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ABSTRACT Electromagnetic Bandgap (EBG) structures that exhibit various performances, such as prevent-
ing the electromagnetic wave propagation and reflecting an incident wave within the stopband, have unique
electromagnetic characterization. Due to this reason, accurate analysis and design of the EBG structures
are crucial to enhance the integrated system performance. This paper concentrates on the characterization of
some planar EBGs using the Auxiliary Functions of Generalized Scattering Matrix (AFGSM) methods, with
particular importance on an in-depth consideration of its bandgaps. The AFGSM method is applied to the
planar EBG structures in the literature for the first time. The well-known kinds (symmetric and asymmetric
cases) of mushroom type and multilayer EBG structures are considered to verify the presented method.
Analysis results are compared with the Conventional Eigenvalue Equation (C-EIV) and the Generalized
Scattering Matrix based Eigenvalue Equation (GSM-EIV) methods. Low computation load and accurate
results are obtained to analyze the planar EBG structures with the AFGSMmethod due to using transmission
line model. In addition, a design methodology is proposed for a chosen planar EBG structure using the
AFGSM methods. Geometrical parameters of interested EBG problems are determined for acquiring the
stopband frequency region of interest using the scattering parameters of unit cell configuration. The mush-
room EBG model along one and two-dimensional axes is used in an antenna application to decrease mutual
coupling between antenna elements. Three different scenarios are simulated in the HFSS electromagnetic
simulation design environment to understand the effect of mutual coupling reduction in the antenna problem
of the designed EBG structure via the AFGSM method. All designed antennas are manufactured, and
the measurement results are in good agreement with the simulation results. The measurement results of
the fabricated antenna application example including designed EBG using the proposed AFGSM method
are compared with the existing similar problems with the same and different EBG models. It has been
demonstrated that bandgap analysis, design of the planar EBG structures and integration of considered EBG
model to a design application can be accurately and quickly achieved with the given methodology using the
AFGSM method.

INDEX TERMS Electromagnetic bandgap structures, dispersion diagram, generalized scattering matrix,
high impedance surface, periodic structures.

I. INTRODUCTION
Periodic structures provide passband/stopband frequency
characteristics when interacting with electromagnetic waves

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud A. Abdalla .

[1], [2], [3]. Electromagnetic Bandgap (EBG) structures are
the periodic structures that possess exciting and unique fea-
tures via inhibition of electromagnetic wave propagation
due to the natural stopband ability to enhance performance
characteristics in microwave circuits at certain frequency
regions [4], [5], [6]. The EBG structures are utilized in many
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engineering applications such as intensively suppressing of
switching noise in high-speed power planes [7], [8], [9], [10],
[11], enhancements of microwave filter characteristics [12],
[13], [14], improvements of antenna performance [15], [16],
[17], [18], low profile antenna design [19], [20], [21], [22],
[23], [24] and mutual coupling reduction between antenna
elements in antenna arrays [25], [26], [27]. In this context,
computation and determination for gathering bandgap infor-
mation of the EBG structures is an important challenge before
using in microwave applications.

There are many bandgap prediction methods [7], [8], [10],
[19], [28], [29], [30], [31], [32], [33], [34], [35], [36] in the
open literature for analyzing the EBG structures. Lumped
element equivalent circuit models are presented in [10], [19],
[28], and [29] for estimating the bandgap of some planar
EBG structures, such as low-profile antenna applications.
In [30] and [31], a transmission line model is proposed for
analyzing planar EBG structures. These approximations have
an easy way and rapid solutions due to low computational
space. However, they include some important assumptions
that restrict these techniques’ validity. The plane wave expan-
sion method [32] is another technique to gather the bandgap
knowledge of the planar EBG structures. Even though this
technique is easy to implement, it has some limitations
regarding converging the Fourier series and choosing the
constituent materials. The computation of band diagrams of
the planar EBG structures is based on obtaining classical
eigenvalue equations. Two well-known methods called the
Conventional Eigenvalue Equation (C-EIV) [7], [30], [31]
and the Generalized Scattering Matrix Eigenvalue Equa-
tion (GSM-EIV) [33] can be applied to the planar EBG
structures to understand the bandgap properties of them.
The C-EIV method uses ABCD parameters, whereas the
GSM-EIV needs scattering parameters of the unit cell of the
planar EBG structures for evaluating their dispersion dia-
grams. These methods require solving the eigenvalue equa-
tion and obtaining network parameters of the EBG structures.
Some important studies are proposed for obtaining frequency
characterization of the EBG structures based on the Eigen-
mode method with multiple modes [34], [35], [36]. These
efficient techniques need to compute Eigen frequencies of
several modes for estimating the band edges of the bandgap
regions. Hence, they have a significant computational bur-
den. In [8], an accurate free space method to characterize
the frequency behavior of the EBGs using effective elec-
tromagnetic parameters is presented. The free space method
is used for determining the bandgap regions by i) com-
puting the scattering parameters of the EBG structure with
an equivalent circuit model or with full-wave simulation,
ii) extracting the effective impedance and refractive index
values, iii) finding the complex effective permittivity, and
permeability values, iv) obtaining the effective phase and
attenuation constants. For this reason, this method includes
a long computational step. The Auxiliary Functions of Gen-
eralized ScatteringMatrix (AFGSM) method, which is firstly
described in [33] for symmetrical unit cell assumption of

periodic structure and then reformulated for using in an
asymmetrical unit cell of periodic structures [37], only needs
to the computation of scattering parameters of the unit cell
of the periodic structures. This powerful method converts the
dispersion problem into a root-finding problem. The AFGSM
method can be utilized to find bandgaps of the periodic
structures without solving an eigenvalue equation [33], [38],
[39]. In this case, a method emerges that can significantly
size reduction of the computational effort required for pla-
nar electromagnetic bandgap structures. With this theoretical
approach straightforwardly explained in [33] and [38], the
band edges of the stopband can be accurately calculated by
monitoring the zero transitions of auxiliary functions. The
AFGSM methods are successfully applied to many periodic
structures such as helix slow-wave structures, photonic crys-
tals, dielectric-loaded rectangular waveguides and substrate
integrated waveguides [37], [40].

In this paper, we have analyzed the AFGSM methods
in the context of planar EBG structures for the first time
in the literature. We have demonstrated that these methods
can be efficiently used for i) determining the bandgaps of
planar EBG structures without solving eigenvalue equations,
ii) designing the unit cell parameters of planar EBG structures
with the aid of the auxiliary functions and, iii) reducing the
mutual coupling between planar antenna elements. In partic-
ular, our contributions can be summarized as follows:

• We demonstrate a systematic framework for obtaining
unit cell network parameters of the EBG structures,
starting from the transmission line circuit model to
give a graphical representation of bandgap information
of both the conventional and the AFGSM methods in
trying to achieve this aim. Four different EBG struc-
tures are considered for the applicability and validity
of the AFGSM methods. Numerical analysis findings
of the AFGSM methods are compared with the C-EIV
and GSM-EIV methods. Analysis results of all conven-
tional methods given in this paper for obtaining bandgap
properties of the considered EBG structures reveal that
the AFGSM methods can be effectively used for the
bandgap analysis of EBG structures.

• We evaluated the presented method for designing
the EBG structure of the planar antennas to reduce
the mutual coupling between antenna elements. The
designed EBG structure is periodically loaded as three
different scenarios between two antenna elements oper-
ating at 3.5 GHz to investigate the possibility of isola-
tion improvement in this antenna problem. Additionally,
HFSS simulation results of surface current densities
and |S21|-dB of designed scenarios of the considered
antenna are evaluated for understanding enhancement of
isolation using the designed EBG structure with the help
of the AFGSM method. Designated antennas are man-
ufactured, and |S21|-dB measurements are performed
with a vector network analyzer. The performance of
manufactured antennas is compared in critical isolation
parameters such as total isolation band region, isolation
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improvement, and peak isolation concerning specific
frequencies and cases. Moreover, the proposed manu-
factured antenna, including improved isolation perfor-
mance via the designed EBG model with the AFGSM
method, is compared with the open literature involving
various EBG models. All these results show that the
proposed AFGSM methods give accurate results for the
fast and approximate design of the unit cell of the planar
EBG structures in a particular microwave application
by using scattering parameters information of the 1-D
periodic planar EBG model.

II. EXAMPLES OF SOME EBG STRUCTURES
This section presents transmission line models of some EBG
structures, including different geometric configurations avail-
able in the open literature [7], [30], [31], [41]. For this
purpose, the first planar EBG model includes the asymmet-
ric (off-set via) and symmetric cases of the mushroom-type
EBG structure used in decreasing the coupling level between
antenna elements in antenna applications. The second planar
EBGmodel involves cases of symmetry and asymmetry of the
multilayer EBG model, frequently used for switching noise
suppressing in high-speed power planes. Considered EBG
structures are given in Fig. 1(a) and 2(a).

A. EQUIVALENT CIRCUIT MODEL REPRESENTATIONS OF
EBG MODELS
This subsection considers circuit model of mushroom-type
and multilayer EBG structures given in [7], [19], [30], and
[31] to be able to calculate and validate the reported study
with standard and AFGSM methods.

1) MUSHROOM EBG STRUCTURE
The unit cell of this problem includes a square metal sheet
with shorting post as discussed in [30] and [31]. Periodically
loaded electromagnetic bandgap structure shown in Fig. 1(a)
can be modeled as reactive loaded resonators, including the
effect of gap capacitors. This model [30], [31] involves a
half-wavelength microstrip resonator with reactive loading
arising from shorting pin. Energy can be propagated along,
and above the structure, [30], [31]. Due to this reason, mush-
room type EBG structure can be regarded as periodically
loaded with gap capacitances and reactance determined by
shorting post [30], [31]. Fig. 1(b) demonstrates the equivalent
circuit of the mushroom section of the EBG structure. The
input impedance of an open-ended transmission line and the
impedance after the addition of inductance can be calcu-
lated using equations given in [30] and [31]. The microstrip
line characteristic impedance is used due to neglectable
coupling between adjacent resonators if (w=(p1+p2))/t1 ≥

2 where p1, p2 and t1 are left and right length of the metal
sheet with the via post and the height of the dielectric sub-
strate, respectively. The characteristic impedance of coplanar
waveguide is utilized due to meaningful coupling between
adjoint resonators when (w=(p1+p2))/t1 < 2 for calculating
the input impedance of an open-ended transmission line.

FIGURE 1. Considered mushroom-type EBG structure: (a) side view,
(b) equivalent circuit of mushroom section of EBG structure.

Characteristic impedance formulas given in [42] are used in
our computations. XL1 can be written as jwL1, which is the
impedance of the inductance where w and L1 are angular
frequency and inductance of the shorting post, respectively.
L1 can be found with the following formula [30], [31], [43]:

L1 = 2 × 10−7t1
[
ln

(4t1
d

)
+ 0.5

( d
t1

)
− 0.75

]
(1)

where d is the diameter of the post. After computing the
addition of inductance, the impedance of each resonator sec-
tion Zp can be found by using equation 2 shown in [30].
After obtaining the resonator impedance Zp, the coupling
capacitor between resonatorsXc which is equal to 1

jwC1
should

be calculated. The capacitance C1 can be obtained using the
following formula mentioned in [19], [30], and [31]

C1 =
(p1 + p2)ε0(1 + εr1)

π
cosh−1 (

(p1 + p2 + g)
g

) (2)

where ε0, εr1 and g are the free space permittivity, dielec-
tric constant of the material and gap between resonators,
respectively. Finally, Fig. 1(a) can be acted as a lumped
impedance Z formed of Zp in parallel with Xc with a period
of a as shown in Fig. 1(b) which is the 1-D equivalent cir-
cuit model of the interested EBG structure. In this context,
It is achievable that the frequency characteristic of this EBG
structure can be obtained by using the equivalent circuit given
in Fig. 1 (b).

2) MULTILAYER EBG STRUCTURE
This EBG structure plays an important role in cutting off
wave propagation of Transverse Electric Magnetic (TEM)
mode [7]. The multilayer EBG model involves an array of
coplanar patch conductors placed a length t2 from the top
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FIGURE 2. Considered multilayer EBG structure: (a) side view,
(b) equivalent circuit of multilayer section EBG structure.

plate and symmetrical or asymmetrical shorting pins of the
length t1 and radius d connecting to the bottom plate of each
patch. Square patches and shorting pins are cascaded in a
lattice of period a. The patch conductor aims to determine
the capacitance between the edge of shorting pin below it
and the top plate of the Parallel Plate Waveguide (PPW).
In this EBG structure, two dielectric layers are used as the
host dielectric medium of the PPW [7]. As mentioned in [7],
magnetic walls are used to reduce the 2-D periodic structure
to the 1-D array of unit cells to understand the passband and
stopband properties of the EBG structure by using an equiv-
alent circuit model. More details about reducing the problem
to the 1-D periodic array can be found in [7]. It is well known
that the existence of a quasi-TEM model in an empty PPW
with magnetic sidewalls can be modeled as a transmission
line with the characteristic impedance Z0 and βu given in
[7]. A shunt LC circuit can represent conductor patches and
shorting pins, as shown in Fig. 2(a). The inductance L2 shown
in Fig. 2(b) can be predicted by [7]

L2 =
µ0t1
4π

[ln(
1
α
) + α − 1] (3)

where µ0 and α are the permeability of free space and the
ratio of the shorting pin cross-section to the cross-section
of the whole unit cell, respectively. The capacitance of this
representation for a large diameter of shorting pin can be
calculated by [7]

C2 =
ε0εr2 ((p1 + p2)

2
−

πd2
4 )

t2
. (4)

After calculating L2 and C2, shunt admittance can be given
by [7]

Y =
jωC2

1 − ω2L2C2
(5)

It is important to note that the shunt admittance is a part
of the 1-D equivalent circuit model of the multilayer EBG
model, as shown in Fig. 2(a). Hence, it is possible to com-
pute the dispersion diagram of this EBG structure via the

circuit model shown in Fig. 2(b). These mentioned equations
from (1) to (5) are necessary to obtain network parameters
involving in the equivalent circuit models of the considered
planar EBG structures.

III. COMMON BANDGAP PREDICTION METHODS FOR
EBG STRUCTURES
This section covers widely used determination methods of
bandgap properties of EBG structures.

A. CONVENTIONAL EIGENVALUE EQUATION METHOD
C-EIVmethod is based on obtaining network parameters such
as ABCD of the unit cell of considered EBG structures.

1) MUSHROOM EBG STRUCTURE
ABCD parameters of the mushroom type EBG structure
shown in Fig. 1(a) are given in the following equation:[

A B
C D

]
=

[
cos θ1 j sin θ1
j sin θ1 cos θ1

]
×

[
1 Z

Z0
0 1

]
×

[
cos θ2 j sin θ2
j sin θ2 cos θ2

]
(6)

where θ1 and θ2 are βu1 (p1+g/2) and βu1 (p2+g/2),
respectively. When each matrix entry of ABCD parameters
in equation 6, A and D can be determined as follows:

A = cos θ1 cos θ2 + j
Z
Z0

cos θ1 sin θ2 − sin θ1 sin θ2 (7a)

D = cos θ1 cos θ2 + j
Z
Z0

sin θ1 cos θ2 − sin θ1 sin θ2 (7b)

The following equation can show the general expression of
the eigenvalue equation for periodic structures:

cos (γ a) =


A+ D

2
A ̸= D

A A = D
(8)

where γ indicates complex propagation constant. Eigenvalue
equation of the unit cell for given EBG problem can be
expressed as A+D

2 when the unit cell has no symmetry (p1 ̸=

p2) whereas the unit cell has symmetry (p1 = p2). The consid-
ered EBG model is analyzed for the lossless case. Due to this
reason, and since the unit cell given in Fig. 1(a) is asymmetric,
it is obtained the following equation

cos (βa) = cos(θ1 + θ2) + j
Z
2Z0

sin(θ1 + θ2) (9)

by arranging equations 7 and 8. When the unit cell of the
periodic structure is symmetric, as indicated in [30] and
[31], then the C-EIV of the mushroom EBG structure can be
written as:

cos (βa) = cos (βua) + j
Z
2Z0

sin (βua) (10)

where β is the propagation constant of the periodic structure.
The stopband region of this periodic structure which means
an attenuated wave along one-direction can be occurred when
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| cos (βa)| ≥ 1. The passband region can be found when
| cos (βa)| < 1. Equation (6) can obtain a mushroom EBG
structure dispersion diagram.

2) MULTILAYER EBG STRUCTURE
The unit cell of the multilayer EBG structure given in Fig 2(a)
can be analyzed by using ABCD parameters as follows [7]:[

A B
C D

]
=

[
cos θ1 jZ0 sin θ1

jY0 sin θ1 cos θ1

]
×

[
1 0
Y 1

]
×

[
cos θ2 jZ0 sin θ2

jY0 sin θ2 cos θ2

]
. (11)

where θ1 and θ2 are βu2 (p1+g/2) and βu2 (p2+g/2),
respectively.

A = cos θ1 cos θ2 + jYZ0 sin θ1 cos θ2 − Y0Z0 sin θ1 sin θ2

(12a)

D = cos θ1 cos θ2 + jYZ0 cos θ1 sin θ2 − Y0Z0 sin θ1 sin θ2.

(12b)

Using general expression of dispersion equation for periodic
structure given in equation 8 with assuming lossless case, the
following equation can be found:

cos (βa) = cos(θ1 + θ2) + j
Z0Y
2

sin(θ1 + θ2). (13)

This equation can be easily used for the asymmetrical case
(p1 ̸= p2).When the symmetrical case (p1 = p2) is considered,
the equation 13 can be written as [7]:

cos (βa) = cos(βu2a) + j
Z0Y
2

sin(βu2a). (14)

B. GENERALIZED SCATTERING MATRIX EIGENVALUE
EQUATION METHOD
The main solution point of the GSM-EIV method is to com-
pute scattering parameters of the unit cell of interested EBG
models. Figs. 3(a) and 4 (a) demonstrate symmetric (p1=p2) /
asymmetric (p1 ̸= p2) unit cells of the considered mushroom
and multilayer EBG problems, respectively. J1 and J2 depict
junctions between impedance Z / admittance Y and transmis-
sion line with characteristic impedances Z01 /Z02 which can
be found in [7] and [30] as given in Figs. 1(a) and 2(a). J0
and J3 show the reference planes where scattering parameters
of the unit cell are obtained. The scattering parameters of the
unit cell of these periodic structures can be expressed as given
in matrix form: [

b1
b2

]
=

[
S11 S12
S21 S22

] [
a1
a2

]
(15)

where a1,2 and b1,2 are the normalized wave amplitudes of
incident and reflected waves from input and output ports
[33]. In this problem, the Floquet boundary condition can
be imposed due to the 1-D periodicity of the EBG structure,
as shown below:

λ

[
a1
b1

]
=

[
b2
a2

]
(16)

where λ is the complex constant which is specified as λ1,2 =

e±jθ , θ = βa ϵ [0, π]. β and a are expressed as the
Floquet phase factor and the period of the EBG structure,
respectively [33]. Equation (17) can be acquired by substi-
tuting Equation (16) into Equation (15).[

1 −S11
0 −S21

] [
b1
a1

]
+ λ

[
−S12 0
−S22 1

] [
b1
a1

]
= 0 (17)

Characteristic polynomial equation given in Equation (18)
can be obtained by arranging Equation (17) [33].

λ2 + λ
[S11S22 − S12S21 − 1

S21

]
+ 1 = 0 (18)

Sum of the roots of equation (18) can be written as the
following two different forms:

λ1 + λ2 = −

[S11S22 − S12S21 − 1
S21

]
(19)

λ1 + λ2 = 2 cos (βa) (20)

Equating equations (19) and (20), equation (21) can be
revealed as follows [33]:

cos(βa) =
1 − S11S22 + S12S21

2S21
. (21)

Equation 21 can be used to analyze the unit cell of the
periodic structure, including asymmetrical cases. When the
symmetrical and reciprocal cases are taken into account, then
the following equation can be obtained [33]:

cos(βa) =
1 − S211 + S221

2S21
. (22)

Equations (21) and (22) are alternative forms of Equations
(9), (13) and (10), (14) in terms of scattering parameters for
asymmetrical and symmetrical cases, respectively. Propagat-
ing and non-propagating regions correspond to the passband
and stopband of the periodic structure when absolute values
of cos (βa) are less and greater equal to unity, respectively.
Aforementioned expressions from (6) to (22) is to indicate
full detail of achieving eigenvalue equations of planar EBG
structures.

IV. THE PROPOSED AUXILIARY FUNCTIONS OF
GENERALIZED SCATTERING MATRIX METHOD
FOR EBG STRUCTURES
The theory of the AFGSM method is based on the analysis
of stored complex power (9) in the unit cell of the periodic
structure [33], [39]. It is important to note that the AFGSM
method can detect the band edge frequencies by using one
of the most crucial advantages of the fact that monitoring
zero transitions of 9 can precisely provide exact positions
of bandgap regions [33]. Reference [33] explains more about
obtaining complex power stored in the unit cell of the periodic
structure. There are two crucial points to understanding the
emergence of the AFGSM method. The first point is that
real parts of 9 for the lossless periodic structure must be
equal to zero, not only stopband but also passband region. The
second point explains that imaginary parts of 9 must equal
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FIGURE 3. Unit cell configuration of the mushroom-type EBG structure:
(a) asymmetric/symmetric EBG unit cell, (b) matched termination of
reference plane J1 of EBG unit cell for obtaining SJ

22 and SJ
12, (c) matched

termination of reference plane J2 of EBG unit cell for obtaining SJ
11

and SJ
21.

zero at the band edge frequencies. A comprehensive AFGSM
(C-AFGSM) is derivated in [37] to eliminate the restriction
of symmetric unit cell selection of the periodic structure
for a single Floquet mode region. The following equa-
tion gives an essential solution for determining the band
edges of the periodic structure’s symmetric/asymmetric unit
cell [37].

J1 = 2 Im{S11 + 2S21 Re{K1} + S22|K1|
2
} (23a)

J−1 = 2 Im{S11 + 2S21 Re{K−1} + S22|K−1|
2
} (23b)

In Equation (23), K1 and K−1 equal to (1 − S21)/(S22) and
(−1 − S21)/(S22), respectively. When a symmetric unit cell
is considered in a single Floquet mode region, the following
equation can be written as given in [33] and [39]

X± = Im (S11 ± S21) (24)

Zero transitions of the auxiliary functions J1, J−1
(C-AFGSM), and X+, X− (AFGSM) yield the exact values
of the band edge frequencies of periodic structures. It is
noted that these functions given in equations (23) and (24)
are well-behaved functions with frequency, to the best of our
knowledge, they have never been used before for obtaining
bandgap characterization of the planar EBG structures, and
the root-finding procedure can efficiently obtain the zeros
of these functions. In this context, The AFGSM methods
present an alternative way of finding the band edges of the

FIGURE 4. Unit cell configuration of the multilayer EBG structure
(a) asymmetric/symmetric EBG unit cell, (b) matched termination of
reference plane J1 of EBG unit cell for obtaining SJ

22 and SJ
12, (c) matched

termination of reference plane J2 of EBG unit cell for obtaining SJ
11

and SJ
21.

1-D EBG structure. The dispersion diagram and behaviors
of the auxiliary functions of a 1-D periodic structure can be
computed by equations (22) and (23), (24) when the scat-
tering parameters of the unit cell configuration are obtained.
Parameters of S11 and S21, which correspond to the elements
of the scattering parameters of the unit cell of the periodic
structure, given in equations (22) and (23), (24), can be found
by using junction scattering matrices properly and shifting
properties of scattering parameters. It is reached at J1 and J2
junctions by taking θ1 = θ2 = 0 to obtain the scattering
matrix of the unit cell of the periodic structure given in
Figs. 3(a) and 4(a). After then, it is necessary to attain the
scattering parameters regarding the J1 junction demonstrated
in Figs. 3(b) and 4(b). For this purpose, the junction scattering
parameters, SJ22, S

J
12, are acquired by matching termination of

junction J1, utilizing the continuity of voltage at the junction
and using reflection coefficients 0in1 in Fig. 3 (b) and 0in3
in Fig. 4(b). The same manner is applied to the junction of
J2 by using reflection coefficients 0in2 and 0in4 in Figs. 3(c)
and 4(c), the junction scattering parameters of J2, SJ11, S

J
21

are obtained. After calculating the scattering parameters at
the junctions, the scattering parameters of the 1-D periodic
structure (S11, S12, S21, S22) can be evaluated by shifting
reference planes J1 and J2.

V. NUMERICAL ANALYSIS AND DESIGN RESULTS
This part involves testing and controlling the analysis of
the conventional and the AFGSM methods and design and

VOLUME 11, 2023 42239



D. Gebesoglu et al.: Investigation of AFGSM Methods for Some EBG Structures: From Analysis to Applied Antenna Design

FIGURE 5. Frequency responses of the C-EIV, GSM-EIV and AFGSM
methods for asymmetric case of Fig. 1(a) with dimensions a = 18 mm,
p1 =6 mm, p2 =10 mm, g = 2 mm, t1 = 4 mm, d = 0.5 mm and
εr = 2.2 given in [41].

FIGURE 6. Frequency responses of the C-EIV, GSM-EIV and AFGSM
methods for symmetric case of Fig. 1(a) with dimensions a =3.25 mm,
p1 = 1.5 mm, p2 = 1.5 mm, g =0.25 mm, t1 = 1.5 mm, d = 0.5 mm and
εr = 2.2 given in [30].

implementation stages using the proposed AFGSM method
for planar EBG structures in the previous sections.

A. ANALYSIS OF PASSBAND/STOPBAND REGIONS
Considered EBG structures given in Fig. 1(a) and Fig. 2(a)
can be solved analytically and compared with the numerical
results in [7] and [30]. In this study, the same EBG structures
are analyzed by solving C-EIV methods given in equations
(10) and (14). In addition to this solution, starting from
the equivalent circuit representation of the considered EBG
structure, an eigenvalue equation is obtained based on the
GSM solution (GSM-EIV). The third method (AFGSM) for
obtaining the passband/stopband region of interested EBG
structures is also procured in this work. Figs. 5, 6, 7 and 8

FIGURE 7. Frequency responses of the C-EIV, GSM-EIV and AFGSM
methods for asymmetric case of Fig. 2(a) with dimensions a = 5.59 mm,
p1 = 3 mm, p2 = 2.08 mm, g = 0.51 mm, t1 = 0.79 mm, t2 = 0.051 mm
d = 0.5 mm, εr1 = 2.2, εr2 = 4.5.

FIGURE 8. Frequency responses of the C-EIV, GSM-EIV and AFGSM
methods for symmetric case of Fig. 2(a) with dimensions a = 5.59 mm,
p1 = 2.54 mm, p2 = 2.54 mm, g = 0.51 mm, t1 = 0.79 mm, t2 = 0.051 mm
d = 0.5 mm, εr1 = 2.2, εr2 = 4.5 given in [7].

illustrate the solutions of the considered EBG structures given
in section II of the C-EIV methods given in (10) and (14), the
GSM-EIV method given in (21) and the proposed AFGSM
method solutions for the structure given in Figs. 1(a) and 2(a).
All analysis parameters are given in captions of Figs. 5, 6, 7
and 8. Results are perfectly matched for the EIV (C-EIV
and GSM-EIV) solutions. Figs. 5 and 6 demonstrate the
results of conventional EIV and the proposed AFGSM meth-
ods for an asymmetric and a symmetric unit cell model of
mushroom-type EBG structure, respectively. It can be seen
that the X+ and X− functions derived from the symmetric unit
cell assumption try to find the band edges with a certain error
as shown in Fig. 5. Moreover, J1 and J−1 functions can deter-
mine the band edges exactly. AFGSM functions can detect
band edges exactly for symmetric unit cell configuration as
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shown in Fig. 6. Figs. 7 and 8 illustrate dispersion diagrams
of C-EIV, GSM-EIV and the results of the proposed AFGSM
methods for an asymmetric and a symmetric unit cell model
of multilayer EBG structure, respectively. It can be revealed
here that the AFGSM and C-AFGSM methods can success-
fully determine band edges of symmetric unit cell configu-
ration of the multilayer EBG structure. In contrast, only the
CAFGSM functions can accurately detect passband/stopband
boundary frequencies for asymmetric unit cell configuration.
θ is equal to π at the beginning of the stopband, on the other
hand, θ equals 0 at the end of the stopband observed in Fig. 5.
The function of J−1 can exactly find the band edge where
θ is equal to π . The band edge where θ equals 0 can be
precisely determined by monitoring the function of J1. This
mathematical result is because the derived functions J−1 and
J1 are obtained by forcing λ = ejπ and λ = ej0, respectively,
in the expression of the complex power stored in the unit cell
of the periodic structure. It is important to note that just one
auxiliary function tries to find the band edges frequencies
where θ can have different values for one stopband region
in a symmetric unit cell configuration as shown in Figs. 6
and 8. Functions of X+ and X− can predict the band edges
of the periodic structure together for a stopband region where
θ is equal to the same value (θ = 0 or θ = π along the
whole stopband region). It is expected result that the functions
of X+ and X− can estimate the band edge frequencies of
the periodic structure either separately or together due to the
existence of |S11| = |1 ± S21| at the band edge frequencies.
It can be seen from Figs. 5, 6, 7 and 8 that the band edge
results for the CAFGSM method are in good agreement with
the other two methods. The C-EIV and GSM-EIV methods
are based on the knowledge of the computation of ABCD
and scattering parameters of the EBG unit cell. The critical
point for the AFGSM method is to compute the scattering
parameters of the considered EBG structures. This case can
be performed via an equivalent circuit model of the EBGs or
using different electromagnetic design environments. After
obtaining the scattering parameters of the EBG unit cell,
finding the band edges with the root finding routine using the
functions in the AFGSM methods present a mathematically
simple solution compared to other methods. This shows that
the proposed methods can make a more effective and easy
analysis. It is important to say that the AFGSM methods can
be effectively used as an alternative way of obtaining pass-
band/stopband regions of the planar EBG structure. These
results can open the door to designing EBG structures for
specific applications.

B. APPLICATION TO ANTENNA PROBLEM OF DESIGNED
EBG VIA AFGSM METHOD
The previous section has effectively discussed the success
of AFGSM methods in determining the passband/stopband
regions of planar EBG structures. The AFGSM method can
also be tested to determine the design parameters of planar
EBG structures for a specific purpose. For this purpose,
this section establishes an application procedure for reducing

FIGURE 9. Considered antenna scenario with (a) top view and
(b) simulation results of |S11|-dB and |S21|-dB frequency responses.

FIGURE 10. Design curves of (w,g) pairs for choosing proper bandgap
information.

the mutual coupling effects with an appropriate planar EBG
model to be designed by the AFGSM method in antenna
array applications. A rectangular patch array antenna exam-
ple is designed as shown in Fig. 9(a). Considered operation
frequency (3.5 GHz) of this antenna design application can
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be suitable for Fifth Generation (5G) communication sys-
tems. The top view, parametric details, and |S11| frequency
characteristic of the coaxial line fed two-element microstrip
patch antenna array are given In Fig. 9. This application
procedure is tested using Rogers 4003 material with εr =

3.55, and h=1.524 mm. As is seen in Fig. 9 (b), the antenna
has an operating frequency of 3.5 GHz and a bandwidth of
approximately 50 MHz. It can be seen from Fig. 9(b) that
the isolation levels between antenna elements are at -21 dB
levels near the operation frequency. Although it seems an
excellent option to increase the distance between the antenna
elements to reduce the mutual coupling, it is seen that circuit
size can be increased in this case. For this reason, it is aimed to
model suitable planar EBG structures and apply them to this
problem with nearly the same magnitude of S11 frequency
characteristic of the existing antenna arrays with the same
circuit dimensions. Accordingly, EBG design dimensions are
determined by the AFGSM method. The mushroom-type
EBG structure is chosen as the test model. In this model,
the parameters w and g majorly affect the passband/ stop-
band characteristics. The band edges of stopbands formed by
setting free the w and g parameters of the mushroom type
EBG structure in specific value ranges can be determined by
the AFGSM method. Each curve is created by recording the
band edge frequencies formed by sweeping the w parameter
against a g value. To effectively reduce the |S21| level in the
frequency range of operation, w and g values, ensure that
the center frequency of the EBG structure is such that the
center frequency of the stopband comes to 3.5 GHz, can be
found using the design curves in Fig. 10. For any (w, g) pair,
detection of stopband can be made by the frequency differ-
ence between the design curves (Xlow

− and Xhigh
− ) that find

the corresponding band edges. In Fig. 10, when a horizontal
line is drawn for the fixed value of w, the Xlow

− and Xhigh
−

values that cross the line indicate the band edge frequencies
of the stopband region (Xlow

− =0, at 2.9 GHz and Xhigh
− =0,

at 4.1 GHz). Since the center frequency of the stopband is
desired to be 3.5 GHz, the corresponding w and g values
are found as 9.2 mm and 2.5 mm from Fig. 10, respectively.
After this determination is made, a suitable EBG unit cell
design is obtained. From this point on, the planar EBGmodel,
whose design dimensions are determined by the AFGSM
method, can be applied to the two-element antenna array
problem. To see the effect of the designed EBG model on
the antenna problem, the designed EBG model was placed
between the antenna elements, first with 1 × 3 elements and
then with 3 × 3 and 9 × 3 elements, respectively. In Fig. 11,
surface current distributions are given in the antenna applica-
tion operating at 3.5 GHz, when there is no EBG, and various
EBG arrays are present. The distance between the antennas
is preserved in the considered scenario. Current distributions
in both antennas are observed by excitation of Antenna 1.
When there is no EBG between antenna elements, it is seen
from the current distribution values that the mutual coupling
has a strong effect in Fig. 11(a). It can be clearly said from
Fig. 11(b), (c), and (d) that the increase in size and number

FIGURE 11. Surface current distribution of considered antenna scenarios
(a) with no EBG (b) with 1 × 3 EBGs (c) with 3 × 3 EBGs
(d) with 9 × 3 EBGs at 3.5 GHz.

of EBG arrays can significantly reduce the coupling effects
between the two antennas.

It can be stated from Fig. 11(b), (c), and (d) that the lowest
mutual coupling occurs when there is a 9 × 3 EBG elements
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FIGURE 12. Top views of manufactured antennas (a) with no EBG
(b) With 1 × 3 EBGs (c) with 3 × 3 EBGs (d) with 9 × 3 EBGs.

FIGURE 13. Measurement results of |S11|-dB frequency responses for
manufactured antennas.

between the two antennas. The antenna model of each sce-
nario is manufactured to carry out the critical measurement
stages, and these antennas are given in Fig. 12. Fig. 13 demon-
strates |S11|-dB frequency characteristics of manufactured
antennas. As expected, applying the EBG structures to the
proposed antenna does not have significant effects on the
antenna’s |S11|-dB performance because these EBGs signif-
icantly improve the antenna’s isolation performance. It is
seen in Fig. 14 that the simulation and measurement results
have consistent results. It is seen in Fig. 14(b), (c), and (d)
that there are slight discrepancies between the measurement
and simulation results, especially in the frequency region of
operation. The simulation and measurement results of |S21|
frequency characteristics showing the measure of coupling
between antenna elements belonging to different scenarios
are given in Fig. 14. It is thought that this difference may
be caused by the difficulties experienced in the manufactur-
ing process due to the sensitive values of the shorting post
diameters in the EBG models. Fig. 14 shows a strong mutual

FIGURE 14. Simulation and measurement results of |S21|-dB frequency
responses for designated scenarios.

coupling level with -21 dB in the absence of EBG between
antenna elements at 3.5 GHz. It is observed in Fig. 14 that
the mutual coupling at 3.5 GHz decreased by 2 dB and 14 dB
by using 1 × 3, 3 × 3, and 9 × 3 EBG arrays, respectively.
It is seen that the |S21| levels decrease significantly in the
operating frequency region of the antenna for the scenario
with the 9 × 3 EBG model. Figs. 15 and 16 depict the
2D co-polarization and cross-polarization radiation patterns
of the proposed antennas for φ = 0◦ and φ = 90◦ at
3.5 GHz. As shown in Figs. 15 and 16, there is no significant
change between those without EBG and with different EBG
cases for co-polarization radiation patterns. Adding EBGs
between antennas increases cross-polarization radiation pat-
terns slightly for φ = 0◦. The values of the cross-polarization
radiation pattern may be reduced for φ = 90◦ when increas-
ing the number of EBGs, as demonstrated in Fig. 16. It is
evident that total efficiencies are stable and greater than
80% around an operation frequency of 3.5 GHz, as shown
in Fig. 17. One clearly says that adding EBG structures
between antenna elements gives rise to frequency shifting
and a reduction in total efficiency up to 3.52 GHz. |S11| and
|S21| are related to mismatching and coupling losses for the
total efficiency calculation of two port antennas, respectively.
The total efficiency of the Antenna 1 is proportional to the
(1 − |S11|2 − |S21|2) [44], [45]. As it is seen from Fig. 13
and Fig. 14, |S11| (dB) values are considerably greater than
|S21| (dB) values. |S11| (dB) values significantly affect the
total efficiency than |S21| (dB) values. Therefore, it can be
expressed that the total efficiencies of the antennas with reso-
nance behavior first increase then decrease since the variation
of |S11| behaves as decreasing to the resonant frequency
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FIGURE 15. Simulated φ = 0◦ co and cross polarization radiation patterns
of proposed antennas for comparing (a) without EBG and 1 × 3 EBG
(b) without EBG and 3 × 3 EBG (c) without EBG and 9 × 3 EBG on θ plane
at 3.5 GHz.

and increasing after the resonant frequency. Fig. 18 shows
proposed antennas’ Envelope Correlation Coefficient (ECC)
performance based on radiation patterns [46], [47], [48]. It is
clearly seen that the designed EBG unit cell with the AFGSM
method provides an important effect in improving the ECC
performance of the proposed antenna. When the EBG struc-
ture designed in appropriate dimensions is arranged from one
to two dimensions, the ECC values become very close to zero
in the operating frequency range.

Table 1 shows the effects of applying designed EBG struc-
tures via the AFGSM method with a proper arrangement
for a patch array antenna application by highlighting their

FIGURE 16. Simulated φ = 90◦, co and cross polarization radiation
patterns of proposed antennas for comparing (a) without EBG and 1 × 3
EBG (b) without EBG and 3 × 3 EBG (c) without EBG and 9 × 3 EBG on θ

plane at 3.5 GHz.

TABLE 1. Performance comparisons of the proposed antennas.

improvements in mutual coupling reduction. The compar-
ison is made to several performance parameters related to
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TABLE 2. Performance comparisons of the proposed antenna with respect to similar previous works.

FIGURE 17. Total efficiencies of proposed antennas.

isolation, such as total isolation bandwidth, isolation
improvement, and peak isolation. One can observe from
Table 1 that the considered antenna with 9 × 3 EBGs has
better total isolation bandwidth concerning −30 dB for the
frequency region of interest. It can be seen that high isolation
is performed for the considered antenna with 9 × 3 EBGs
at 3.5 GHz. It can be seen from Table 1 that increasing the
number of EBGs between antennas and periodic arrangement
in two dimensions have a significant impact on reducing the
mutual coupling level.

Table 2 depicts performance comparisons of the final
antenna with the designed EBG model via the proposed
AFGSM method. Mutual properties of given open literature
[25], [26], [49] are to have similar patch antenna array geom-
etry and include mushroom type, multilayer EBG structures.
The measurement results of all studies are considered in
Table 2. It is significant to emphasize that [25] has aminimum
enhancement for mutual coupling reduction even if it has
much more EBGs than other works given in Table 2. Another
point is that maximum enhancement for isolation is obtained
in [26] due to using EBG without via in multilayer substrate
with low and high dielectric permittivity. This case can reduce

FIGURE 18. The ECC results of proposed antennas based on radiation
patterns.

the edge-to-edge distance of the antenna elements. However,
using an antenna application with a multilayer substrate has a
circuit complexity to [25] and [49] and this work. Moreover,
as a result of approximately determining the unit cell dimen-
sions of the EBG from the circuit model and integrating it
into the antenna problem in the electromagnetic simulation
environment, a moderate isolation improvement is achieved
between the antenna elements. To obtain higher levels of
isolation improvements, precise EBG unit cell design with
the proposed AFGSM method and applying it to the antenna
problem in full-wave simulation programs will yield effec-
tive results. It can be clearly said that the designed EBG
model with the proposed AFGSM method has a stronger
impact on reducing the mutual coupling between rectangular
patch antenna elements about different EBG structure perfor-
mances given in [50] and [51]. Another point is that reducing
the mutual coupling between antennas presents a signifi-
cant challenge, especially in Multiple-Input Multiple-Output
(MIMO) antennas. In addition to EBG structures, novel and
powerful mutual coupling reduction methods have become
vital in the open literature [47], [48]. Unlike EBG structures,
Decoupling and matching circuits used in [47] and [48] to
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increase isolation between antenna elements affect antenna
performance significantly rather than EBG structures.

VI. CONCLUSION
This paper has investigated the applicability of the AFGSM
method to the detection of passband/stopband regions of pla-
nar electromagnetic bandgap structures. The bandgap prop-
erties of some planar EBG structures with asymmetric and
symmetric unit cell properties are determined by the AFGSM
method. The results are confirmed by the methods avail-
able in the literature. After obtaining consistent results, the
approximate determination of the unit cell design of planar
EBG structures is made by the AFGSMmethod. The solution
of reducing the mutual coupling effects between the anten-
nas with the designed EBG structure and its success in this
problem are discussed. As a result, it has been seen that the
AFGSM methods can be efficiently applied in the analy-
sis and design of planar EBG structures. Furthermore, the
presented AFGSM method can be used for complex planar
EBG structures to obtain accurate estimation of bandgap edge
frequencies when scattering matrix elements of 2-D periodic
planar EBG structures are determined by analytical, semi-
analytical approaches or simulations in full-wave electromag-
netic design environments. Two critical problems are planned
to be addressed as a further study. First, examining the success
of the AFGSMmethods in scenarios involving different types
of symmetry found in the unit cell of planar EBG structures
[12], [52], [53] can be exciting research. Finally, it is possible
to determine the passband/stopband regions in such structures
by using the scattering parameter information of the unit cell
of periodic planar EBG structures in two dimensions [11]
with a new AFGSM approach.
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