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ABSTRACT To solve the problem of high-resolution image alignment time overhead, an SIFT-based fast
image alignment algorithm is presented. The overlap region of images is computed in detail by phase
correlation algorithm to avoid a lot of useless calculations of non-overlapping region. After the distribution
of feature points determined in difference of Gaussian through formula derivation, the total number of feature
points is limited. The more stable spatially distributed for the feature points is obtained due to the expanded
detection range of extreme points and added non-maximum suppression. It is noteworthy that the range of
the descriptor is calculated by the method of down-sampling. And the circular descriptor is constructed with
only 56-dimensional in the feature point descriptor generation stage, which makes the time of the descriptor
generation and feature point matching shorter. This indicates that the total descriptor calculation is faster
in lower dimensions by the new algorithm. In addition, experimental results show that the average time
(9.60s, 13.46s, and 15.81s) of the proposed algorithm is 0.86%, 0.43%, and 0.10% of the SIFT algorithm,
respectively. The overall speed is 2-3 orders of magnitude faster than the SIFT algorithm, which indicates
that the new algorithm can solve the problem of high-resolution image alignment time overhead. The new
algorithm provides a good stitching quality and shows an excellent performance for high-resolution image
compared with several existing image stitching algorithms at the current. It indicates that the algorithm has
potential application value in real-time image stitching.

INDEX TERMS Scale-invariant feature transform (SIFT), image alignment, high-resolution image, fast
alignment.

I. INTRODUCTION two images or multiple images. It directly associates with the

In recent years, image stitching technology is widely used
in remote sensing, motion detection, resolution enhancement,
medical imaging and other fields [1], [2], [3], [4], [5]. As the
important part of the image processing field, image stitching
algorithms are consisted of two main steps: image alignment
and image blending. The development of image stitching
technology typically depends on the innovations of these
two aspects. Image alignment is used to obtain the motion
relationship by detecting and matching feature points across
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speed and success rate of image stitching process [6].

At present, different feature detection-description algo-
rithms are emerged, such as Harris, oriented FAST and
rotated BRIEF (ORB) [7], binary robust invariant scalable
keypoints (BRISK) [8], scale-invariant feature transform
(SIFT) [9] and speed up robust features (SURF) [10]. The
Harris and ORB algorithms have good speed, but no scale
invariance. They can obtain scale invariance through Gaus-
sian pyramid [11], [12]. Although BRISK algorithm has well
rotation and scale invariance, the overall time is longer than
ORB algorithm. SIFT algorithm has well effects in trans-
lation, rotation, illumination, scaling and affine transforma-
tion, but its computational complexity is large. SURF-based
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mosaicism techniques are faster than SIFT-based techniques.
However, they perform poorly under certain variations (par-
ticularly color, illumination, some affine transformation) [1].
Some research combines the SURF algorithm with other
algorithms to improve its performance [13], [14].

Among many of image stitching algorithms, SIFT algo-
rithm has won the favor of many researchers because of
its excellent performance and good robustness. In terms of
quality improvement of image stitching, Laraqi [15] and
Yan et al. [16] have improved the image stitching quality
through image preprocessing in recent years. Gong [17] and
Guang et al. [18] have achieved the matching from rough to
fine used two-step matching strategy. Chang [3] and Zhao
et al. [19] have improved the quality of image stitching
by applied of a new matching method. Ma et al. [2] have
enhanced the matching of feature points through combined
with the gradient definition method and information of key
points. Gong et al. [20] proposed an invariant descriptor of
robust neighborhood structure and designed a strategy of
dynamic matching.

The resolution of image is gradually improved with the
improvement of image acquisition equipment performance.
High-resolution images have more information, and it is
important that how to use the information from high-
resolution images. Using high resolution image stitching can
preserve more details of the image, while it also means
greater computational complexity. It is becoming increas-
ingly prominent that how to solve the problem of large
computational complexity of high-resolution images. How-
ever, in terms of image stitching efficiency, most exist-
ing algorithms focus on the improvement of low-resolution
image stitching and image stitching at a certain stage. Zhang
et al. [21] and Zhao et al. [22] have changed the contrast
threshold of feature point extraction. Zhang [11], Zhao [22],
Kupfer [23] and Ma et al. [24] have improved the matching
method of image stitching and the efficiency of algorithm.
Zeng et al. [25] have realized real-time adaptive registration
of visible and infrared images through used morphological
gradient and C_SIFT. Chen et al. [26] have reduced heav-
ily the time cost in the matching phase of SIFT algorithm
combined with the SIFT algorithm Canny edge detection and
the new descriptor whose size (only 18-dimensional). Shi
et al. [27] have achieved a faster speed and better splicing
quality by following improvements: They divided the image
into feature blocks by the improved fuzzy C-Means (FCM)
algorithm, extracted the image feature descriptors through the
SIFT algorithm and avoided ghosting and shape distortion
by optimized the overlapping regions. The phase correlation
algorithm and texture complexity classification of the image
have been used by Wang et al. [28] to detect feature points
only in regions of high complexity, which reduced the regions
detected. Xu et al. [12] improved the performance and preci-
sion of corners extracted by Harris, and then used the SIFT
operator to speed up the registration process. Zhou et al. [29]
have reduced the dimension of SIFT descriptors to reduce
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the dimension of feature descriptor by used convolutional
neural networks. Through Li and coworker’s [30] efforts, the
algorithm running time of useless regions have been reduced
by divided regions of the similarity of shared information
between two images. They have also improved the quality of
image stitching through used two projections stitching during
the stitching phase to reduce algorithm ghosting that can
make the algorithm extract feature points more efficiently.
Du et al. [31] have achieved good accuracy and efficiency
due to the spatial transformation images modeling and intro-
duced of the robust Bayesian framework. In addition, the
global information and descriptors were used to establish key
point mapping by Li et al. [32]. They have also limited the
matching space of feature points at the low-level pyramids
started matching from the high-level pyramids to achieve the
matching from rough to fine. These researches have reduced
effectively the matching time of the SIFT algorithm.

However, although image stitching has been made good
progress, there are few researches in the field of high-
resolution images. It is becoming increasingly prominent
that how to solve the problem of large computational com-
plexity of high-resolution images. We built three datasets of
high-resolution images and tested them with several exist-
ing image stitching algorithms at the current. The experi-
mental results show that the time cost is too large to meet
the real-time requirements. It can be seen that although the
existing algorithms have achieved good performance in the
field of fast stitching of low-resolution images, their perfor-
mance is poor when using high-resolution image stitching.
To solve this problem, a new fast alignment algorithm for
high-resolution image is presented based on SIFT through
following three aspects:

(1) The phase correlation algorithm is applied to calculate
the similar regions of image to avoid a lot of useless calcula-
tions of non-overlapping regions. The distribution of feature
points is determined in the Difference of Gaussian (DOG)
through formula derivation. And the influence of different
number of feature points is analyzed for image stitching
quality. After that, the number of feature points is selected
for that is conducive to image stitching speed and quality.

(2) To improve the stability of feature points, the range of
extreme point detection is expanded and the influence of dif-
ferent detection ranges is analyzed on feature points. In order
to improve the spatial distribution of feature points and the
utilization of image information, non-maximum suppression
(NMS) is added in the process of extreme point detection, and
the influence of different NMS ranges is analyzed on feature
points. It is selected that for the suitable detection range of
extreme points and NMS range.

(3) A circular feature descriptor is designed with
56-dimensional to solve the problem that the poor robustness
and large dimension of SIFT descriptor. Besides, we consider
a larger calculation range for the descriptor, and the calcu-
lation regions of the descriptor are down-sampled to give
consideration to both speed and accuracy. Results show that
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our proposed algorithm provides a better stitching quality and
shows an excellent performance for high-resolution image
compared with several existing image stitching algorithms at
the current, which indicates that the algorithm has potential
application value in real-time image stitching.

Il. RELATED WORK

As the most popular algorithm in image stitching field, SIFT
algorithm has good performance and robustness. It can be
divided into the following four steps: (1) Detection of spatial
extreme points; (2) Removing unstable edge response points
and extreme points of poorer contrast; (3) Calculating the
direction of key points; (4) Descriptor generation.

A. DETECTION OF SPATIAL EXTREME POINTS

Initially, a scale space is constructed by convolving an image
repeatedly using a Gaussian filter with changing scales and
grouping the outputs into octaves as:

L(x,y,0) =G(x,y,0) ® I(x,y) ey

where, I(x, y) is the input image, G(x, y, o) is the Gaussian
filter. The Gaussian filter is defined as follows:

1 _a=m/2244-n/2?

Gly.o)=5——e = @)

where, o is the standard deviation of the normal distribution,
m and n are the size of the Gaussian filter, and x and y are
the positions of the corresponding elements of the Gaussian
filter.

The spatial extreme points are detected by the DOG, which
is obtained by subtracting between two adjacent layers of an
octave of Gaussian pyramids:

D(xvyva)ZL(xvyva)_L(x’yva) (3)

where, L(x, y, ko) from formula (1), k represents the scale
factor of two scale spaces. The DOG model is shown in
figure 1 [9].

The local extreme points are searched as candidates for
feature points after of establishment DOG. The detection
method of local extreme points is mainly comparing any point
(x, y) with 8 adjacent points on the same layer, the 9 points
on the upper layer and lower layer respectively. The point is
a candidate for the feature point when the value of point (x,
y) is the maximum or minimum. The key points of DOG can
be extracted in the middle layer (except the top layer and the
bottom layer) of each octave.

B. REMOVING UNSTABLE EDGE RESPONSE POINTS AND
EXTREME POINTS OF POORER CONTRAST

The extreme points of low and the edge response points of
poor stability contrast need to be further removed after the
extreme points are obtained, which can improve the anti-noise
ability and stability of the extreme points.
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FIGURE 1. DOG model.

Calculate the D(X) value of the extreme point, and the
calculation formula is as follows:
D) =D+ 3DT)2 4
X)=D+ 23X 4)
where, X = (x,y, U)T denotes the center offset of the relative
interpolation, Ddenotes the first term of the Taylor expansion
of the spatial scale function D(x, y,o) at the extreme point.
Then, all extreme with a value of D(X ) less than 0.03 were
discarded to obtain more stable extreme values.
The location and scale of a feature point can be pinpointed
accurately by a Hessian matrix, which can be expressed as:

Dy Dy
H= 5
|:ny D)’)’i| ( )

Then, the stability of the point is presented by the following
formula:

o (Du+Dyp)? (1)
stability = D x;) _y]):)2 P (6)
XXy Xy

where, r represents the parameter which controls feature
value. Remove all points that do not conform to Formula (6).

C. CALCULATING THE DIRECTION OF KEY POINTS

For the SIFT operator to be rotated invariant, the main direc-
tion of the key points needs to be determined by the following
formula: (7) and (8), as shown at the bottom of the next
page, where: L represents the scale space value of the key
point, and formulas (7) and (8) are the corresponding gradient
modulus value and direction, respectively. The direction of
the maximum is the main direction. In addition, they are set
as secondary directions to the key points if the directions
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FIGURE 2. Descriptor of SIFT.

are greater than 80% of the maximum. Each direction is
preserved as a feature point, and the descriptors of the feature
points are calculated separately.

D. DESCRIPTOR GENERATION

The pixels around the feature points are rotated to the cor-
responding direction and the region is divided into 4 x 4 to
ensure the invariance of the descriptor direction. As shown
in figure 2, the values of cumulative gradient are calculated
in eight directions of each region to form a 128-dimensional
feature descriptor.

ill. PROPOSED METHOD

The works of this paper are mainly improving the SIFT algo-
rithm to reduce the huge time cost of high-resolution image
stitching. The overall block diagram is shown in figure 3. The
overlapping regions of the reference image and the registra-
tion image are roughly determined using the phase correlation
algorithm to reduce the computation of the non-overlapping
regions. Then, in the feature point detection stage, the number
of extracted feature points is reduced on the premise that
ensuring a good effect of matching. In addition, expanded
detection range of extreme points and added NMS to improve
the stability of feature points and the utilization rate of
image information. Subsequently, a 56-dimensional circular
descriptor is established in the descriptor generation stage.
The calculation range of the descriptor is down-sampled
to further improve the calculation efficiency. Finally, the

projection transformation matrix is calculated through feature
point matching to complete image stitching.

A. PHASE CORRELATION ALGORITHM

It is essential that to calculate the whole image for SIFT
algorithm. The SIFT algorithm will produce some invalid
calculations due to the provider of incompletely effective
information regions. Therefore, the phase correlation algo-
rithm is applied to preliminarily determine the overlapping
region before the SIFT algorithm processing.

The algorithm first transforms the image to the frequency
domain through Fourier transform, and then the shift param-
eters of the two images are calculated using the normalized
Cross power spectrum.

If there is shift (xg, yo) in part of the information in the two
images, that is,

£, y) =filx —x0,y — yo) )

Then, fi(x, y) and f>(x, y) are transformed to the frequency
domain using Fourier transform to get Fi(u, v) and Fp(u,
v), in which case the relationship between F| and F» is as
follows:

Fy(p, v) = e W00 (u, v) (10)
The cross-power spectra of F'| and F is:

FYw P2 v) - iuso-mo)
|Fi (s vIF2 (e, v)|

Inverse Fourier transform is performed on the right side of
formula (11) to obtain the impact response function § (x-xo, y-
v0)- The range of the overlapping region can be preliminarily
obtained by searching the maximum point (xg, yo) of 5. There
(x0, ¥0) is the optimal translation amount of the overlapping
region between the images f1 (x, y) and f> (x, y).

(11)

B. FEATURE POINT DETECTION

The region detected by the traditional SIFT algorithm
is only 3 x 3 x 3. However, the image size of the
high-resolution image is very large. The stability of feature
points is poor due to the small detection range of feature
points. The huge number of feature points extracted could
lead to excessive calculation time in feature point detec-
tion, descriptor generation and matching stage, respectively.
In addition, too many feature points would increase little the
quality of image stitching. So, it is particularly important to
select appropriate and effective feature points, which should
be reasonably distributed in the DOG.

m(x,y) == \/(L(x +1,y) —Lx—1,»))?+ L&, y+1)—Lx,y — 1)? @)
Lx,y+1)—Lx,y—1)

0(x,y) = arctan(

) ®)

Lx+1,y)—Lx—-1,y)
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FIGURE 3. Block diagram of proposed method.

Two improvements are made in the phase of feature point
detection: (1) The number of feature points is limited to
improve the efficiency of the algorithm on the premise of
guaranteeing a good matching result. (2) The extreme points
are detected from a larger range (7 x 7 x 3) to ensure better
stability of the extracted feature points. The extraction range
of feature points is discussed in the next section. Additionally,
NMS is used to prevent feature points from clustering in
complex texture regions. The application of NMS can also
improve the spatial distribution of feature points and the
utilization of image information.

1) NUMBER OF FEATURE POINTS EXTRACTED
It is necessary to determine the number of feature points of
each layer in each octave when limiting the total number of
feature points. We have carried out mathematical derivation
for this problem, and the process is as follows:

Firstly, set the total number of feature points to be Ny,
which is equal to the sum of the number of feature points of
each layer of each octave:

m n—1

Nsum = ZZNO,Z (12)

o=1[=2

where, m and n are the number of octave and the number of
layers in DOG, and N, ; is the number of feature points in the
layer [ of octave o.

We set the ratio of the number of feature points extracted
from the same layer of the two adjacent octaves to be «. And
set the extraction ratio of feature points from adjacent two
layers to be B. Additionally, the number of feature points of
the second layer is also set in the first octave as Nj 2, and
the number of feature points for any layer in the DOG can be
obtained:

Npj = Ni22° 1721 > 2 (13)

The number of feature points is distributed proportionally
in different layers of each octave and in the same layer of
different octaves. The sum of the number of feature points
for any layer in different octave as:

N1 (1 —a”)
l—«a
Because the Gaussian pyramid is obtained by the method

of down-sampling, the proportion of feature point extraction
cannot be 1 thus it is not considered & = 1. Nyyn.1 = {Nsum,2,

Nmm,l = [>2,a #1 (14)
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Nsum3» -+ Nsum.n—1} 1s proportional distribution. Thus, the
total number of feature points is:

n—2) i Nl,zﬂ;l(lfau) a#1,p=1
Nyum = o=1 _la (15)
N1’2% l227a#1’ﬂ#1
Therefore, N 7 is
—e— e # 1L =1
(n—-2) Y =2
Nip = e (16)

o=1
B—a)(1-p)
NsumleZ,a;ﬁl,ﬂ#l

Take Formula (16) into Formula (13) to get:

g @ p=1
(n—2)0§l 17371 . (17)
Noun W=l — 12 2,0 £ 1, B # 1

The distribution of feature points can be calculated accord-
ing to formula (17) after determining the total number.

The feature points are extracted from large to small pairs
according to the contrast value after the number of feature
points of each layer is obtained. It is necessary to extract
them one by one and stop extraction when the limited number
is reached due to the multiple secondary directions of each
feature point and each secondary direction serves as a sep-
arate feature point. The number of extracted feature points
may be slightly more than the limited number due to the
secondary direction of feature points. The total number of
feature points and the proportion of feature point distribution
(o and B) are discussed in the feature point extraction of the
next section.

Ny, =

s

2) FEATURE POINT EXTRACTION METHOD

Detection range of the descriptor is changed to 7 x 7 X
3 to improve the stability of feature points. NMS is added
to the detection of spatial extreme points to prevent feature
points from clustering in complex textured regions and make
the distribution of feature points more reasonable. It is not
feasible to use a fixed pixel value suppression method since
the size of each image is different. Therefore, the NMS range
is set according to the size of the image after phase correlation
calculation, and the range is as follows:

{(e, x € (xi = wMp, xi + wMp),
y € (yi — WNp, yi +wNp)} (18)
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FIGURE 4. Descriptor structure.

where, x; and y; are the coordinates of the feature points,
M, and N,, are the size of the image detected by the phase
correlation algorithm, w is the proportion of NMS rang.

The extreme points are detected according to the contrast
size first in spatial extreme point detection. NMS is per-
formed in the region shown in Formula (18) after each feature
point is extracted. Since there are multiple octave and layers
of DOG, each octave uses an independent NMS. The NMS
range is discussed in the next section.

C. FEATURE DESCRIPTOR

The 128-dimensional descriptor of the SIFT algorithm leaded
to the much time cost of feature point matching since.
To address this issue, we use a GLOH-like [33.34] circular
neighborhood (radius of 100 and 1207) and log-polar sectors
(7 location bins) to create a feature descriptor. A series of
experiments shows that GLOH obtains the best results [33].
The descriptor is shown in figure 4 and the steps to create a
descriptor are as follows: Establish double concentric circles
with feature point as pole point and Ry, R, as polar radius,
as well as outer concentric circles are divided into six equal
parts. The ratio of R; to R, is 0.3. Then, the gradient cumu-
lative values for eight directions are calculated in each region
(the calculated results are used as descriptors). The discussion
of the setting of R and R» ratio and the division of peripheral
ring is described in detail in the feature point descriptor of the
next section.

The calculation range of the descriptor is small due
to the large size of the high-resolution image. It is difficult for
the descriptor to effectively describe the information near the
feature points, which could result in inaccurate feature point
matching. Therefore, it is necessary to increase the calcula-
tion range of descriptors. However, the increasing the calcula-
tion range of descriptors would lead to the complexity of cal-
culation and time cost. To solve the above problem, expanded
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(a) (b)

FIGURE 5. Descriptor down-sampling method: (a) The calculation region
is an even number column; (b) The calculation region is an odd number
column.

the calculation region and the method of down-sampling
is applied for the calculated region before establishing the
descriptor. The method of down-sampling (figure 5 (a)) is
adopted when the columns of the feature point calculation
region are even. The method of down-sampling (figure 5 (b))
is adopted as well when the number of columns is odd in the
feature point calculation region. The down-sampled image
is obtained through retained the pixel value of the black
region and discarded the pixel value of the white region. The
impact of the calculation range and down-sampling method
are analyzed in the feature point descriptor of the next section.

IV. EXPERIMENT RESULTS AND DISCUSSION

A. DATASETS

We collected some high-resolution images and three datasets
are established to evaluate the proposed algorithm.

(1) Dataset 1: The dataset contains 150 images of mobile
phones and digital cameras. The images include scenes of
buildings, mountains, cities, rivers, farmland, and so on.
These images have rigid or affine transformations. The size
of the images are 3420 pixels x 2800 pixels to 4077 pixels x
4077 pixels.

(2) Dataset 2: The dataset contains 120 pairs of UAV
images. The images include scenes of mountains, cities,
coasts, and so on. These images have rigid or affine transfor-
mations. The size of the images are 4096 pixels x 3240 pixels
and 4320 pixels x 4320 pixels.

(3) Dataset 3: The dataset contains 120 pairs of satellite
images. The images include scenes of mountains, cities, farm-
land, deserts, and so on. The images have rigid transforma-
tion. The size of the images are 5120 pixels x 5120 pixels.

To ensure the effectiveness of the proposed algorithm, two
methods are used to calculate the parameters: (1) 60% of the
images are randomly selected as the training set to calculate
the parameters of the proposed algorithm, and the remaining
40% of the images are used as the testing set. (2) 60% of the
images are randomly selected as the training and validation,
and use 5-fold cross-validation to calculate the parameters
of the proposed algorithm. While the remaining 40% of the
images are used as test set.
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B. FEATURE POINT EXTRACTION WITHOUT VALIDATION
SET

1) THE NUMBER OF FEATURE POINTS EXTRACTED

It is necessary to ensure that the stitching image has good
quality and efficiency for the number of feature points
extracted. Therefore, the following four aspects would be
analyzed: the matching rate of feature points, the descriptors
calculate region ratio, SSIM [35] and PSNR. The formula for
the ratio of descriptors calculated region is as follows:

S(U A)
i=1

Araiio = U N

19)

where, M and N are the size of the image calculated by the

phase correlation algorithm. A; is the calculation region of
n

each descriptor, S(|J X;) is the region of the union of each

feature point calcull_altion region. The larger the value, the

higher the utilization ratio of image information.

Setting different number of feature points that are
extracted, the changes of these parameters are calculated,
and the results are shown in figure 6. It can be seen from
figure 6 that the average matching rate of dataset 1, 2 and
3 increases with the increase of the number of feature points.
The growth rate increased significantly first and then slowed
down. The ratio of descriptor calculated region increases with
the increase number of feature points. The growth trend slows
down when the number reaches 750. The overall trend is to
increase first and then fluctuate for SSIM and PSNR. Four
indicators grow slowly after 750, which indicates that the
number of feature points contributes little to image stitch-
ing after reaching 750. Therefore, the number of feature
points should be set above 750. Observe the average value
of the three data sets of SSIM and PSNR. Both SSIM and
PSNR reach the maximum when the number of feature points
reaches 900. And the average matching rate and the ratio of
descriptor calculated region perform well when the number
of feature points is 900. In addition, setting a larger number
ensures good results on different datasets due to 900 signif-
icantly greater than 750. So, the number of feature points
extracted in this paper is set to 900.

2) FEATURE POINT EXTRACTION RATIO

The number of each layer of each octave is calculated accord-
ing to formula (17) after the total number of feature points
is obtained. However, o and 8 are uncertain in formula (17)
thus the different & and B impact is calculated by the setting
training to get values of o and B. As shown in figure 7,
the effect on the average match rate is only showed since
the change of o and B has no significant effect on SSIM,
PSNR and the ratio of descriptor calculated region. It can
be also seen from the figure 7 that the overall trend is to
increase first and then decrease with the increase of 8. The
average matching rate reaches the maximum when $ in the
range of 1.00-1.02. It shows that the feature points of each
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layer have the same contribution to the final matching in the
same octave in DOG. Although the average matching rate
reaches the maximum value when 8 =1.01, the value of 8
is set to 1 considering that each layer in the same octave of
DOG is equally likely to provide effective feature points. The
maximum value of the average matching rate corresponds to
« is 0.24 when B is 1 in the figure. While in the whole figure,
the average matching rate reaches the maximum when « is
0.25 and B is 1.01. The image needs to be down-sampling
when establishing the Gaussian pyramid, which results in
the size of the next octave of images being 1/4 of the pre-
vious octave. The value of « is set to 0.25 since the ratio
of the number of feature points that can be extracted should
also be 1/4.

3) FEATURE POINT EXTRACTION RANGE

Since the large size of the high-resolution image, the range
of extreme point comparison is small and the stability is poor
when the traditional SIFT algorithm is used to detect extreme
points. It may lead to too many feature points gathering in
regions with complex texture, which is not conducive to the
use of image information. Detecting extreme points from a
wider range will be more conducive to the stability of feature
points and the use of image information. While a wider
range will also lead to greater computational complexity.
The impact of different detection ranges on the matching
rate and time is analyzed to obtain a low time cost and an
appropriate detection range. The results are shown in figure 8.
The average matching rate is the lowest when the extreme
point detection range is 3 x 3 x 3 (traditional SIFT detection
range), indicating that the stability of the feature points is
poor at this time. The larger range of feature point detection,
the more information will be involved in the calculation.
The points with small differences are deleted as well as the
extracted feature points can maintain the differences in a
larger range, which makes the feature points more stable. The
average matching rate shows an overall trend of increasing
with the increase of detection range, which indicates that
the stability of feature points increases with the increase of
detection range. However, the overall growth trend slows
down when the detection range is 7 x 7x 3. The average
matching rate grows slowly in the range of 7 x 7 x 3to 11 x
11 x 3, indicating that the increase of the detection range at
this time has little effect on the average matching rate. After
the detection range is 11 x 11 x 3, the overall growth trend
is larger, and the average matching rate increases faster. The
time keep growing exponentially with the increase of detec-
tion range. The time is relatively small when the detection
range is 7 x 7 x 3. While the time is relatively large when the
detection range is after 11 x 11 x 3. Itis not conducive to the
overall efficiency of the algorithm. The detection range is set
to 7 x 7 x 3 considering the time and average matching rate.
The feature points extracted from the range of 7 x 7 x 3 is
more stable than those from the range of 3 x 3 x 3 (traditional
SIFT detection range), however they also incur more time
overhead.
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FIGURE 6. Influence of the number of feature points on the stitching result: (a) Average match rate; (b) Ratio of descriptor calculated region; (c) SSIM;

(d) PSNR.

4) RANGE OF NMS

The effects of different ranges are analyzed to determine the
range of NMS. As shown in figure 9, both the average number
of feature points extracted and matches decrease with the
increase of the NMS range. While the average number of
matches decreases slowly between 0 and 0.005. The average
matching rate and the ratio of descriptor calculation region
increased first and then decreased. And the maximum value is
0.011. A few matched feature points are not conducive to the
calculation of the projection transformation matrix of the two
images. As much as possible, more matched feature points
should be guaranteed. Therefore, priority should be given
to the number of extracted feature points and the average
matched number compared with the average matching rate
and the ratio of descriptor calculation region. The average
matching rate and the ratio of descriptor calculation region
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reach the maximum value when the NMS range ratio is
0.011. However, the number of extracted feature points and
the average matched number are poor that above value is
not considered. When the range ratio of NMS is 0.005, the
average matching rate and the ratio of descriptor calculation
region do not reach the maximum value, but it is significantly
improved compared with the method without NMS. The
number of feature points that can be extracted and matched
is relatively large, while the very small difference between
methods without NMS. We set the range ratio of NMS to
0.005 considering that the number of extracted feature points
and the number of feature point matching are more important.
At this time, the number of feature points and the number of
feature point matched perform better. The average matching
rate and the ratio of descriptor calculation region are signifi-
cantly improved compared with the method without NMS.
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C. FEATURE POINT DESCRIPTOR WITHOUT VALIDATION
SET

1) PERIPHERAL RING DIVISION AND INNER RING RADIUS
RATIO

It is analyzed that the influence of the ratio of R; to R, and
the division of peripheral rings on the matching rate of feature
points through training set. The results are shown in figure 10.
The average matching ratio is relatively low when the number
of peripheral rings is 3,4 and 5. The matching rate is relatively
high and close when the peripheral ring division is greater
than or equal to 6. Therefore, the number of peripheral rings
is set to 6 in this paper, which makes the generated descrip-
tor dimension smaller and has a good matching rate. Only
observing the line is 6 with the ring division. It can be found
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that the average matching first increases and then decreases
with the increase of the inner ring radius. The maximum value
is achieved when the ratio of the inner ring radius is 0.3.
Therefore, the ratio of the inner ring radius is set to 0.3.

2) DESCRIPTOR DOWN-SAMPLING

Four down-sampling methods are analyzed for average
matching rate and time based on the above set parameter to
verify the validity of the method. The four down-sampling
methods are: @ The method proposed in this paper (figure 5);
@ The method of down-sampling (figure 5(b)) is directly
used without parity detection; @ The sampling interval of
down-sampling is changed from 1 to 2 based on @; @ The
sampling interval of down-sampling is changed from 1 to
2 on the basis of @ The results are shown in figure 11. The
average matching rate first increases and then decreases with
the increase of the corresponding scale multiple of the feature
points. The average matching rates of down-sampling meth-
ods @ and @ are close to those of without down-sampling.
The average matching rates of down-sampling methods @
and @ decrease greatly. It indicates that the description of
feature points is incomplete with a larger sampling interval,
resulting in a lower matching rate of feature points. When the
corresponding scale multiple of the feature points is 10. The
average matching rate reaches the maximum in the methods
without using down-sampling, methods @ and @ The average
matching rate of method @ is higher than that of method
@, which shows that the proposed de sampling method is
effective. As shown in figure 11(b), the time increases with
the corresponding scale multiple of the feature points. The
gap between the four down-sampling methods and the with-
out down-sampling method increases gradually. The larger
the sampling interval, the fewer data to be calculated and
the smaller the time cost. In addition, the time of sampling
method @ is slightly longer than that of sampling method
®@. And that of sampling method ® is longer than that of
sampling method @. Above results are caused since mainly
the need of parity detection to select different down-sampling
methods. To sum up, the corresponding scale multiple of the
feature points is set to 10 when calculating the descriptor. The
proposed down-sampling method guarantees a high matching
rate with less time overhead. Therefore, the proposed method
is effective.

D. FEATURE POINT EXTRACTION WITH VALIDATION SET
1) THE NUMBER OF FEATURE POINTS EXTRACTED

Setting different number of feature points that are extracted,
the changes of these parameters are calculated. The results
on the training set are shown in figure 12, and the results
on the validation set are shown in figure 13. It can be seen
from figure 12 that the average matching rate of 5-fold cross-
validation increases with the number of feature points. The
growth rate increased significantly first and then slowed
down. The ratio of descriptor calculation region for 5-fold
cross-validation increases with the number of feature points.
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The growth trend slows down when this number reaches 750.
The overall trend is to increase first and then fluctuate for
SSIM and PSNR. SSIM and PSNR achieve good results when
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the number of feature points is 750 and 900 in the validation
set, but 900 is better than 750 in the average matching rate and
the ratio of the descriptor calculation region. Depending on
the performance of the validation set, the number of feature
points can be set to 900. Figure 13 shows that the overall
variation of the four parameters is similar to that of the
training set. When the number of feature points is 900, four
parameters obtained good results, and the maximum values of
SSIM and PSNR are reached. Therefore, the four parameters
on the training and validation sets perform well when the
number of feature points is set to 900.

2) FEATURE POINT EXTRACTION RATIO

The results of the 5-fold cross-validation for « and S are
shown in figure 14. It can be seen from figure 14 that the
average matching rate of the 5-fold cross-validation reached
the maximum when 8 is 1.00-1.02 in the training set. The
value of B is set to 1 considering that each layer in the same
octave of DOG is equally likely to provide effective feature
points. In the validation set, the average match rate achieved
good results when 8 isl. When g is 1.00-1.02, the average
matching rate reaches the maximum in three cross-validation
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experiments. When S is 1.16 and 1.17 respectively, the aver-
age matching rate reaches the maximum value in the two
cross-validation experiments. Therefore, the value of 8 Set
to 1, it performs well in the training set and validation set.
In the training set, when § is 1, the maximum of the average
match rate corresponds to « is 0.24. Considering that the size
of the next octave is 1/4 of the previous octave in the DOG, the
value of « is set to 0.25. In the validation set, when « is 0.24,
the average matching rate achieved good results. Therefore,
the value of « set to 0.25, it performs well in the training set
and validation set.

3) FEATURE POINT EXTRACTION RANGE

The influence of different detection ranges on the matching
rate and time is analyzed through the 5-fold cross validation,
and the results are shown in figure 15. In the training set,
the average matching rate is the lowest when the extreme
point detection range is 3 x 3 x 3. The average matching
rate generally shows a trend of increasing with the detection
range, which indicates that the stability of the feature points
increases with the detection range. However, the overall
growth trend slowed down when the average matchrateis 5 x
5 x 3. It shows that the increase of detection range has little
effect on the average matching rate at this time. Therefore,
the detection range can be set to 5x 5 x 3 based on the
training set. In the validation set, the overall growth trend
also slowed down when the average match rate is 5 x 5 x
3. In terms of time, the time increases exponentially with
the increase of detection distance in training set and test set.
When the detection range is 5x 5 x 3, the average matching
rate achieves good performance in the validation set, and the
time cost is small. Therefore, set the detection range to 5 x
5 x 3. At this time, both training set and validation set can
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achieve good results. From 5 x 5 x 3 The feature points
extracted by the range are more stable than those extracted
by the traditional SIFT algorithm, but they also incur more
time overhead.

4) RANGE OF NMS

The effects of different ranges are analyzed using a 5-fold
cross-validation, as shown in figure 16 and figure 17. In the
training set, the results of the 5-fold cross-validations are
similar to the results of the method without validation set,
so we set the range ratio of NMS to 0.005 based on the
training set. In the validation set, the number of feature points
and average matched feature points perform well when the
NMS is set to 0.005. In terms of the average matching rate
and the ratio of descriptor calculation region, better results
are obtained than those without NMS. So set the NMS range
ratio to 0.005.

E. FEATURE POINT DESCRIPTOR WITH VALIDATION SET
1) PERIPHERAL RING DIVISION AND INNER RING RADIUS
RATIO

As shown in figure 18, the ratio of R to R, and the influence
of the division of the periphery ring on the matching rate of
feature points are analyzed through 5-fold cross-validation.
In the five cross-validations of the training set, the average
matching rate is relatively low when the number of peripheral
rings is 3, 4, and 5. The matching rate is relatively high and
close when the peripheral ring division is greater than or equal
to 6. Observation line 6 shows that the maximum value is
reached when the ratio of inner ring radius is 0.2 and 0.3.
In the five experiments, 0.2 appeared once and 0.3 appeared
four times. The average value of the five experiments is
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FIGURE 12. The influence of the number of feature points in the training set: Average match rate; (b) Ratio of descriptor calculated region; (c) SSIM;

(d) PSNR.

close to the results of the five experiments. Based on the
training set, the number of peripheral ring and the radius
ratio of inner rings can initially set to 6 and 0.3. In the five
cross-validation experiments of the validation set, the average
matching rate is close when the number of peripheral rings is
greater than or equal to 6. Therefore, it is reasonable to set
the number of peripheral rings to 6. Observation line 6, the
maximum value is reached when the radius ratio of inner ring
is 0.2, 0.3, 0.4 and 0.5. In the five experiments, 0.2 appeared
twice, and the rest appeared once. From the average value
of five cross-validation experiments, the result of the inner
ring radius ratio of 0.3 is slightly better than that of 0.2.
It shows that the number of peripheral rings is 6 and the radius
ratio is 0.3, which can achieve good results, and its setting is
reasonable.
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2) DESCRIPTOR DOWN-SAMPLING

The method without validation set have shown that the
method of step=2 is ineffective, so only the method of
step=1 is analyzed in 5-fold cross validation. In addition,
the experiments without validation set shows the change
of time cost, and the results of a five-fold cross-validation
are the same as those of previous experiments, so the time
overhead in this section is not analyzed. The results of the
descriptor down-sampling method are shown in figure 19.
Figures 19 (a) and (b) show that in the training set, the maxi-
mum values are reached when the corresponding scale multi-
ple of the feature points are 10 and 12 in method @ of 5-fold
cross-validation experiment. The effect of 12 is better than
the effect of 10 combined with the average values of five
experiments. Based on the training set, the corresponding
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scale multiple of the feature points is set to 12. In the val-
idation set, when the corresponding scale multiple of the
feature points is 12, the average matching rate achieved
good resultant, and the average value of five experiments
reached the maximum value. Therefore, it is reasonable that
set the corresponding scale multiple of feature points to 12.
Figures 19 (c) and (d) show that method @ achieves good
results when the corresponding scale multiple of the feature
points is 10 in the training set and validation set. As shown
in figures 19 (e) and (f), the maximum value of method @
is greater than the maximum value of method @, which
shows that the parity validation method class of method @
effectively improves the average matching rate. In addition,
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when the corresponding scale multiple of the feature points
is 12, the average matching rate of method @ is close to that
of method of without down-sampling, but the time overhead
of method @ is smaller, which shows that method @ has a
good effect and can effectively reduce the time overhead.
Therefore, the method @ will be used and the corresponding
scale multiple of the feature points will be set to 12.

F. ANALYSIS OF EXTRACTION METHODS AND
DESCRIPTORS

To test the effect of the feature points extracted by the
proposed algorithm, the feature points are extracted on the
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FIGURE 14. Effect of feature point extraction ratio on final matching results: (a), (c), (), (g), (i) and (k): training set;
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testing set using the proposed algorithm without validation of SIFT. The results are shown in table 1. The average value
set, the proposed algorithm with validation set and SIFT, of the parameters used in the proposed algorithm without
respectively. And the feature points are matched by descriptor validation set is better than that of the SIFT algorithm, and the
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variance of each aspect is very small. Therefore, the proposed
algorithm can extract feature points better than the SIFT
algorithm in the case without validation set. In the case with

validation set, the average value of parameters used in the
proposed algorithm is better than that of the SIFT algorithm,
and the variance of each aspect is very small. Compared with
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TABLE 1. Comparison of feature point extraction methods.

Ratio of descriptor

. . . Rough matching rate PSNR SSIM
Algorithm calculation region
Average  Std.Dev Average Std.Dev Average Std.Dev Average Std.Dev
SIFT 0.3367 0.0941 0.3964 0.2690 33.4373 16.7694 0.8817 0.2807
Proposed algorithm
. o 0.3915 0.0901 0.4989 0.2350 33.7110 16.4891 0.8845 0.2488
without validation set
Proposed algorithm
0.3913 0.0904 0.5000 0.2328 33.7404 16.1530 0.8855 0.2496

with validation set

the case without validation set, the parameters calculated with
validation set have better effect in rough matching rate, PSNR
and SSIM. Therefore, parameters calculated with validation
set can extract feature points better than those calculated
without validation set.

Likewise, to test the effectiveness of the descriptor of
the proposed algorithm, the feature points are extracted on
the testing set using the proposed method. And then feature
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points are also matched using the descriptor of the proposed
algorithm and the descriptor of SIFT, respectively. As shown
in table 2, in the case without validation set, the average
value of descriptor of SIFT is larger in terms of rough match-
ing rate. However, the average value of the descriptor of
the proposed algorithm is superior to the SIFT descriptor
in mismatch rate, PSNR and SSIM. It indicates that the
descriptor of the proposed algorithm has better performance,
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FIGURE 16. Influence of the range of NMS in the training set: (a) Average match rate; (b) Number
of feature points; (c)Average number of matched feature points; (d) Ratio of descriptor calculated

region.

TABLE 2. Comparison of descriptors.

Algorith Rough matching rate Mismatch Rate PSNR SSIM
orithm
& Average Std.Dev Average Std.Dev Average Std.Dev Average Std.Dev
Proposed SIFT 0.4989 0.2350 0.2976 0.3588 33.7110 16.4891 0.8845 0.2488
method without
o Proposed 0.4961 0.2318 0.2837 0.3484 34.2229 15.7710 0.9026 0.2353
validation set
Proposed SIFT 0.5000 0.2328 0.2967 0.3570 33.7404 16.1530 0.8855 0.2496
method with
Proposed 0.4953 0.2321 0.2801 0.3419 34.1364 15.6579 0.8949 0.2106

validation set

which can effectively remove mismatches in rough matching.
The variance of each aspect is very small. This shows that
the fluctuation in all aspects is very small. Therefore, the
descriptor of the proposed algorithm has better performance
than the descriptor of SIFT. In the case with validation set, the
results are similar to those without validation set. In terms of
rough matching rate, the case without validation set has better
performance due to the larger calculation range of the case
with validation set, which can better remove mismatches. The
average value and variance of the case without validation
set are greater than those of the case with validation set in
terms of mismatch rate, PSNR and SSIM. It indicates that the
comprehensive performance without validation set is better,
but the relative fluctuation is large.

42028

G. TIME OF IMAGE STITCHING
Three pairs of representative images in the testing set are
selected for display to verify the time improvement of the
proposed algorithm through reference [26], [28], [36], SIFT
algorithm, SURF algorithm, the proposed algorithm with val-
idation set and the proposed algorithm without validation set.
The result of rough matching is shown in figure 20. The size
of the first pair of images is 5120 pixels x 5120 pixels. The
size of the second pair of images is 3500 pixels x 3500 pixels.
And the size of the third pair of images is 3800 pixels x
3456 pixels.

Figure 20 shows that the proposed algorithm has the min-
imum number of incorrect matches, which indicates that
the proposed algorithm can effectively extract and describe
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FIGURE 17. Influence of the range of NMS in the validation set: (a) Average match rate;
(b) Number of feature points; (c)Average number of matched feature points; (d) Ratio of

descriptor calculated region.

feature points. The method of reference [28] has a relatively
small number of incorrect matches, while the remaining algo-
rithms have a huge number of incorrect matches. The result
of the correct match is obtained by the RANSAC algorithm,
which is shown in figure 21. As shown in figure 21, the
number of feature points matched by references [26], [28],
and [36] and SIFT algorithm is too large, which indicates
that the number of feature points detected by this algorithm is
very large. The total number of feature points extracted is sig-
nificantly reduced by the proposed algorithm. Although the
number of feature point matches of the proposed algorithm
is also significantly reduced, the proposed algorithm has a
higher correct match rate than other algorithms.

For the 3 pairs of images in figure 20, the time cost is
calculated using the five algorithms mentioned above, and
the result is shown in table 3. Reference [36] applied Census
and NCC algorithms in the feature point matching stage.
Therefore, there is not the time of descriptor generation.

As can be seen from table 3, the traditional SIFT algorithm
detects many feature points, which results in a large amount
of computation and time overhead in each phase of the SIFT
algorithm. The method of reference [26] has a relatively small
number of feature points compared with the traditional SIFT
algorithm. Although the time cost of generating the descriptor
is significantly higher, the generated descriptor dimension
is smaller. The time cost of feature point matching phase is
significantly reduced. And the total time is relatively lower.
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Reference [28] shows a total time is relatively low due to the
relatively low time cost in descriptor generation and feature
matching. The method in reference [36] shows fewer feature
points and the fast overall speed relatively. However, the total
time is still large. The SURF algorithm has a few feature
points, and the matching phase takes less time because the
descriptor dimension is small. The overall time of the SURF
algorithm is relatively small.

The proposed algorithm reduces the computation of the
non-overlapping region of the image through the phase cor-
relation algorithm, thus avoids unnecessary time. For the
feature point detection, although the NMS and the range
of extreme point detection is increased, the number of fea-
ture points is limited by algorithm. Therefore, relatively
small-time decrease the time cost in the subsequent descrip-
tor generation and matching stages. The proposed descrip-
tor dimension is lower in descriptor generation and feature
matching, which further reduces the time overhead of the
matching phase. In the case without validation set, compared
with the other five algorithms, the proposed algorithm in each
stage achieved the least time, which is 2-3 orders of magni-
tude faster than the SIFT algorithm. The proposed algorithm
also achieved good results in the case with validation set.
The total time of the proposed algorithm in the two cases
is close, accounting for only 0.13%, 0.3% and 0.18% of the
SIFT algorithm. Compared with the case without validation
set, the case with validation set takes less time to detect
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FIGURE 18. Influence of peripheral ring division and inner ring radius ratio on feature points: (a), (c), (e), (g).
(i) and (k): training set; (b), (d), (f), (h), (j) and (I): validation set.

feature points. More time is spent to generate descriptors
due to the smaller detection range of feature points in the
case of validation set, while the calculation range of descrip-
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tors is larger. Therefore, in both cases, the proposed algo-
rithm greatly reduces the time cost of high-resolution image

stitchin

g.
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FIGURE 18. (Continued.) Influence of peripheral ring division and inner ring radius ratio on feature points:
(@), (<), (), (g). (i) and (k): training set; (b), (d), (f), (h), (j) and (I): validation set.

H. IMAGE STITCHING QUALITY have completed image stitching. As shown in figure 23, the
The stitching results of the three pairs of images in figure 22~ method of reference [36] has some stitching traces in image
and figure 23. It can be seen from figure 22 that all algorithms pair 1. The remaining algorithms have no stitching traces
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FIGURE 19. Influence of different down-sampling methods: (a): down-sampling based on parity detection in
training set; (b): down-sampling based on parity detection in validation set; (c): down-sampling without parity
detection in training set; (d): down-sampling without parity detection in validation set; (e): Comparison of
average values of 5-fold cross-validation in training set; (f): Comparison of average values of 5-fold
cross-validation in validation set.

and achieve good visual stitching results. Additionally, the pairs of image stitching are calculated in figure 20 to further
rough matching rate, mismatch rate, SSIM and PSNR of three verify the effect of the proposed algorithm on image stitching
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FIGURE 20. Result of rough matching (The red line indicates incorrect matches, while the blue line indicates correct matches): (a) Reference [26];
(b) Reference [28]; (c) Reference [36]; (d)SIFT; (e)SURF; (f) Proposed algorithm without validation set; (g) Proposed algorithm with validation set.
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FIGURE 21. Correctly matched results: (a) Reference [26]; (b) Reference [28]; (c) Reference [36]; (d)SIFT; (e)SURF; (f) Proposed algorithm without
validation set; (g) Proposed algorithm with validation set.
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TABLE 3. Comparison of image alignment times.

. Number of feature Time of phase correlation Time of feature Time of descriptor Time of feature  Total
Images Algorithm . . . . . . . .
points algorithm (s) point detection (s)  generation (s)  point matching (s) time (s)
Reference [26] 136147,149953 32.72 192.74 1501.84 1727.30
Reference [28] 63022,62888 1.34 11.09 13.74 1006.88 1033.05
Reference [36] 55788,57830 15.61 3050.20 3065.81
SIFT 176704, 193103 11.55 26.69 9855.13 9893.37
. SURF 60338, 64016 42.38 41.70 538.16 622.24
Image pair 1
Proposed algorithm
. o 1003,1003 1.34 6.13 0.38 5.08 12.93
without validation set
Proposed algorithm
. L 1003,1004 1.34 6.13 0.52 5.06 13.05
with validation set
Reference [26] 62642,55273 13.10 29.76 251.90 294.76
Reference [28] 41916,41937 8.73 4.61 362.64 375.98
Reference [36] 22743,22765 5.73 546.85 570.57
SIFT 103620,104105 14.32 10.88 2625.22 2650.42
. SURF 41493,37116 13.48 28.48 211.89 253.85
Image pair 2
Proposed algorithm
. o 1111,1117 0.66 4.51 0.45 2.38 8.00
without validation set
Proposed algorithm
. - 1111,1117 0.66 4.28 0.54 2.40 7.88
with validation set
Reference [26] 68582,77995 13.34 36.64 378.66 428.64
Reference [28] 55538,55495 0.72 13.02 10.44 1064.26 1088.44
Reference [36] 31318,31791 6.57 941.93 948.5
SIFT 144612,160476 18.28 14.92 4763 4796.2
Image pair 3 SURF 35889,39745 19.70 28.16 210.42 258.28
Proposed algorithm
. Lo 1025,1026 0.72 5.03 0.37 2.61 8.73
without validation set
Proposed algorithm
1025,1026 0.72 4.87 0.46 2.56 8.61

with validation set

quality. The results are shown in table 4. The reference [28]
achieved the largest value in the rough matching rate of fea-
ture points, which indicates that the utilization rate of feature
points detected is better. In both cases, the proposed method is
only lower than that in reference [28]. And the utilization rate
of feature points detected is obviously superior to the other
four algorithms, which shows that it has good robustness in
the extracted feature points. The overall mismatch rate of the
proposed algorithm is very low. The proposed algorithm has
the lowest mismatch rate without a validation set. This indi-
cates that the reliability is excellent applying the new descrip-
tor. Reference [36] shows the best results in the aspects of
SSM and PSNR. There is no significant difference between
the proposed algorithm, reference [26] and [36], SURF and
SIFT. The quality of image stitching is improved less when
feature points are too many. The proposed algorithm has a
good stitching effect.

I. ALGORITHM PERFORMANCE TEST
Moreover, five algorithms are tested on testing set to analyze
the effectiveness of the algorithm and the results are shown
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in tables 5-7. In tables 5-7, mismatched images do not par-
ticipate in subsequent parameter calculations. Reference [36]
shows the best effect in terms of SSIM and PSNR. While the
stitching effect of new algorithm is slightly less than that of
SIFT algorithm. In the absence of validation set, the proposed
algorithm, reference [28] and SIFT have the best performance
for the number of mismatched image pairs. For mismatch
rate, the new algorithm has the best performance in test sets
1 and 2 of datasets. Reference [28] has the best performance
in test set of dataset 3, however, it has little gap with the
new algorithm. This shows, the new algorithm has the best
performance combining the results of above three datasets.
The new algorithm achieves an excellent performance in
consideration of the data of the number of mismatched image
pairs and mismatch rate. It shows that the new algorithm can
extract feature points effectively. The extracted feature points
have good stability. And the proposed descriptor also has
good description ability. The time cost of the new algorithm
is significantly better than the other five algorithms. The
average time (9.60s, 13.46s and 15.81s) is 0.86%, 0.43%
and 0.10% respectively of the SIFT algorithm. The overall
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FIGURE 22. Results of image stitching: (a) Reference [26]; (b) Reference [28]; (c) Reference [36]; (d)SIFT; (¢)SURF; (f) Proposed algorithm without
validation set; (g) Proposed algorithm with validation set.
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FIGURE 22. (Continued.) Results of image stitching: (a) Reference [26]; (b) Reference [28]; (c) Reference [36]; (d)SIFT; (e)SURF; (f) Proposed algorithm
without validation set; (g) Proposed algorithm with validation set.

TABLE 4. Comparison of image stitching quality.

Images Algorithm Rough matching rate ~ Mismatch rate SSIM PSNR
Reference [26] 35.81%,32.51% 32.71% 0.9968 40.2294
Reference [28] 58.38%,58.51% 1.90% 0.9986 40.2294
Reference [36] 29.43%,28.39% 58.36% 0.9995 44.6623
SIFT 36.18%,33.11% 13.94% 0.9986 40.2308
Tmage pair 1 SURF 30.26%,28.52% 11.13% 0.9986 40.2288
Proposed algorithm
) T 66.50%,66.50% 1.37% 0.9986 40.2342
without validation set
Proposed algorithm
) T 66.60%,66.53% 2.99% 0.9986 40.2350
with validation set
Reference [26] 39.44%,44.69% 15.57% 0.9981 36.3424
Reference [28] 73.84%,73.81% 4.85% 0.9981 36.3427
Reference [36] 39.08%,39.03% 29.06% 0.9995 40.4470
SIFT 44.70%,44.49% 11.49% 0.9981 36.3537
Tmage pair 2 SURF 34.33%,38.36% 19.78% 0.9981 36.3998
Proposed algorithm
) T 55.00%,54.70% 0.65% 0.9981 36.3459
without validation set
Proposed algorithm
) - 55.26%,54.96% 1.14% 0.9981 36.3451
with validation set
Reference [26] 76.40%,67.18% 12.84% 0.9994 44.4505
Reference [28] 99.30%,99.37% 0.007% 0.9994 44.4505
Reference [36] 57.87%,57.01% 5.22% 0.9998 48.4485
SIFT 66.88%,60.27% 2.54% 0.9994 44.4505
Image pair 3 SURF 66.36%,59.93% 1.9% 0.9994 44.4501
Proposed algorithm
) T 74.73%,74.66% 0% 0.9994 44.4500
without validation set
Proposed algorithm
) - 74.82%,74.75% 1.3% 0.9994 44.4499
with validation set
VOLUME 11, 2023 42037
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FIGURE 23. Details of stitched images: (a) Stitched image detail regions (The red box regions); (b) Reference [26]; (c) Reference [28];

(d) Reference [36]; (e)SIFT; (f)SURF; (g) Proposed algorithm without vali

speed of new algorithm reaches 2-3 orders of magnitude
faster than that of SIFT algorithm. Meanwhile, the smallest
standard deviation is obtained applying new algorithm, which
indicates that our algorithms presented excellent performance
on different images.

42038

dation set; (h) Proposed algorithm with validation set.

Compared with the method without validation set, the
method with validation set is better in terms of SSIM and
PSNR, but worse in terms of mismatch rate and time. The
method with validation set has a small detection range of fea-
ture points, resulting in less stable extracted feature points and
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FIGURE 23. (Continued.) Details of stitched images: (a) Stitched image detail regions (The red box regions); (b) Reference [26]; (c) Reference [28];

(d) Reference [36]; (e)SIFT; (f)SURF; (g) Proposed algorithm without validation set; (h) Proposed algorithm with validation set.

TABLE 5. Algorithm comparison on dataset 1.

Number of Mismatch rate SSIM PSNR Times(s)
Algorithm mismatched
. Average Std.Dev Average Std.Dev Average Std.Dev Average Std.Dev
Image pairs
Reference [26] 20 0.3131 0.2093 0.9782 0.0602 40.4252 13.2867 167.02 231.93
Reference [28] 8 0.1277 0.2071 0.9459 0.1026 36.1885 14.7913 240.21 409.75
Reference [36] 7 0.2493 0.2275 0.9638 0.0895 40.0933 15.0634 281.68 205.61
SIFT 6 0.2211 0.2334 0.9449 0.1035 36.0014 15.0277 1110.38 1320.58
SURF 9 0.2331 0.2546 0.9544 0.0826 36.9501 15.0996 117.42 129.37
Proposed algorithm
. L 4 0.0982 0.1730 0.9566 0.0824 36.1878 12.8835 9.64 2.26
without validation set
Proposed algorithm
. L 5 0.1471 0.2101 0.9624 0.0700 36.5313 12.2755 14.41 4.59
with validation set
TABLE 6. Algorithm comparison on dataset 2.
Number of Mismatch rate SSIM PSNR Times(s)
Algorithm mismatched
. Average Std.Dev Average Std.Dev Average Std.Dev Average Std.Dev
Image pairs
Reference [26] 11 0.4646 0.3319 0.8949 0.1160 30.2809 14.9259 198.70 184.12
Reference [28] 3 0.4327 0.3820 0.8539 0.1594 29.7258 15.7530 830.05 1160.46
Reference [36] 9 0.4796 0.3848 0.9519 0.0633 35.7036 15.0437 3122.22 2896.11
SIFT 6 0.4595 0.3824 0.8823 0.1300 30.8722 15.7065 3151.13 2932.14
SURF 6 0.4834 0.3915 0.8824 0.1281 30.6260 15.0506 250.95 237.29
Proposed algorithm
. L 7 0.3401 0.3350 0.8796 0.1307 30.8895 14.9287 13.46 2.97
without validation set
Proposed algorithm
9 0.3858 0.3813 0.8919 0.1224 31.1904 15.2400 18.81 5.64

with validation set

higher mismatch rate. The method of validation set calculates
descriptors over a larger range, resulting in greater time costs.

To sum up, the method without validation set has bet-
ter performance in terms of time cost and mismatch rate,
while the method with validation set has better perfor-
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mance in terms of SSIM and PSNR. Both methods have
achieved fast speed and good splicing quality. This shows
that the new method is feasible, which has certain applica-
tion value in the field of high-resolution image accelerated

stitching.
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TABLE 7. Algorithm comparison on dataset 3.

Number of Mismatch rate SSIM PSNR Times(s)
Algorithm mismatched
R Average Std.Dev Average Std.Dev Average Std.Dev Average Std.Dev
Image pairs
Reference [26] 1 0.3867 0.1643 0.9768 0.0049 42.1722 12.6077 767.40 782.60
Reference [28] 2 0.0426 0.0428 0.9968 0.0050 43.3331 11.6035 1255.05 1664.70
Reference [36] 0 0.1186 0.1083 0.9991 0.0009 48.6951 11.6276 2728.34 941.26
SIFT 1 0.1163 0.0481 0.9970 0.0049 42.6568 11.1931 15212.28 6465.62
SURF 0 0.0835 0.0481 0.9971 0.0049 42.6216 12.2533 394.16 439.83
Proposed algorithm
. L 2 0.0599 0.0972 0.9970 0.0049 42.5688 12.5432 15.81 2.27
without validation set
Proposed algorithm
. L 2 0.1289 0.1745 0.9971 0.0049 42.6776 12.5191 22.63 3.25
with validation set
V. CONCLUSION [7]1 E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
In conclusion. a new fast stitching algorithm for high- alternative to SIFT or SURE” in Proc. Int. Conf. Comput. Vis., Nov. 2011,
lution image i ted based on SIFT. The overl pp. 23642571
resolution 1mage 1S presented based on - 1he overlap [8] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust
region of images is computed by phase correlation algo- invariant scalable keypoints,” in Proc. Int. Conf. Comput. Vis., Nov. 2011,
rithm to reduce the non-overlapping region calculations. The pp. 2548-2555.
mor 1 n r iall istri in hen [9] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
ore stable a_d better spatially dist bl_lted obtained whe Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
expand ('ietectlon range of extremg p01pts and add NMS. [10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
Meanwhile, the range of the descriptor is calculated by the features (SURF),” Comput. Vis. Image Understand., vol. 110, no. 3,
method of down-sampling, and the circular descriptor is con- pp. 346-359, Jun. 2008. '
structed with only 56-dimensional. This indicates that the [11] 2. Zhang, L. Wang, W. Zheng, L. YmZ,Riﬂu’ and B. Yang, "Endoscope
. o . . . image mosaic based on pyramid ORB,” Biomed. Signal Process. Control,
total descriptor calculation is faster in lower dimensions by vol. 71, Jan. 2022, Art. no. 103261.
the new algorithm_ Importantly, the new alg()rithm shows [12] J. Xu, “Fast image registration method based on Harris and SIFT algo-
the greatly decreased time cost and relatively good results rithm,” Chin. Opt., vol. 8, no. 4, pp. 574_‘5581’2015' )
.. itchi li . h . £ cal [13] V. S. Bind, P. R. Muduli, and U. C. Pati, ‘A robust technique for feature-
In 1mage stitching quality since the average time of calcu- based image mosaicing using image fusion,” in Proc. Int. J. Adv. Comput.
lations (9.60s, 13.46s and 15.81s) is 2-3 orders of magnitude Res., Mar. 2013, p. 263.
faster than the SIFT algorithm. A good stitching quality and [14] P. Kang and H. Ma, “An automatic airborne image mosaicing method
llent f hi d for hich lution i based on the SIFT feature matching,” in Proc. Int. Conf. Multimedia
€Xxce .61'1 pertormance a're ac ICYC or high-resolution 1mage Technol., Jul. 2011, pp. 155-159.
applylng the new algorlthm. It is also proved that our algo- [15] A. Laraqui, A. Saaidi, and K. Satori, “MSIP: Multi-scale image pre-
rithm has the potential application value in real-time image processing method applied in image mosaic,” Multimedia Tools Appl.,
stitching, especially decrease of time cost. However, the vol. 77, no. 6, pp. 75177537, Mar. 2018. o
. .. . . L. [16] M. Yan, D. Qin, G. Zhang, P. Zheng, J. Bai, and L. Ma, “Nighttime image
result of the proposed algorlthm In 1mage StltChmg quahty 18 stitching method based on guided filtering enhancement,” Entropy, vol. 24,
unsatisfactory, especially when processing UAV images data. no. 9, p. 1267, Sep. 2022.
Therefore, in further work, we will research the improvement (171 M. Gong, S. Zhao, L. Jiao, D. Tian, and S. Wang, “A novel coarse-to-fine
£ titchi lity. On th hand il try t scheme for automatic image registration based on SIFT and mutual infor-
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