total of 15 subjects x 3 experiments = 45 EEG
subject data. There were 15 Chinese movie clips (5 positive,
5 neutral, and 5 negative clips) in one experiment, and each
clip lasted approximately 4 minutes to induce the correspond-
ing emotional state of the subjects. There was a 5-second cue
before the start of each clip and a 15-second break at the end.

IV. METHODS
This section introduces the EEG signals pre-processing

method, EEG emotion feature extraction method and the
construction of classifier.

A. DATA PRE-PROCESSING
To obtain higher quality EEG signals, the pre-processing
operation is needed to improve the signal-to-noise ratio of the
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signal. we downsampled the EEG signals to 200 Hz and used
a band-pass filter (range 1-75 Hz) to remove low and high
frequency noise, and a trap filter (49-51 Hz) to effectively
avoid the influence of industrial frequency signals (50 Hz)
on the EEG signals by EEGLAB. We used the mean value
of the adjacent electrodes instead of the bad conductance,
since some electrode shifts are inevitable in the acquisition
process. Independent component analysis (ICA) is used to
remove the sources of interference such as oscillogram and
myoelectricity to improve the quality of the signal. Finally,
the pre-processed signals were divided into five frequency
bands, Delta (1-4 Hz), Theta (4-8 Hz), Alpha (8-16 Hz), Beta
(16-32 Hz), and Gamma (32-50 Hz).

B. FEATURE EXTRACTION
Feature extraction is an important part of the emotion recog-
nition task, we extracted the horizontal flow representation
and vertical flow representation of EEG signals based on
frequency domain features.

The two kinds of frequency domain features (PSD and DE)
are extracted, respectively. The PSD feature mainly reflects
the variation of signal power with frequency in unit frequency
band. According to the energy conservation theorem, the
time-domain energy is equal to the frequency-domain energy
as shown in the following equation:

/ |X(r>|2dt=/ F O df (1)

The EEG signals is transformed from the time domain
to the frequency domain for analysis, where the energy in
the frequency domain is obtained using the discrete Fourier
transform algorithm, for a discrete time series signal X in
time, the transform equation is:

N
X (@)= X (n)e ™" )
n=1
The frequency domain energy values under each frequency
band were averaged according to the EEG frequency division
to the final power spectrum features.
The DE feature, as an extension of Shannon’s entropy,
demonstrates excellent performance in the characterization of
EEG emotional features, which is defined as follows.

h(X) = /X £ () log (f (x)) dx 3

where f'(x) is the probability density function of X. Assuming
that the EEG signals time series X obeys a Gaussian distribu-
tion N (u; 02) , the differential entropy is calculated as:

h(X) /oo LS ( ! _Q#)d
= — R— 20 0g | ——¢ 20 X
—o00 V2ma? V2mo?
1
= Elog (27‘[60’2) 4)

The EEG signals contains rich spatial information, mainly
because of the existence of certain connections among adja-
cent electrodes. Hence, we constructed two flow characteri-
zation matrix methods to represent the horizontal and vertical
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FIGURE 2. The horizontal and vertical flow characterization of EEG
signals.
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flow of the signal. Figure 2 shows the two flow characteriza-
tion methods. The sequential signals of the two flows were
obtained by arranging the PSD or DE of 62 channels which
the position in order of horizontal and vertical directions.

C. EMOTION RECOGNITION NETWORK CONSTRUCTION
The structure of the domain adversarial emotion recog-
nition network model based on horizontal vertical flow
(HVE-DANN) of EEG signals can be divided into a shal-
low emotion feature extraction layer, and a deep emotion
feature extraction layer. Figure 3 illustrates the network
framework.
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1) SHALLOW FEATURE EXTRACTION

A BiLSTM network was used to represent the bidirectional
flow process of the EEG signals in the horizontal and vertical
directions. The EEG features of the 62 electrode channels
are fused according to the corresponding channel positions
to extract the horizontal flow and vertical flow emotional
representation features through BiLSTM to obtain the emo-
tional feature f;. The two-way emotional characteristics after
the flow of EEG signals are fj,, fn,, fv,.fv,, the following
equation is used to model the correlation action of the two
types of signals.

Wiy, + Mifv_’/,
o= Wi — M} ®)

Wifhlk * Mif‘;j
where the horizontal representation is A, the vertical repre-
sentation is v, i € (1, 62) represents the 62 electrode serial
numbers, and k, j € (1, 2) represents the BILSTM networks
in the forward and backward directions. W; and M; represent
the weight vector of the horizontal flow signal and the weight

vector of the vertical flow signal, respectively.

Hence, the frequency domain features (PSD or DE) and

spatial domain features are fused by residual network, and
obtain the fusion features as

Ffusion = [fvfhpfhzval’fm’fs] (6)

Among them, f is the frequency-domain feature vector of
the original input 62 channels and 5 frequency bands, fj, , fn,
are the two-way emotional feature vectors after horizontal
flow, f,,, fv, are the two-way emotional feature vectors after
vertical flow Two-way emotional feature vector, f; is the
emotional feature vector after horizontal and vertical flow
interaction, and the final emotional feature vector form is
62 channels x 421 neurons.

Moreover, we use a multi-headed Self-attention mecha-
nism to make the model learn the emotion representation
information autonomously from frequency domain and spa-
tial domain. The Self-attention mechanism maps the input
sequences by Query-Key-Value. For each input information
A, the input information is projected to the corresponding
query space Q, key space K and value space V using Wy,
Wk, Wy.

0 =AWy @)
K = AWk (®)
V = AWy O]

Using the operation of dot product to calculate the similar-
ity of the Q, K, the Softmax function converts the similarity
score to probability values, the specific formula as

oK”

S = Softmax (x/__dk) (10)

Finally, by dotting the S and V, we can obtain

Attention (Q, K, V) = Softmax (QKT) %4 (11
Y Vdy
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2) DEEP FEATURE EXTRACTION

We construct the domain discriminator using the method of
domain adaptation in transductive transfer learning where the
main goal is to reduce the difference in distribution between
the source and target domain. The center-based discrimina-
tive loss was used for feature alignment to reduce inter-target
variability. So that the source domain data and the target
domain data are in the same sample subspace, thus allowing
the classifier to judge the information in the target domain by
the knowledge in the source domain, which is calculated as
follows.

ng

,Cg =8 Zmax (0,
i=0

|hf — Cy ” 2 m1)2

c
+ Z max (0, my — Hci — ch 2)2 (12)
ij=1ij

where B is an empirical parameter, n, represents the source
domain samples, /4 represents the source domain training
samples of the i-th deep fully connected layer, m| and m; are
two parameters that limit the edge distribution, ¢y, denotes
the center of the y;th category feature, ¢ is the number of
categories, and c¢; is the mean of the depth features of all
samples under that batch. Since the updating is based on the
smallest batch of samples, it is difficult to average over the
depth features of the entire training set. Here, the necessary
modifications are made, and for ¢; and ¢; in (12), the mean
value used to measure sparsity between categories is the mean
of the current batch used, while ¢y, is used to measure the
compactness of features within categories, so that the formula
for ¢y, during each iteration is

>0 8Gi=)) (¢ —h)
1+, 80i=))

tl=cl—y-Ad (14)

Cj = (13)

where y is the learning rate, which is used to update the
speed of the global class center, and finally Eq. (12) can be
simplified as

LG = B |l max (0, He — my) Il gm
+ || max (0, ma — De) |lsum (15)

where He = th — ¢y, || ; represents the depth feature &} of

layer i and the corresponding center cy,, and D, = H Ci— ¢ H i
represents the pairwise distance of batch class centers.

In the overall framework, we use the following minimiza-
tion loss function for training.

L=L;+ML,+ MLy (16)
l < S S

Ly = - ,Z'C(@ xS, ¥9) (17)

Le = Lais (G (G (xi3 0¢) 5 64) . di) (18)

Ly =Ja(O|X;, Yy) (19)
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TABLE 1. The details of model parameters.

Classification Model Parameter
Support Vector Linear kernel
Machine Machines (SYM) function, C=1
. K-Nearest Neighbor K:5
learning

(KNN)
Random Forest (RF)

Deep Neural Networks
(DNN)

Deep Belief Network
(DBN)

Dynamic Graph

Estimators: 1000

Fully connected layer
[256,64]

Learning rate: 0.01

Batch size: 200

Fully connected layer
[256,64]

Learning rate: 0.01

Batch size: 200

Learning rate: 0.001

Convolutional Neural
Networks (DGCNN)
Domain Adaptation Learning rate: 0.005
Neural Networks Batch size: 200
(DANN) L1: 0.01

Learning rate: 0.005

Batch size: 200
HVF-DANN L1: 0.01

Center Loss

Parameters: 10

Deep learning Batch size: 200

where L, L. and L4 represent classification loss, domain
variability loss and discriminative loss, respectively. A; and
A, are empirical parameters to balance domain variability loss
and discriminative loss. L. is a domain discriminator method
to determine the variability of source and target domains. L4
is a discriminative feature learning method to ensure that the
data in the target domain have better inter-class and intra-
class distances.

3) EXPERIMENTAL ENVIRONMENT

The experimental environment is configured with the follow-
ing parameters: CPU: i5 8§300H 2.4G, 16G, GPU: NVIDIA
GeForce 1060 6G. python: 3.6, TensorFlow: 1.4. We used
some classical networks for comparison experiments, and
Table 1 shows the parameter settings used in all our
experiments.

We selected 15 movie clips (3 emotions, 5 clips for each
emotion), and each clip intercepted the end 180s data. For
subject-dependent experiments, 9 movie clips (3 for each
emotion) were selected for training and 6 movie clips (2 for
each emotion) for testing. For cross-subject experiments,
we used the leave-one-out method to test each subject indi-
vidually, and the training set used all the data of the other
14 subjects.

V. RESULTS
This section introduces the discrete emotion classifica-
tion experiments based on the hearing-impaired dataset,
mainly including the feature extraction method, data length,
and the effect of classifier selection on classification
performance.
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A. THE COMPARISON OF FEATURE EXTRACTION
METHODS

To explore the effect of different emotion features on the dis-
crete emotion classification performance of hearing-impaired
subjects, we extracted two features here: PSD and DE, respec-
tively. We use the non-overlapping sliding window method
to slice the experimental data into data lengths of 1 s, and
the obtained training set data are fed into the SVM classifier,
the results as Figure 4. It shows that each subject has a
large deviation in the classification effect, indicating that the
EEG data has a large subject deviation, where subject 5,
subject 6, and subject 12 have a better classification per-
formance with 68.01%, 82.87% in PSD, DE, respectively,
76.05%, 80.24% and 85.64%, 82.30%, respectively, while
subject 7 had poorer classification performance with an aver-
age classification accuracy of 45%. In the comparison of the
two types of features, the DE feature has a better ability to
characterize emotions in most subjects, significantly higher
than the PSD feature with a smaller deviation.

B. THE COMPARISON OF DATA LENGTH

In feature extraction, different data lengths have an impor-
tant effect on classification performance. In the data length
comparison experiments, in order to keep the training and test
sets with the same data samples under different data lengths,
different sliding window strategies are used, a sliding window
with no overlap for 1 s, a sliding window with 50% overlap
for 2 s, a sliding window with 66% overlap for 3 s, and a
sliding window with 75% for 4 s, followed by DE extraction
of the obtained data, input to the SVM classifier.

Figure 5 shows the classification performance results of
EEG emotions for 15 hearing-impaired subjects under dif-
ferent data length divisions. We found that the increase in
data length can enhance the classification performance, but
the effect is not significant, and the average accuracies are
67.33%, 70.09%, 70.94%, and 70.97%, respectively. The best
classification performance is for data length, which improves
the performance by 3.64% compared to 1 s data length, and
after the paired t-test, the results of 4 s and other time lengths
are all less than 0.05. However, the required data length is four
times more than the 1 s data length. Therefore, we choose 1 s
data length for all experiments in the following sections.

C. THE COMPARSION OF CLASSIFICATION METHODS

To demonstrate the effectiveness of our proposed model,
we compare it with commonly used methods, including
machine learning methods: SVM, KNN, RF, and deep learn-
ing methods: DNN, DBN [19], DANN, DGCNN [24], respec-
tively. For better correlation and comparison, the experiments
all choose 1s data length for DE feature extraction, and finally
extract the data format of 5 (EEG frequency band) x 62
(EEG electrode channel). The results in Table 2 show that
the HVF-DANN method has the best classification perfor-
mance and is significantly better than the other classification
methods with an average accuracy of 75.89%, and has the
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TABLE 2. The experimental results for subject-dependent with hearing-impaired subject.
Method SVM KNN RF DNN DBN DGCNN DANN HVF-DANN
ACC (%) 67.33 61.05 59.21 58.72 68.05 72.87 72.00 75.89
STD (%) 11.43 12.71 16.35 12.97 12.99 11.15 11.90 10.75
F1 score (%) 65.23 57.45 55.29 55.17 64.95 68.12 69.32 72.95
STD (%) 12.92 14.24 19.09 15.29 13.54 14.23 13.54 12.01

smallest standard deviation. The F1 score is higher than other
classifiers, and the paired t-test is less than 0.05.

The performance of 15 subjects with different classifiers
is shown in figure 6. From the results, subject 7 has the
worst classification performance, with only about 40% clas-
sification accuracy, and each classifier cannot effectively
improve the classification performance, probably due to the
presence of too many interference signals that make it diffi-
cult to extract the corresponding emotional features. In com-
parison, subject 12 has a better classification performance,
and has good classification results in each classifier, with
an average classification accuracy of about 80%. Also, the
mean and variance of the box plot data show that our pro-
posed HVF-DANN has significantly higher classification
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performance and less bias than the other methods, indicat-
ing that our method has better emotion classification perfor-
mance and can effectively classify three different emotions.

D. CROSS-SUBJECTS AFFECTIVE CATEGORIZATION
PERFORMANCE

In the cross-subjects emotion classification task, we also
compare the proposed model with a series of cross-subjects
emotion recognition models. The results in Table 3 show
the cross-subjects average emotion classification results for
15 hearing-impaired subjects, from which it can be seen that
the proposed HVF-DANN has the best classification perfor-
mance and significantly outperforms the other classification
methods with an average accuracy of 69.59% and a standard
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TABLE 3. The experimental results for cross-subjects with hearing-impaired subject.

Method SVM KNN RF DNN DBN DGCNN DANN HVF-DANN
ACC (%) 55.46 52.62 57.93 58.80 63.50 67.07 64.71 69.59
STD (%) 21.19 28.48 26.37 19.25 19.10 21.45 20.31 20.09
F1-SCORE (%) 52.60 50.38 54.39 56.21 65.21 66.51 62.51 73.21
STD (%) 23.51 30.17 29.31 23.51 19.31 23.84 24.56 17.42

deviation of 20.09% At the same time, we conducted F1 score
and paired t-test, the F1 score of HVF-DANN is the highest,
and the paired t-test with other classifiers is less than 0.05.
The classification performance of 15 subjects in the
cross-subject emotion classification task under different
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classifiers is shown in Figure 7. From the results, it can be
seen that the classification performances of subject 7, subject
10, and subject 15 are poor, with only about 40% classifi-
cation accuracy. Our proposed HVF-DANN model improves
the classification performance somewhat compared to other
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TABLE 4. The results of subject-dependent with different frequency bands.
ACC/STD (%)
Method Delta Theta Alpha Beta Gamma
SVM 56.20 (13.43) 59.84 (14.07) 60.66 (12.29) 62.58 (12.54) 63.08 (11.98)
KNN 46.23 (13.37) 53.94 (13.65) 55.34 (12.00) 55.95 (13.32) 57.20 (13.12)
RF 49.96 (17.05) 51.44(15.81) 53.89 (17.44) 54.43 (16.59) 55.21 (16.41)
DNN 47.33 (16.03) 51.92 (12.65) 53.06 (13.12) 52.43 (12.24) 54.77 (13.05)
DBN 58.59 (12.50) 63.90 (11.75) 63.06 (12.23) 64.99 (11.25) 66.23 (10.33)
DGCNN 61.08 (12.78) 65.50 (9.34) 66.99 (13.65) 67.68 (11.91) 68.39 (10.15)
DANN 63.63 (11.01) 65.45(13.82) 65.01 (13.70) 66.41 (12.07) 68.56 (11.60)
HVF-DANN 66.85 (14.67) 67.27 (12.15) 69.19(10.75) 69.94 (12.41) 72.39 (10.35)
TABLE 5. The results of subject-dependent based on the SEED dataset.
Method SVM RF DBN DGCNN DANN GCNN CCA GSCCA R2G- HVF-
STNN DANN
ACC (%) 83.99 78.46 86.08 90.40 91.36 87.40 77.63 82.96 93.38 93.99
STD (%) 9.72 11.77 8.34 8.49 8.30 9.20 13.21 9.95 5.96 4.59

TABLE 6. The results of subject-dependent based on the SEED dataset at different frequency bands.

ACC/STD (%)

Method Delta Theta Alpha Beta Gamma
SVM 60.50 (14.14) 60.95 (10.20) 66.64 (14.41) 80.76 (11.56) 79.56 (11.38)
RF 64.56 (8.32) 65.27 (11.64) 65.67 (13.94) 73.35(14.35) 74.48 (12.80)
CCA 55.30 (12.02) 55.75 (10.99) 64.96 (12.05) 69.16 (11.45) 70.67 (14.06)
GSCCA 63.92 (11.16) 64.64 (10.33) 70.10 (14.76) 76.93 (11.00) 77.98 (10.72)
DBN 64.32 (12.45) 60.77 (10.42) 64.01 (15.97) 78.92 (12.48) 79.19 (14.58)
GCNN 72.75 (10.85) 74.40 (8.23) 73.46 (12.17) 83.24 (9.93) 83.36 (9.43)
DGCNN 74.25 (11.42) 71.25 (5.99) 74.43 (12.16) 83.65 (10.17) 85.73 (10.64)
DANN 72.13 (11.22) 68.75 (7.40) 70.27 (10.84) 83.35(11.46) 87.89 (11.35)
R2G-STNN 77.76 (9.92) 76.17 (7.43) 82.30 (10.21) 88.35(10.52) 88.90 (9.97)
HVF-DANN 78.16 (8.32) 77.07 (8.59) 84.11 (12.22) 89.42 (11.32) 89.51 (12.14)

models, but the results are still not satisfactory, probably
because there are too many noisy signals in the subjects’ EEG
signals that affect the overall signal quality. The comparison
shows that Subject 1, Subject 2, Subject 3, and Subject 6 have
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better classification performance in the cross-subject emotion
classification task, with an average classification accuracy of
about 90%. Meanwhile, the box plots show the distribution,
mean, and variance of the emotion classification accuracies
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TABLE 7. The results of cross-subject experiments based on the SEED dataset.

Method DGCNN DANN Bi-DANN R2G-STNN HVF-DANN
ACC (%) 79.95 75.08 83.28 84.16 84.22
STD (%) 9.02 11.18 9.60 7.63 8.77
TABLE 8. The results of ablation experiments.
Subject-dependent Experiment
Cross-subject experiments ACC./ ST].) (%.)
Hearing-impaired SEED
HVF-DANN (w/o hvflow) 72.33/11.69 91.52/6.52
HVF-DANN (w/o attention mechanism) 73.59/10.88 90.22/8.26
HVF-DANN (w/o domain adaptation) 70.55/11.38 88.21/7.21
HVF-DANN 75.90/10.75 93.99/4.59
Cross-subject experiments ACC./ STI.) (%.)
Hearing-impaired SEED
HVF-DANN (w/o hvflow) 65.56/21.33 82.55/10.11
HVF-DANN (w/o attention mechanism) 66.52/21.65 82.78/11.22
HVF-DANN (w/o domain adaptation) 61.33/21.55 80.62/10.96
HVF-DANN 69.59/20.10 84.22/8.77

of the 15 subjects. From the above results, it can be seen
that the HVF-DANN has significantly higher classification
performance and less bias than the other methods, indicating
that our method has better cross-subject emotion classifica-
tion performance and can effectively classify three different
emotions in the cross-subject emotion classification task.

VI. DISCUSSION

In this section, we analyze the effect of specific emotion
recognition in hearing-impaired subjects and validate the
model on a public SEED dataset. The classification perfor-
mance of specific frequency bands is also investigated, and
finally, the model is subjected to ablation experiments.

To explore the classification performance of each clas-
sifier on the emotional categories, we obtained the confu-
sion matrix for each subject in the emotion classification.
Here, to analyze the performance of different classifiers for
emotional categories, we obtained confusion matrices for
15 subjects under each of the three emotions, as shown
in Figure 8. We found that among the three categories of
emotions, negative emotions have the highest classification
accuracy among the eight classifiers, and it may indicate
that negative emotions are easily distinguished. While neutral
emotions have the lowest classification accuracy, and it may
indicate that neutral emotions are difficult to be distinguished
by the classifiers. The neutral emotions were easily misclas-
sified into positive emotions and positive emotions were also
easily misclassified into neutral emotions, which may indi-
cate that it was more difficult to distinguish positive emotions
from neutral emotions in our dataset. Moreover, we found that
negative emotion was more easily misclassified into positive
emotions.

To investigate the contribution of different frequency bands
in EEG emotion recognition, we also extracted DE features
from five frequency bands, and the experimental results
are shown in Table 4. We found that higher classification
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performance was achieved in the high-frequency band (Beta,
Gamma) and the highest classification performance in the
Gamma band, indicating that the emotional activity of
the hearing-impaired subjects was mainly concentrated in
the high-frequency bands. Instead, the lower-frequency bands
(Delta, Theta, Alpha) have poorer classification performance,
possibly indicating that emotions had less display in these
three frequency bands.

To demonstrate the classification performance of
HVF-DANN, we will conduct experiments under the
public dataset SEED dataset, which mainly consists of
subject-dependent emotion classification experiments and
cross-subject emotion classification experiments. According
to Table 5, it can be seen that among the machine learning
methods, SVM significantly outperforms RF, CCA [34],
and GSCCA [35] with 4.76%, 6.36%, and 1.03% higher
classification accuracy, respectively. Among the deep learn-
ing methods our proposed method significantly outperforms
DBN, GCNN, DGCNN [36], DANN, and R2G-STNN [37]
with 13.91%, 6.59%, 3.59%, 2.63%, and 0.61%, respectively.
This result demonstrates that domain adaptation methods can
significantly improve emotion classification performance.
In addition, the proposed method significantly outperforms
the other methods, obtaining the highest recognition rate of
emotion classification and the smallest standard deviation of
93.99% and 4.59%, respectively.

We also studied the effect of different frequency bands
for emotion classification on the SEED dataset, and the
results are shown in Table 6. The high-frequency bands (Beta,
Gamma) have higher emotion recognition performance com-
pared to the low-frequency bands (Delta, Theta, Alpha), and
the recognition performance of the Gamma band is about
10% higher than the classification results of Delta and Theta
bands, indicating that emotions have more obvious changes in
the high-frequency bands. This result is generally consistent
with previous findings that part of the research indicates
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that emotional information is mainly concentrated in the
high-frequency bands (Beta, Gamma) [33].

In the cross-subject emotion classification task, the rel-
evant experimental results compared with a series of
cross-subject emotion recognition models are shown in
Table 7. The experimental results show that the proposed
HVF-DANN model improves by 4.27%, 9.14%, 0.94%, and
0.06% over DGCNN, DANN, Bi-DANN, and R2G-STNN
models, respectively. In addition, we found that the use
of domain adaptation can effectively improve the experi-
mental performance of cross-subjects emotion classification,
and this may be because the data of the target subjects
is used to train the model so that the model learns the
data distribution information of the target subjects and
therefore has better generalization ability on the target
subjects.

We conducted a series of ablation experiments to demon-
strate the effectiveness of the model structure, verifying the
information flow integration layer, the attention mechanism
layer, and the domain adaptation method layer of the model,
respectively. The HVF-DANN (w/o hvflow) is without hor-
izontal flow representation and vertical flow representa-
tion. HVF-DANN (w/o attention mechanism) is without an
attention mechanism for feature fusion. HVF-DANN (w/o
domain adaptation) is without domain adaptation, and the
subsequent domain discriminator and alignment loss function
are removed. Table 8 shows the ablation performance in
both subject-dependent experiments and cross-subject exper-
iments. We can see that the information flow integration
layer, the attention mechanism layer, and the domain adap-
tation approach layer, all help to improve the classifica-
tion performance of emotions in two datasets. Moreover,
the domain adaptation approach layer has the greatest effect
on classification performance. The results prove that the
domain adaptation approach can indeed effectively improve
the generalization ability of the model by considering the data
distribution of the target domain.

VIl. CONCLUSION

This paper focuses on proposing an HVF-DANN emotion
recognition model to improve the performance of emo-
tion recognition tasks under EEG signals for the hearing
impaired. The model mainly considers the interconnections
between channels and uses the horizontal flow represen-
tation and vertical flow representation of EEG signals to
obtain the spatial domain features. We fused the frequency
domain features and spatial domain features and utilized
an attention mechanism to obtain the emotional represen-
tational information. A domain discriminator is constructed
using the domain adaptation method in transduction transfer
learning is used to realize cross-subject emotion recognition,
with the emotion recognition accuracy (75.89% for subject-
dependent) and 69.59% for cross-subject). Moreover, to eval-
uate the generalization ability and effectiveness of the model,
we validate the proposed model on the SEED dataset and
use ablation experiments. The quantitative evaluation results
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demonstrate that the proposed HVF-DANN model has an
excellent performance.

In our future work, we will systematically investigate
cross-subject emotion recognition using deep learning and
reinforcement learning methods. At the same time, we will
further explore the emotional representation capabilities of
different brain regions of the hearing-impaired population,
as well as the characteristics suitable for this population.
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