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ABSTRACT Wound care is a critical aspect of healthcare that involves treating and managing various types
of wounds, typically caused by injuries, surgery, or chronic diseases such as diabetes. Chronic wounds can
be particularly challenging to manage and often require 3 to 6 months of long-term care. In a few instances,
healing durations are highly unpredictable and can vary depending on the severity of the wound, the patient’s
overall health, and other factors such as medication, nutrition, age, comorbidity, environment, etiology,
and immune system function. A chronic wound can significantly impact the quality of life, causing pain,
discomfort, limited mobility, higher healthcare cost, and even mortality in severe cases. Effective wound
care is crucial for promoting complete and timely healing and reducing the risk of complications that may
lead to amputation, infection, and other potentially life-threatening outcomes. This work aims to develop
a system that automizes to determine the wound boundaries leveraging the DeepLabV3+SE, measures the
wound characteristics such as size and area, and wound shape using a pipeline of morphological operations
and connected component analysis modules. The proposed system’s performance was evaluated using the
publicly available dataset. Results demonstrate that the DeepLabV3+SE has outperformed with significantly
high dice and IOU scores of 0.923 and 0.924, respectively, compared with several state-of-the-art methods.

INDEX TERMS Connected component analysis, DeepLabV3+SE, morphological operator, squeeze and
excite, wound assessment, wound care.

I. INTRODUCTION
The quality of life in millions of people worldwide have
significantly reduced as they suffer from acute and chronic
non-healing wounds [1]. The periodic examination and
effective treatment of the wounds are crucial for complete and
early wound recovery [2]. Ignoring this will result in severe
complications like limb amputations and death [3], [4]. Also,
the phases of healing in chronic wounds do not progress in
an orderly and prompt manner resulting in hospitalization
and requiring additional treatment, thereby increasing the
cost of health care services annually. This cost in the United
States alone was estimated to be around $96.8B [3]. Given
this, developing a wound management system has become
essential for chronic wound treatment.
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A fundamental metric for a wound management system
is wound quantification, whose accuracy influences the
diagnosis and effective treatment by the healthcare profes-
sionals [5], [6]. Several research findings have highlighted
the importance of wound measurement that aids in evalu-
ating the healing trajectory, evaluating the effectiveness of
the treatments, and finding the future treatment plan for
the patients, to name a few [7], [8], [9]. Specifically, the
wound area measurement provides an effective and reliable
predictor of complete wound healing [9] process, like rate
of closure, time of closure, and other insights. Usually, most
healthcare professionals employ visual assessment or 1D
techniques like a ruler, flexible ruler, or adhesive methods
that hurt patients due to infection risks and discomfort
[5], [10]. This manual process could be more precise, but it
is time-consuming, and prone to intra-varability. The above
issues could be overcome through standardization. The first
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aspect of standardization is wound digitization, followed by
wound segmentation and quantification. The second aspect is
automatization by exploiting image processing and computer
vision techniques paired with artificial intelligence (A.I.) to
monitor wound healing at affordable prices continuously.
Covid-19 pandemic-fueled growth pushes the healthcare
sectors towards digitization. However, due to the complex-
ities involved in the wound digitization process, such as
variable lighting conditions and time constraints in clinical
laboratories [11], wound segmentation is still a demanding
issue.

Currently, a few commercial products like Planimator
app [12], Visitrak device [13], and Silhouette Mobile
devices [14] are available that capture the wound image
using a dedicated camera system with an in-built algo-
rithm for wound assessment. However, these specialized
system faces the following challenges: a) Affordability−not
all clinics have access due to its cost, b) In-patient
visit−still demands the patient’s visit to the clinic; and c)
Accuracy−measurements are sporadic in nature. Theoreti-
cally, various research groups have attempted to solve the
segmentation issue through special sessions like the Foot
Ulcer challenge or self−initiated wound segmentation work.
Based on the technical adoption aspect, wound segmentation
can be categorized into traditional [15], [16], [17], [18],
[19] and deep learning(DL) approaches [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30]. The first
category focuses on combining image processing techniques
with or without machine learning approaches via hand-
crafted features on wound images. Song and Sacan [19]
used the Multi-Layer Perceptron (MLP) and a Radial Basis
Function (RBF) neural network for the identification of
wound region. Hani et al. [15] generated hemoglobin-based
images by applying an Independent Component Analysis
(ICA) algorithm on the pre-processed RGB images. The
generated images segment the granulation tissue from the
wound images using K-means clustering. The granulation
tissue growth on the wound bed is used to assess the early
stages of wound healing. Hettiarachchi et al. [16] applied
energy minimizing discrete dynamic contour algorithm on
the saturation plane of hue-saturation-value (HSV) color
space of the image. Then the enclosed contour is flood
filled to estimate the wound area. Fauzi et al. [17] used
a modified HSV color space input image and generated
a Red-Yellow-Black-White probability map, which aided
the segmentation process. The 3D transformation approach
attempted by Liu et al. [18] for wound measurement using
an integrated approach of structure from motion (SFM) and
least squares conformal mapping (LSCM). In general, image
processing−based wound segmentation has bottlenecks such
as: i) Features parameter depends on the user or expertise
experience. So, they are prone to inter and intra-variabilities,
ii) the hand-crafted features are affected by illumination,
image resolution, skin pigmentation, camera angle, and
so, and iii) they are not immune to severe pathologies
and rare cases that are very impractical from a clinical

perspective [20], resulting in an inferior performance for the
hand-crafted feature approach.

Unlike traditional machine learning and image processing-
based methods, which make decisions based on hand-
crafted features, the DL-based methods combine feature
extraction and decision-making. The superior performance of
AlexNet [31] on ImageNet classification has created much
traction among the research community, including but not
limited to semantic segmentation [32], [33], and medical
image analysis [34]. Wang et al. [35] used the vanilla
fully convolutional neural network (FCN) architecture [32]
to estimate the wound area by segmenting the wounds.
Then, the estimated wound areas and the corresponding
images are considered time-series data to predict the wound
healing progress using a Gaussian regression function model.
Goyal et al. [36] employed the FCN-16 architecture to
classify the pixels, whether it belongs to the wound or not,
resulting in a wound segmentation. Liu et al. [37] study
attempted to replace vanilla FCN decoder with a skip-
layer concatenation up-sampled with bilinear interpolation
and appended pixel-wise softmax layer at the last layer
to get the segmented image. Lu et al. [38] proposed a
color correction and convolutional neural network (CNN)
model with a two-step pre-processing pipeline to segment the
overall wound without tissue segmentation. Zahia et al. [24]
proposed a CNN-based model for tissue segmentation of
pressure injury wounds with the help of manual pre-
processing steps. Godeiro et al. [39] proposed a watershed
algorithm for wound segmentation and explored different
CNN architectures like U-Net, Seg-Net, FCN8, and FCN32,
for the wound tissue classification. Goyal et al. [26]
proposed a diabetic foot ulcer network (DFUNet) to classify
healthy skin versus diabetic foot ulcers. Shenoy et al. [27]
proposed a deep wound algorithm using CNN to classify
nine different wound images. Pholberdee [23] proposed a
DL and data augmentation model to segment each wound
tissue separately. Cui et al. [28] proposed a CNN for
diabetic wound segmentation and probability maps to remove
artifacts. Alzubaidi et al. [29] proposed a CNN-based
DFU_QUTNet to classify diabetic foot ulcers versus healthy
skin from RGB color images. Chino et al. [30] proposed
an automatic skin ulcer assessment framework for accurate
wound segmentation and measurement. Sarp et al. [25] pro-
posed a hybrid wound segmentation and tissue classification
algorithm by exploiting the conditional generative adversarial
network (cGAN) to learn directly from data without human
knowledge. Scebba et al. [21] proposed a detect-and-segment
algorithm to produce wound segmentation maps with high
generalization capabilities. Anisuzzaman et al. [22] presented
an automated wound localizer based on the YOLOv3 model
followed by segmentation and classification.

Even though the DL approaches have improved the
performance of wound segmentation to some extent, the
complexities involved in the wound digitization process
instruct greater number of DLmodel parameters to accurately
analyze the wound images. Furthermore, there exists a gap
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in estimating the wound parameters such as shape, length,
width, perimeter, circle diameter, for analyzing the wound,
which plays a crucial role in therapy. In addition, there
is no complete wound management system integrated with
the human-in-the-loop (HIL) module, as per the author’s
knowledge, which is one of the motivations of this work.
Considering the above facts, developing a robust system that
tackles these challenges is essential.

Our proposed system has the following technical
contributions: 1)
1) The complete wound management system framework

consists of patient and physician portals that amalga-
mate personal information with clinical parameters.
a) Each module for the proposed system has been

implemented as an API for easy integration with
the existing electronic medical records (EMR),
electronic health records (EHR), or a standalone
system.

b) From the security aspect, in the proposed system,
the wound data access has been authenticated
using JSON Web Token (JWT) and further the
dataset is encoded with the received JWT and
stored in the cloud environment.

2) The state-of-the-art DeepLabV3+ algorithm combined
with the Squeeze and Excite (SE) network leverages to
determine the multiple wound boundaries effectively;
for a given single image with multiple wounds.

3) Wound assessment module has been applied in the
pipeline to provide high-fidelity wound metrics or
attributes along with wound shape estimation, which
eases the physician’s workload toward understanding
the wound progression.

4) Self-learning of the DL module has been powered by
the human-in-the-loop approach using the interactive
GrabCut algorithm.

The rest of the paper is organized in the following way.
Section− II explains the wound management system, and
section− III presents the system’s outcome and briefly
discusses the findings. Section− IV explains the system’s
limitations, and finally, we conclude this work with our future
focus in section− V.

II. METHODOLOGY
A. WOUND MANAGEMENT SYSTEM’S OVERVIEW
The proposed wound management system (WMS) is
designed to assist the Physician / Health Care worker in diag-
nosing and treating wounds. WMS system consists of three
(3) stakeholders, a) the Patient, b) the Healthcare provider,
and c) the Physician, as shown in Fig. 1. In theWMS pipeline,
the mobile phone is utilized for gathering wound images,
referred to as the patient portal. After de-identification,
captured wound images will get securely uploaded to a
dedicated healthcare provider cloud platform for further
analysis. Physician portal uses two-way communication, i.e.,
to get wound assessment results and to provide feedback on
the outcome (human-in-the-loop).

FIGURE 1. Functional block diagram representation of wound
management system with human-in-the-loop approach.

Fig. 2 shows the Wound Management system and its
pipeline components. Here, the patient portal is a user-
friendly mobile application for Android / iOS devices and
captures wound images using a mobile camera. Meta data
like Patient-ID, Patient-Name, time/date stamp, wound event,
and region tagging by the patient are attached with the wound
images to create a patient record or dataset. The individual
patient record is also stored locally in JSON format, thus
allowing the patient to add images to the existingwound event
and region tagging. Images changed since the last upload are
filtered and periodically prepared for subsequent upload to
the cloud server.

Connection to the healthcare provider cloud platform
follows OAuth standard and uses a JSON Web Token (JWT)
for authorized data transfer. The patient record comprising
wound image and meta-data is encoded with the received
JWT and uploaded to the cloud portal via Rest API using
TLS (transport layer security) encryption. For feedback, the
application displays a chart of wound area Vs time and
few parameters after the Physician’s analysis, which will be
explained in detail at the result section III.

The Physician portal is the centerpiece, where the wound
images are analyzed using DL and wound assessment (WA)
modules implemented in a cloud platform. The Physician
portal shows the patient details, wound image, and the
analyzed wound image with wound metrics and shape
overlaid on the wound image. The Physician portal exhibits
the wound measurements such as area, perimeter, and healing
index obtained from the WA module in a chart form for
diagnosis. Also, it displays the medications prescribed by the
physician and the wound history by plotting the woundmetric
over time. The Physician portal has two components:

1) FRONT-END
It is designed using React Native and can be browser-based
or deployed on iPhone/Android phones. This application
interacts with the cloud−hosted back-end servers: DL-
WA, and Database servers, as described in the Back-end
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FIGURE 2. Wound management system architecture.

FIGURE 3. Wound management system containerization.

architecture (Fig. 2). These servers are accessed using Rest
API. Upon launching the portal front-end, an authorized
connection to the back-end servers gets established, and the
React application state gets populated with a connection
to the Database server. The user interface (UI) design
was evaluated for usability in a clinical situation with
physician input allowing easy comparison of wound healing
progression using actual wound images and charted metrics.
A touchscreen-based interactive environment marks the
wound areas and backgrounds for the Human-in-the-loop
implementation.

2) BACK-END
Sitting behind a Rest API - Database server and DL-
WA servers are implemented on a cloud platform using
Docker containers, and Nginx reverses proxy as shown in

the Fig. 3. After authentication following OAuth standards,
secure access to the Rest API is ensured using JWT. The
portal interacts with the Database and DL-WA servers via
the Rest API. Service on the health care cloud platform is
responsible for decoding the dataset and storing received data
to an instance of MySQL service. Secure and authorized
communication between services is established over the user-
defined-bridge network.

3) OPERATIONAL GUIDE
The physician can open a patient record using the Patient
ID. Newly uploaded images are available on the Physician
portal front end for analysis and review. The physician can
also review wound history and patient details relevant to
wound diagnosis. Remarks made by the physician and the
calculated wound healing metrics are stored in the Database.
Additionally, the analyzed images get uploaded to the cloud
Database for future review. In addition, the physician can edit
the wound annotation boundary, which is feedback to the DL
server to complete the human-in-the-loop mechanism.

B. DEEP LEARNING (DL) MODULE
In this work, the DeepLabV3+SE, with Resnet-50 as the
encoder, is explored for wound segmentation, and its block
diagram is shown in Fig. 4(a). The text in each gray block
in Fig. 4(a) represents the number of filters, the kernel
size, and a dilation rate of a convolutional layer followed
by a batch normalization and a Relu activation function.
The final activation function used before the segmentation
output is a Sigmoid function. As shown in Fig. 4(a), only
two outputs from ‘‘conv2_block3_2_relu’’ (denoted as A)
and ‘‘conv4_block6_2_relu’’ (denoted as B) layers of the
Resnet-50 network are used and hence, only used part of the
Resnet-50 architecture as shown in Fig. 4(b). Note that X2,
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X3, and X5 mentioned in front of the dotted blocks inside the
conv2_block, conv3_block and conv4_block represent the
repetitions of the respective dotted blocks by 2, 3 and 5 times,
respectively.

In the Resnet-50 encoder, the weights are initialized with
the pre-trained weights obtained from the ImageNet dataset.
Compared to the randomweight initialization, the pre-trained
weight initialization converges the model faster with better
accuracy, thereby improving the efficiency and generalization
ability of the DeepLabV3+SE model. The output of the
‘‘conv4_block6_2_relu’’ layer from the Resnet-50 is given to
Atrous Spatial Pyramid Pooling (ASPP) [40] consisting of
dilated convolutions with different dilation rates that help to
encode multi-scale contextual information. ASPP resamples
the feature layer with mapping at multiple rates before the
convolution layer. This approach efficiently captures the
objects and image context with multiple filters and scales.

Further, the output of ASPP is bilinearly up-sampled
by a factor of 4 and then concatenated with the output
of a convolutional layer of 48 filters with a kernel size
of 1 × 1. The concatenated output is passed through a
Squeeze and Excitation (SE) network [41], where the inter-
dependencies between channels of the convolutional features
are explicitly modeled to improve the representational power
of the DeepLabV3+network. In addition, it dynamically re-
calibrates the channel-wise features to emphasize informative
features and suppress the non-useful ones. The output of the
SE network is passed through the two convolutional layers
of 256 filters with 3 × 3 kernel size, followed by another SE
network. The output of the second SE network is up-sampled
with a bilinear interpolation by a factor of 4. The up-sampled
output is passed through a convolutional layer of a single filter
with a kernel size of 1× 1, followed by a Sigmoid activation
function to get the segmentation output.

C. WOUND ASSESSMENT (WA) MODULE
Wound measurement is one of the crucial components in the
woundmanagement system, the accuracy of which influences
the diagnosis and treatment by healthcare professionals.
Also, it is critical to evaluate the wound healing trajectory
and determine the future treatment. In addition, the wound
area gives an effective and reliable index of later complete
wound healing. These functions were accomplished by the
WA module that estimates the wound parameters, predicts
the wound shape, and overlays the wound metrics on the
input image along with the wound boundary. WA module
receives the segmented mask generated by the DL module,
and it is pre-processed with a threshold value to generate a
binary mask, which would be used for further processing.
WA module includes morphological operations, connected
component analysis, wound parameter estimation, and shape
analysis, as shown in Fig. 5.
Morphology operations are performed on the binary mask

to remove the tiny regions/spurious noises and to fill the
small holes within the wound to improve the true positive

rate. In a few cases, the deep learning network could identify
the blood stain as a wound, causing a small false-positive
region/noise in the segmented mask. This small false-positive
region is detected and removed by performing morphological
operations on the segmented mask. On the other hand, the
abnormal tissue, like fibrinous tissue inside the wound, could
be treated as a non-wound region by the network representing
it as small holes inside the segmented mask. These holes are
detected and filled by morphological operations.

The connected component analysis is acclimated to label
the connected regions followed by measurement of those
labeled connected regions. The wound metrics, such as area,
perimeter, circle diameter, and major and minor axis length
of the ellipse, are used in conjunction with the shape analysis
algorithm to find the approximate shape of the wound.
For example, the eccentricity parameter of ellipse [42],
circularity [43], and rectangularity (extent) are adopted in the
shape analysis algorithm to determine the wound shape. The
eccentricity of ellipse e is calculated using Eq. (1); however,
the circle is a particular case when e = 0 [42].

e =
distance between foci
length of major axis

, 0 ≤ e < 1 (1)

As the name says, the circularity �c measures the roundness
of the shape and is defined by

�c = 4π
A
r2

(2)

where A = Area and r = Perimeter. For a perfect circle
�c = 1 [43]. Rectangularity (extent) ψR [44] is calculated
using Eq. (3).

ψR =
no. of pixels in ROI

no. of pixels in a boundary box
(3)

Based on the values of these parameters, e, �c, and ψR, the
approximate shape of the wound is determined. Finally, the
measured parameters and the wound boundary are overlaid
on the wound image.

D. HUMAN-IN-THE-LOOP
Human-in-the-loop has been introduced to improve the
system’s accuracy and enable the DL module’s self-learning
feature. In addition, our system will be validated by the
physician or user every time they use the tool, which
is a double verification process. For example, during the
physician’s investigation, if the Physician determines that the
wound segmentation outcome is inaccurate, he can rectify
it via the interactive GrabCut module [45] as shown in
Fig. 6. Else Physician approves the segmentation output,
and the WA module estimates the wound metrics that
are overlaid on the wound image along with the wound
boundary for display on the physician portal. As a process
of personal information integration, wound segmentation’s
output with wound metrics and its original wound image
are stockpiled in the Database server. On the other hand,
when the physician opts for correcting the wound boundary
via GrabCut, he annotates the foreground and background,
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FIGURE 4. Block diagram representation of the DeepLabV3+SE architecture with Resnet-50 as encoder.

and the system extracts the boundaries. The process of
annotating the foreground and background is repeated till the
Physician is satisfied with the segmented boundary by the

GrabCut. The corrected segmentation output and its original
wound are accumulated in the server. Once the number of
accumulated physician corrected segmented images exceeds
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FIGURE 5. Functional block diagram of wound assessment (WA) module
that enhances the segmentation outcome of the DeepLabV3+SE, and
estimates the wound metrics as well as finds the approximate shape of
the wound.

the set threshold value then the DL module’s retraining is
initiatied automatically, thereby leveraging the self-learning
technique. The accumulated segmentation outputs obtained
by the GrabCut with the physician’s input will function as the
ground truth for retraining, which empower the DL module
accuracy.

III. RESULTS AND DISCUSSION
The front-end GUI and workflow of WMS are shown in
Fig. 7. The physician can view the patient details and
wound history relevant to the wound diagnosis by opening
a patient record using a Patient ID. Charts and wound
progress section of the Physicians portal, shown in Fig. 7
represents the wound measurement history and the set of
wound images, respectively, for making observations about
the wound healing progress. The DL and WA modules were
implemented in Python with Keras and TensorFlow as back-
end and trained and validated on HPC-A3 TCS (TATA
Consultancy Services) server powered by NVIDIA DGX-
A100 series. The DL and WA modules reside in the API
server, and the trained DeepLabV3+ SE model, the patient’s
information data, and the accumulated segmentation outputs
from GrabCut and their respective wound images are stored
in the Database server.

A. DATASET
In this work, we have used the publicly available AZH
Wound care dataset [46] and the Foot Ulcer Chal-
lenge (FUC) Segmentation dataset [46]. Both datasets are
merged, which results in a total of 1841 images, and for

FIGURE 6. Flow diagram of human-in-the-loop.

the homogeneousness aspect, the images are resized to
256×256. Furthermore, the image augmentation techniques,
such as brightness and saturation improvement, hue and
rotation, cut mix and mixup, and horizontal and verti-
cal flips, were adapted to increase the training dataset
from 1675 to 55,275 wound images, which is more extensive
than the DFUC2021 challenge dataset [47]. The validation
and testing sets had 166 and 278 images, respectively, and
have been used without augmentation for validation and
testing of the model.

B. MODEL PERFORMANCE EVALUATION METRICS
In this study, the performance was evaluated using the
evaluation metrics like Dice Score, Intersection over Union
(IoU), Precision, and Recall, which are given below for
completeness.

Dice Score =
2 × TP

2 × TP+ FP+ FN
(4)

IOU =
TP

TP+ FP+ FN
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

C. DL RESULTS
In DL training, the learning rate was initialized as 0.0001, and
each mini-batch size of 16 images was adapted, considering
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FIGURE 7. Front end GUI and workflow of the wound management system.

the trade-off between the training accuracy and efficiency.
On the one hand, training loss quantification infers how
well the model fits the training data, and on the other
hand, validation loss assesses how well the model fits
the new data. In order to have a balanced training by
avoiding under-fitting and over-fitting, both losses should be
watched during the training. Hence, the training is terminated
early when both the losses converged and there was no
significant improvement in the validation loss for more
than 10 epochs, as shown in Fig. 8. Adam’s optimization
algorithm was adapted to update the network parameters.
The number of trainable parameters of DeepLabV3 and
DeepLabV3+ SE with that of other state-of-the-art methods
and their performance comparisons in terms of evaluation
metrics, Dice, IOU, Precision, and Recall, are given in
Table 1. To evaluate the performance of the DL module, the
testing set of AZH wound care dataset [46] is used in both
DeepLabV3 and DeepLabV3+SE. The number of trainable
parameters and evaluation metrics of VGG-16, SegNet, U-
Net, Mask-RCNN, MobileNetV2, and MobileNetV2+CCL,
and Ensemble of CNNs (ECNN), which are evaluated on
the same testing dataset, are reported from [20] and [48],
respectively.

The result finding infers that the proposed method
(DeepLabV3+SE) outperforms DeepLabV3+, ECNN,
MobileNetV2+CCL, MobileNetV2, Mask-RCNN, U-Net,
SegNet and VGG16 in the performance measure, the
Dice score, by 0.4%, 0.2%, 1.9%, 2.2%, 2.3%, 2.4%,
8.4% and 13.9%, respectively. Similarly, in the second
performance metric- IoU, the DeepLabV3+SE outperforms
DeepLabV3+ and ECNN by 0.4% and 8.0%, respec-
tively. In terms of Precision, DeepLabV3+SE outperforms

TABLE 1. Evaluation metrics of DeepLabV3+SE with Resnet-50 encoder.

ECNN, MobileNetV2+CCL, MobileNetV2, Mask-RCNN,
U-Net, SegNet and VGG16 by 3.5%, 5.5%, 5.7%, 1.8%,
7.8%, 14.8% and 14.4%, respectively, and under-performs
DeepLabV3+ by 0.4%. However, DeepLabV3+SE under-
performs ECNN, MobileNetV2+CCL, MobileNetV2 and
U-Net by 3.8%, 1.7%, 1.5% and 3.3%, respectively,
and outperforms DeepLabV3+, Mask-RCNN, SegNet and
VGG16 by 0.8%, 2.2%, 2.1% and 12.7%, respectively,
in-terms of Recall. Generally, the higher the number of
trainable parameters, the better the model’s performance.
However, it is not so concerning in Mask-RCNN and
VGG16, which require 5.5 and 11.3 times higher parameters
than DeepLabV3+SE, respectively, and still underperform.
On the other hand, SegNet, both MobileNetV2 and
MobileNetV2+CCL, and U-Net need 13, 5.5, and 2.4 times
lower parameters than DeepLabV3+SE, respectively, and
performed better than DeepLabV3+SE, except SegNet,
only in terms of Recall. Considering the trade-off between
the performance and number of trainable parameters, the
proposed DeepLabV3+SE performs better in terms of Dice
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FIGURE 8. Training and validation loss metrics of DeepLabV3+SE.

FIGURE 9. Wound Assessment module’s segmentation outcome with
color code for some test images. Here (a1)-(c1) represents the original
image, (a2)-(c2) are the segmented outputs from DeepLabV3+SE, and
(a3)-(c3) are the outputs of post-processing. Note that red boxes in (a2)
and (b2) show holes, and the yellow box in (c2) depicts spurious noise.
The green box in (c1), (c2), and (c3) shows the zoomed wound area and
its masks from DeepLabV3+SE and after post-processing,
respectively.

and IOU scores than others, regardless of the chronic wound
segmentation dataset. Thus, it is evident that our model is
robust and unbiased for wound segmentation with a single
image that has been captured via a single camera system.
Besides this, our system pipeline consists of a WA module to
estimate the wound parameters and to find the approximate
wound shape from the sequence of DeepLabV3+SE’s output
images.

D. WOUND ASSESSMENT MODULE RESULTS
The wound images, segmented masks obtained from
DeepLabV3+SE, and the respective post-processed outputs
are shown in Fig. 9. In Fig. 9, (a1)-(c1) shows the
original wound images, (a2)-(c2) shows the segmentedmasks
obtained from DeepLabV3+SE, and (a3)-(c3) shows the

FIGURE 10. Wound Measurements such as area, perimeter, and shape
(rectangle, circle, and ellipse) are given with color code visual layout
representing the wound boundary for some test images. Green and
Yellow color visual layouts represent the first and second wounds in the
original wound image, respectively.

outputs after post-processing. The holes in the segmented
masks obtained from DeepLabV3+SE are represented with a
red box in Fig. 9 (a2) and (b2), and the spurious noise is shown
with a yellow box in Fig. 9(c2). These holes and the noises
are removed after post-processing, as shown in Fig. 9(a3)-
(c3). In Fig. 9 (c1,c2) and (c3), the green boxes represent
the zoomed version of the wound image, segmented masks
obtained from DeepLabV3+SE, and the post-processed
output, respectively, to show the removal of spurious noise.
The post-processing carried out after image segmentation
in [20] uses only connected component labeling to remove
the holes and noises in the wound region and outside the ROI,
respectively. In contrast, our method uses morphological
operations to remove noises and holes, and the connected
component analysis for labeling the wound regions. These
labeled connected regions are used for estimating wound
dimensions such as width, length, circle diameter, major and
minor axis length of the ellipse, area, and perimeter. These
measurements are used in conjunction with shape analysis
to find the approximate shape of the wound, as shown in
Fig. 10 for the test images. In Fig. 10, the wound’s nearest
shape and its respective parameter measurements are overlaid
on the wound image. For example, the wound images (i &
iii) in the first row, the wound shape is an ellipse and its
parameters, the major axis length (a), and minor axis length
of the ellipse (b) are overlaid along with area and perimeter
of the wound. If the approximate wound shape is a rectangle,
the width (W), height (H), area and perimeter are overlaid on
the wound image. Similarly, in case of circle shape wound,
the diameter, area, and perimeter are indicated for the circular
wound image.

E. HUMAN-IN-THE-LOOP RESULTS
The images obtained during the GrabCut process are shown
in Fig. 11. This process is interactive and iterative, as shown
in Fig. 6, which directly depends on the user’s feedback.
For example, Fig. 11 (a) and (b) represent the GrabCut
annotation process (Foreground and Background marking in
Blue and Green colors, respectively) and its corresponding
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FIGURE 11. Images obtained during the interactive GrabCut. (a), (c) and
(e) represent the Images with Foreground and Background markings for
1st , 2nd , and 3rd iterations, respectively. Note that foreground and
background are marked with blue and green colors, respectively. (b),
(d) and (f) show the original wound image with the boundary marked in
Yellow color as an outcome of the GrabCut process.

output. Suppose the user or physician is unsatisfied or
neglects a region to annotate, then the next iteration could
be repeated as represented in Fig. 11 (c,d), and (e,f),
which results in improving the accuracy of the boundary
region.

IV. LIMITATION
In this study, due to the privacy concern, the publicly
available AZH Wound care [46] and the Foot Ulcer
Challenge Segmentation [47] datasets have been used for
training the DeepLabV3+SE model. The wound images in
these datasets are captured with different image-capturing
devices without camera calibration. As the camera was not
calibrated during the image capture, the mapping from the
digital world in terms of pixels to the physical units is
impossible. Due to this limitation, wound measurements are
presented in terms of pixels (digital domain) rather than
the physical units in Fig. 10. The above limitation could
be addressed by calibrating the camera before or while
capturing the wound images. Thus, the wound measure-
ments in pixels can be mapped to the real-world physical
units using the scaling factor obtained during the camera
calibration.

V. CONCLUSION
In this paper, the wound management system using
DeepLabV3+SE network for wound segmentation outper-
formed with a significantly high Dice score and IOU in the
automated wound boundary detection. In addendum, quanti-
tative assessment of wound parameters and prediction of the
wound shape demonstrates that it generally works well in a

diverse environment. HIL module provides input to the self-
learning process, i.e., it updates the DeepLabV3+SE model
over a period with the help of a physician’s feedback. A new
model is deployed after retraining whenever the number of
segmented images; the Physician corrects surpasses the set
threshold value. Thus, our proposed system has the following
potential benefits/advantages:

1) Robustness: A single camera system can handle any
type of wound images captured in different envi-
ronments with challenges like uneven illumination,
low image resolution, different image shape, skin
pigmentation, and so on, that occur individually or in
combination.

2) Wound assessment module helps the Physician to
understand the progress of the wound and analyze
the effect of medication on the wound healing over a
period of time. Having all the information on wound
metrics and medications at his disposal, he can take the
necessary action for faster wound healing.

3) Self-learning of the DL module due to the exploitation
of the human-in-the-loop approach improves the accu-
racy and performance of the system.

4) The proposed telemedicine system will enhance the
pervasive wound monitoring and care management
strategies for the Physician and the
Patient.

Adopting our proposed system in the continuum of care-
remote monitoring will enhance the Physician’s pervasive
wound diagnosis and management strategies, and the patient
in a rural area or far-off distance can have access to an early,
improved, and cost-effective diagnosis. In future work, we are
focus on removing the dependency on masks or annotations
by using either semi-supervised or unsupervised networks.
In addition, the data security model integration with HIPAA
standards compliances will be adopted to complete the
system’s full functionality.

ACKNOWLEDGMENT
The funder has no role in the decision to submit the work
for publication and the views expressed herein are authors
only. The authors acknowledge the HPC-TCS B&TS team
for providing themwith the ultra-modern HPC infrastructure,
which accelerated and supported this work immensely.

REFERENCES
[1] R. G. Frykberg and J. Banks, ‘‘Challenges in the treatment of chronic

wounds,’’ Adv. Wound Care, vol. 4, no. 9, pp. 560–582, Sep. 2015.
[2] G. Han and R. Ceilley, ‘‘Chronic wound healing: A review of current

management and treatments,’’ Adv. Therapy, vol. 34, no. 3, pp. 599–610,
Mar. 2017.

[3] C. K. Sen, ‘‘Human wounds and its burden: An updated compendium of
estimates,’’ Adv. Wound Care, vol. 8, no. 2, pp. 39–48, Feb. 2019.

[4] J. Escandon, A. C. Vivas, J. Tang, K. J. Rowland, and R. S. Kirsner, ‘‘High
mortality in patients with chronic wounds,’’ Wound Repair Regeneration,
vol. 19, no. 4, pp. 526–528, Jul. 2011.

[5] L. A. Lavery, S. A. Barnes, M. S. Keith, J. W. Seaman, and
D. G. Armstrong, ‘‘Prediction of healing for postoperative diabetic foot
wounds based on early wound area progression,’’ Diabetes Care, vol. 31,
no. 1, pp. 26–29, Jan. 2008.

45310 VOLUME 11, 2023



B. K. S. Kumar et al.: Wound Care: Wound Management System

[6] S. Coerper, S. Beckert, M. A. Küper, M. Jekov, and A. Königsrainer, ‘‘Fifty
percent area reduction after 4 weeks of treatment is a reliable indicator
for healing—analysis of a single-center cohort of 704 diabetic patients,’’
J. Diabetes Complications, vol. 23, no. 1, pp. 49–53, 2009.

[7] K. Ousey and L. Cook, ‘‘Understanding the importance of holistic wound
assessment,’’ Pract. Nursing, vol. 22, no. 6, pp. 308–314, Jun. 2011.

[8] L. Russell, ‘‘The importance of wound documentation and classification,’’
Brit. J. Nursing, vol. 8, no. 20, pp. 1342–1354, Nov. 1999.

[9] M. Cardinal, D. E. Eisenbud, T. Phillips, and K. Harding, ‘‘Early
healing rates and wound area measurements are reliable predictors of
later complete wound closure,’’ Wound Repair Regener., vol. 16, no. 1,
pp. 19–22, Jan. 2008.

[10] K. L. Wu, K. Maselli, A. Howell, D. Gerber, E. Wilson, P. Cheng,
P. C. Kim, and O. Guler, ‘‘Feasibility of 3D structure sensing for accurate
assessment of chronic wound dimensions,’’ Int. J. Comput. Assist. Radiol.
Surg., vol. 10, no. 1, pp. 13–14, 2015.

[11] C. P. Loizou, T. Kasparis, and M. Polyviou, ‘‘Evaluation of wound healing
process based on texture image analysis,’’ J. Biomed. Graph. Comput.,
vol. 3, no. 3, pp. 1–13, Mar. 2013.

[12] P. Foltynski, ‘‘Ways to increase precision and accuracy of wound area
measurement using smart devices: Advanced app planimator,’’ PLoS
ONE, vol. 13, no. 3, Mar. 2018, Art. no. e0192485, doi: 10.1371/jour-
nal.pone.0192485.

[13] S. Treuillet, B. Albouy, and Y. Lucas, ‘‘Three-dimensional assessment of
skin wounds using a standard digital camera,’’ IEEE Trans. Med. Imag.,
vol. 28, no. 5, pp. 752–762, May 2009.

[14] U. Pavlovčič, J. Diaci, J. Možina, and M. Jezeršek, ‘‘Wound perimeter,
area, and volume measurement based on laser 3D and color acquisition,’’
Biomed. Eng. OnLine, vol. 14, no. 1, p. 39, Dec. 2015.

[15] A. F. M. Hani, L. Arshad, A. S. Malik, A. Jamil, and F. Y. B. Bin,
‘‘Haemoglobin distribution in ulcers for healing assessment,’’ in Proc. 4th
Int. Conf. Intell. Adv. Syst. (ICIAS), Jun. 2012, pp. 362–367.

[16] N. D. J. Hettiarachchi, R. B. H. Mahindaratne, G. D. C. Mendis,
H. T. Nanayakkara, and N. D. Nanayakkara, ‘‘Mobile based wound
measurement,’’ in Proc. IEEE Point Care Healthcare Technol. (PHT),
Jan. 2013, pp. 298–301.

[17] M. F. A. Fauzi, I. Khansa, K. Catignani, G. Gordillo, C. K. Sen, and
M. N. Gurcan, ‘‘Computerized segmentation and measurement of chronic
wound images,’’ Comput. Biol. Med., vol. 60, pp. 74–85, May 2015.

[18] C. Liu, X. Fan, Z. Guo, Z. Mo, E. I.-C. Chang, and Y. Xu, ‘‘Wound
area measurement with 3D transformation and smartphone images,’’ BMC
Bioinf., vol. 20, no. 1, pp. 1–21, Dec. 2019.

[19] B. Song and A. Sacan, ‘‘Automated wound identification system based
on image segmentation and artificial neural networks,’’ in Proc. IEEE Int.
Conf. Bioinf. Biomed., Oct. 2012, pp. 1–4.

[20] C. Wang, D. M. Anisuzzaman, V. Williamson, M. K. Dhar, B. Rostami,
J. Niezgoda, S. Gopalakrishnan, and Z. Yu, ‘‘Fully automatic wound
segmentation with deep convolutional neural networks,’’ Sci. Rep., vol. 10,
no. 1, Dec. 2020, Art. no. 21897.

[21] G. Scebba, J. Zhang, S. Catanzaro, C. Mihai, O. Distler, M. Berli, and
W. Karlen, ‘‘Detect-and-segment: A deep learning approach to automate
wound image segmentation,’’ Informat. Med. Unlocked, vol. 29, 2022,
Art. no. 100884.

[22] D. M. Anisuzzaman, Y. Patel, J. A. Niezgoda, S. Gopalakrishnan, and
Z. Yu, ‘‘A mobile app for wound localization using deep learning,’’ IEEE
Access, vol. 10, pp. 61398–61409, 2022.

[23] N. Pholberdee, ‘‘Wound-region segmentation from image by using deep
learning and various data augmentation methods,’’ M.S. thesis, Dept.
Comput. Sci., Silpakorn Univ., Pakkret, Thailand, 2019.

[24] S. Zahia, D. Sierra-Sosa, B. Garcia-Zapirain, and A. Elmaghraby, ‘‘Tissue
classification and segmentation of pressure injuries using convolutional
neural networks,’’ Comput. Methods Programs Biomed., vol. 159,
pp. 51–58, Jun. 2018.

[25] S. Sarp, M. Kuzlu, M. Pipattanasomporn, and O. Guler, ‘‘Simultaneous
wound border segmentation and tissue classification using a conditional
generative adversarial network,’’ J. Eng., vol. 2021, no. 3, pp. 125–134,
Mar. 2021.

[26] M. Goyal, N. D. Reeves, A. K. Davison, S. Rajbhandari, J. Spragg, and
M. H. Yap, ‘‘DFUNet: Convolutional neural networks for diabetic foot
ulcer classification,’’ IEEE Trans. Emerg. Topics Comput. Intell., vol. 4,
no. 5, pp. 728–739, Oct. 2020.

[27] V. N. Shenoy, E. Foster, L. Aalami, B. Majeed, and O. Aalami,
‘‘Deepwound: Automated postoperative wound assessment and surgical
site surveillance through convolutional neural networks,’’ in Proc. IEEE
Int. Conf. Bioinf. Biomed. (BIBM), Dec. 2018, pp. 1017–1021.

[28] C. Cui, K. Thurnhofer-Hemsi, R. Soroushmehr, A. Mishra, J. Gryak,
E. Dominguez, K. Najarian, and E. Lopez-Rubio, ‘‘Diabetic wound
segmentation using convolutional neural networks,’’ in Proc. 41st Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019, pp. 1002–1005.

[29] L. Alzubaidi, M. A. Fadhel, S. R. Oleiwi, O. Al-Shamma, and J. Zhang,
‘‘DFU_QUTNet: Diabetic foot ulcer classification using novel deep con-
volutional neural network,’’ Multimedia Tools Appl., vol. 79, nos. 21–22,
pp. 15655–15677, Jun. 2020.

[30] D. Y. T. Chino, L. C. Scabora, M. T. Cazzolato, A. E. S. Jorge, C. Traina-Jr,
and A. J. M. Traina, ‘‘Segmenting skin ulcers and measuring the wound
area using deep convolutional networks,’’ Comput. Methods Programs
Biomed., vol. 191, Jul. 2020, Art. no. 105376.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[32] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[33] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. Garcia-Rodriguez, ‘‘A review on deep learning techniques applied to
semantic segmentation,’’ 2017, arXiv:1704.06857.

[34] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and
C. I. Sánchez, ‘‘A survey on deep learning in medical image analysis,’’
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[35] C. Wang, X. Yan, M. Smith, K. Kochhar, M. Rubin, S. M. Warren,
J. Wrobel, and H. Lee, ‘‘A unified framework for automatic wound
segmentation and analysis with deep convolutional neural networks,’’ in
Proc. 37th Annu. Int. Conf. IEEE Eng.Med. Biol. Soc. (EMBC), Aug. 2015,
pp. 2415–2418.

[36] M. Goyal, M. H. Yap, N. D. Reeves, S. Rajbhandari, and J. Spragg, ‘‘Fully
convolutional networks for diabetic foot ulcer segmentation,’’ in Proc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2017, pp. 618–623.

[37] X. Liu, C. Wang, F. Li, X. Zhao, E. Zhu, and Y. Peng, ‘‘A framework of
wound segmentation based on deep convolutional networks,’’ in Proc. 10th
Int. Congr. Image Signal Process., Biomed. Eng. Informat. (CISP-BMEI),
Oct. 2017, pp. 1–7.

[38] H. Lu, B. Li, J. Zhu, Y. Li, Y. Li, X. Xu, L. He, X. Li, J. Li, and S. Serikawa,
‘‘Wound intensity correction and segmentation with convolutional neural
networks,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 6, Mar. 2017,
Art. no. e3927.

[39] V. Godeiro, J. S. Neto, B. Carvalho, B. Santana, J. Ferraz, and R. Gama,
‘‘Chronic wound tissue classification using convolutional networks and
color space reduction,’’ in Proc. IEEE 28th Int. Workshop Mach. Learn.
Signal Process. (MLSP), Sep. 2018, pp. 1–6.

[40] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[41] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[42] C. A. Kluever, Spaceflight Mechanics, Encyclopedia of Physical Science
and Technology. New York, NY, USA: Academic, 2003.

[43] L. Sun, Structural Behavior of Asphalt Pavements. Oxford, U.K.:
Butterworth-Heinemann, 2016.

[44] Scikit-Image. Scikit-Image Library. [Online]. Available: https://scikit-
image.org/docs/stable/api/skimage.measure.html

[45] C. Rother, V. Kolmogorov, andA. Blake, ‘‘GrabCut: Interactive foreground
extraction using iterated graph cuts,’’ in Proc. ACM SIGGRAPH Papers,
2004, pp. 309–314.

[46] GitHub. (2020). Github Repository. [Online]. Available: https://github.
com/uwm-bigdata/wound-segmentation

[47] B. Cassidy, C. Kendrick, N. D. Reeves, J. M. Pappachan, C. O’Shea,
D. G. Armstrong, and M. H. Yap, ‘‘Diabetic foot ulcer grand challenge
2021: Evaluation and summary,’’ in Diabetic Foot Ulcers Grand Chal-
lenge. Germany: Springer, 2021, pp. 90–105.

[48] A. Mahbod, G. Schaefer, R. Ecker, and I. Ellinger, ‘‘Automatic foot ulcer
segmentation using an ensemble of convolutional neural networks,’’ in
Proc. 26th Int. Conf. Pattern Recognit. (ICPR), Aug. 2022, pp. 1–6.

VOLUME 11, 2023 45311

http://dx.doi.org/10.1371/journal.pone.0192485
http://dx.doi.org/10.1371/journal.pone.0192485


B. K. S. Kumar et al.: Wound Care: Wound Management System

B. K. SHREYAMSHA KUMAR (Member, IEEE)
received the B.E. degree in electronics and com-
munication engineering from Bangalore Univer-
sity, Karnataka, India, in 2000, and the M.Tech.
degree in industrial electronics from the National
Institute of Technology Karnataka, Surathkal,
Karnataka, in 2004, and the Ph.D. degree in elec-
trical and computer engineering from Concordia
University, Montreal, QC, Canada, in 2019.

From 2004 to 2012, he was with the Central
Research Laboratory (A Corporate Research Facility of Bharat Electronics),
Bengaluru, India, as a member of Research Staff. From 2012 to 2019, he was
a Research Associate with the Signal Processing Group, Department of
Electrical and Computer Engineering, Gina Cody School of Engineering
and Computer Science, Concordia University. He is currently with the
Business Transformation Group, Digital Medicine and Medical Technology
Unit, TATA Consultancy Services, as a Scientist. He has published several
articles in peer-reviewed journals and major conferences. His research
interests include computer vision, visual tracking, image fusion, image
denoising, image encryption, medical image processing, and document
image processing.

Dr. Shreyamsha Kumar was a recipient of the Research and Development
Excellence Award by Bharat Electronics, India. He was a team member
of a project, which received the Raksha Mantri’s Award for Excellence in
‘‘Innovation’’ category from Hon’ble Raksha Mantri, Ministry of Defence,
Government of India, for the period 2008–2009 on November 2010. He was
a recipient of several awards from Concordia University and the high-status
Doctoral ResearchMerit Scholarship for Foreign Students fromMinistére de
l’Éducation, de l’Enseignement Supérieur et de la Recherche (MEESR) du
Québec, during his doctoral studies at Concordia University. He has served
as a reviewer for several journals and major conferences.

K. C. ANANDAKRISHAN is currently pursu-
ing the Ph.D. degree in computer science with
Amritha Vishwavidyapeetham, Coimbatore. He is
aMachine Learning Solution Architect with TATA
Consultancy Services.

MANISH SUMANT received the M.S. degree
in biomedical engineering from Washington Uni-
versity, St. Louis, in 1995. He has worked on
medical device development focusing on software
technologies for embedded devices, diagnostic
software, and cloud-based solutions. He has a
proven record of implementing research tech-
nologies and algorithms into innovative solu-
tions. Currently, he is a Solutions Architect with
the Digital Medicine and Medical Technologies
Unit, TCS.

SRINIVASAN JAYARAMAN (Member, IEEE) is
the Principal Scientist and theHead of the Biocom-
putational and Imaging Program, TCS Research,
Digital Medicine and Medical Technologies Unit,
BTG, Cincinnati, USA. During his sabbatical,
he was a Visiting Scholar with MCCHE, Desau-
tels Faculty of Management, McGill University,
Montreal, Canada, in July 2017; a Research Fel-
low with Énergie Matériaux Télécommunications
Research Centre (NRS-EMT), Montreal, in July

2016; and a Postdoctoral Fellow (Scientific Manager) with the University of
Nebraska Lincoln (ULN), USA, and the New Jersey Institute of Technology
(NJIT), USA, in 2013. He has seven granted international patents,
published six international patents, filed five international patents, four book
chapters, and more than 30 publications. His research interests include the
establishment of digital biotwin of human organs, biosignal processing,
cardiac computational model, human performance and behavioral modeling,
ontology, AI, personalized diagnosis systems, wearable devices, and medical
device development.

He works on ECG for Person Identification and Authentication won
the MIT TR35 (Young Innovator) 2011 Award from MIT Review India
Edition. In the same year, another work on Portable Cardiac Devices won
the Dare to Try TATA Innovista 2011 Award. In addition, World CSR
Congress and World CSR Day recognized his work on ECG as a biometric
system for individual identification as one of the 50 most socially impactful
innovators (global listing), in 2016. He has chaired international conferences
and workshops.

45312 VOLUME 11, 2023


