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ABSTRACT In this paper, we present a deep learning-based method for 3D face recognition. Unlike some
previous works, our process does not rely on face representation methods as a proxy step to be accepted
by Convolutional Neural Networks (CNNs). Applying 2D CNNs to irregular domains such as 3D meshes
is challenging. Therefore, we employed 3D ShapeNets to recognize faces covering the full 3D shape since
3D face datasets are available and 3D data augmentation techniques to enlarge 3D datasets are widespread.
The reduced size of 3D datasets is overcome by an appropriate 3D data augmentation to train our model.
3D ShapeNets are commonly used to recognize and analyse objects. To the best of the authors’ knowledge,
this is the first time they are used for face recognition. This research work focuses on the preprocessing
step. Whatever the nature of the face image is (either 2D or 3D representation), and whatever the acquisition
conditions are, a 3D regular mesh of each input face image is first generated. Furthermore, meshes are
converted to voxels to get the occupancy grid across all possible views. Finally, 3D ShapeNets are trained
and recognition tests are performed. Indeed, 3D ShapeNets prove the efficiency and efficacy of 3D shape
analysis task in 3D face recognition. The experimental results show that 3D face recognition using deep
3D CNNs such as 3D ShapeNets leads to significant improvement over the state-of-the-art performance on
LFPW, BU3DFE, and FRAV3D datasets, with competitive recognition rates of 94.25%, 97.9% and 98.31%
respectively.

INDEX TERMS 3D data augmentation, 3D face recognition, 3D meshes, 3D ShapeNets, feature extraction,
voxelization.

I. INTRODUCTION
Security and anti-terrorism activities have raised great inter-
est in biometric technology. Traditional methods, such as
passwords and signatures, are therefore insufficient nowa-
days. In fact, biometric recognition systems have been exten-
sively deployedworldwide in law enforcement, governments,
and consumer applications [1], [2], [3], [4], [5], [6], [7]. In the
last few years, face recognition (FR) methods have become
the prominent biometric technique for individual authenti-
cation and verification. The face has sophisticated charac-
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teristics that are measurable, non-intrusive and contactless.
FR is widely used inmany domains, such as the military field,
computer vision (CV) community, public security, access
control, and daily life. It is a popular topic accepted by users.

2D FRmethods give good performance. However, this rep-
resentation has major problems, such as variation of lighting
conditions, pose changes, and occlusions, etc. [8], [9], [10],
[11], [12], [13], [14], [15]. To overcome the lighting condi-
tions problems, researchers have migrated to other 2D repre-
sentations and additional processing operations; however, this
challenge remains an obstacle that degrades the recognition
rates. In the case of pose variations, a face alignment step
where all faces are in frontal poses is added. This leads to
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an improvement in the recognition rate, but information loss
is always found once the faces are passed through another
representation or are modified by pose correction.

Therfore, 3D FR presents a good modality that overcomes
the difficulties associated with pose changes and illumination
conditions [16]. Indeed, the 3D domain opens up new hori-
zons for enhancing the reliability of face-based identification
systems. 3D shapes as geometric representations are con-
sidered one of the most important representations in object
recognition, including faces [17].

Many theories about 3D representation and reconstruction
are available [18]. Moreover, 3D-based methods are booming
and consequetly 3D CNNs are currently in full development.
A 3D CNN aims at representing geometric 3D shape, recog-
nizing object category - in our case the class to which the face
belongs-, completing full 3D shape, and predicting the next-
best-view if the initial recognition is uncertain. Following the
bibliographic research we performed, 2D face datasets are
publicly available but 3D face datasets are hard to acquire.
Scans and subjects are also limited and not sufficient for
training a CNN.

The aim of this paper is to recognize 3D faces from an
unconstrained face image using 3D ShapeNets as a 3D CNN
since most of the current approaches do not fully exploit
3D informations. We focus on several main steps as follow-
ing: 3D face datasets enhancement, 3D face representation
accepted by 3D ShapeNets without domain reducing, and
face verification for FR task.

Our main contributions are:

• 3D face dataset reconstruction in case of using 2D
benchmarks since 3D face datasets are limited and not
enough to be trained in a CNN.

• View-based 3D data augmentation since the out-of-
plane rotation of the face does not cause a problem in
3D domain comparing with 2D face images.

• 3D face mesh processing and adapting to feed 3D
ShapeNets.

The remainder of this paper is structured as follows: A litera-
ture review about the existing approaches of 3D FR, including
a brief description on the objectives of our proposed method
is presented in Section II. Section III provides an overview
of our groundwork with justification of each step during
this research. Details about the proposed work are presented
using block diagrams and related algorithms. Section IV elab-
orates the experimental qualitative and quantitative results,
and presents a comparison with a detailed analysis followed
by a deep discussion on how to improve the efficiency and
robustness of the proposed work. In Section V, we present
the main conclusion and perspectives of the paper.

II. RELATED WORKS
In this paper, we are interested in 3D FR approaches since
2D FR has shown some drawbacks as previously cited. 3D
FR rates exceed those of 2D FR rates due to 3D geometric
representation which cover all the face regardless of the

FIGURE 1. 3D face recognition categorization methods.

FIGURE 2. The most widespread 3D image representations.

capture in the wild. 3D FR approaches can be classified as
shown in Fig.1.

A. OVERVIEW OF 3D DATA REPRESENTATIONS
Before studying 3D FR existing methods, we present the
different 3D representations and rendering. Indeed, there are
several representations; however, we will only present he
most widespread [80].

• Point Cloud: This representation (Fig.2 (c)) is a set
of points in the space. Each point contains its set of
Cartesian coordinates (x, y, and z) that define the point
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position. The point cloud represents the envelope 3D
shape or object. It provides simple 3D data represen-
tations that make deriving meshes very easy using an
appropriate surface reconstruction technique.

• Mesh: This representation (Fig.2 (d)) includes a collec-
tion of vertices (or vertexes), edges and facets which
define a 3D shape or object. Meshes can be presented
by triangles (triangular mesh), quadrilaterals (quads),
or convex polygons (n-gons). Triangular meshes are
the most common in Reality Capture workflows since
they are the simplest. Vertices present x, y and z Carte-
sian coordinates. Facets include connectivities between
different vertices. In the case of a triangular mesh,
a facet requires to have exactly 3 vertices. An edge
connects 2 vertices. Transformations in 3D meshes
are quick and easy but they depend on high memory
requirements.

• Voxel: This representation (Fig.2 (e)) is based on cubi-
cal units that can be used to represent 3D models.
A voxel looks like a pixel in a 2D representation (bitmap)
(Fig.2 (a)). Voxels are encoded with their values, which
are space occupancy. A 3D object or shape modelized as
voxels-based model is a discretization of ‘‘3D pixels.’’

Furthermore, depth images, also named RGB-D images, are
in 2.5D as shown in (Fig.2 (b)). Depth images are techni-
cally a 2D representation since they are a construction of
an apparently three-dimensional environment from 2D retinal
projections.

Each 3D representation has its unique characteristics that
can be used in a specific application. It is true that this
representation is expensive with regard to acquisition devices,
processing, analysis, and manipulation. However, it allows to
overcome the lighting and pose variations problems of 2D
representation.

B. STANDARD 3D FACE RECOGNITION APPROACHES
Methods classified into this category are divided into three
classes: local feature-based, global or holistic feature-based
and hybrid feature-based methods. In this category, tradi-
tional techniques and algorithms are used for facial features
extraction and selection. The conventional pipeline is shown
in Fig.3.

In the Offline phase, the 3D faces dataset follows the
processing steps. Smoothing filters are used for denoising.
In addition, Delauay triagulation is employed for holes filling.
Finally, segmentation is used to extract salient part of the
face with the purpose of ignoring the hair, neck, ears, etc.
The feature extraction step is carried out to compute the
biometric signature of each face. These signatures are later
stored.

The Online phase is carried out at each interrogation of the
dataset by the user, where a query face goes through the same
steps, i.e. preprocessing and feature extraction. Furthermore,
a feature matching is established to compare and analyze the
query and the saved signatures.

FIGURE 3. Overview of standard 3D face recognition approaches pipeline.

1) LOCAL FEATURE-BASED 3D FACE RECOGNITION
APPROACHES
In this category, local features are extracted from parts of the
face, i.e. descriptors are generated to characterize significant
parts (patches) of the facial surface. Most of the related recent
research is mainly focused on establishing face segmentation
or salient regions extraction in the preprocessing phase to
identify the significant parts of the face. Local features are
generated from discriminative patches of the face, such as the
nose, eyes, andmouth. Table 1 presents a study of some recent
local feature-based approaches.

TABLE 1. Local feature-based 3D face recognition approaches.

2) GLOBAL FEATURE-BASED 3D FACE RECOGNITION
APPROACHES
The global or holistic feature-based approaches for 3D FR
extract features from the entire facial surface. In table 2,
several recent approaches are presented. The used descriptors
are not dedicated to give information on a specific part or
region of the face. They use the entire facial surface features.
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TABLE 2. Global feature-based 3D face recognition approaches.

Global 3D FR methods are time consuming, but very effi-
cient to synthesize the complete face.

3) HYBRID FEATURE-BASED 3D FACE RECOGNITION
APPROACHES
Hybrid or multi-modal approaches are a blend of the global
and local techniques. They are the most commonly used in
pattern recognition. Global features serve to get features of
the general appearance or shape of the face. However, local
features serve for strengthening of the biometric signature of
the face and they focus on certain critical regions such as the
mimic regions.

Indeed, hybrid methods take the advantages of both the
global and local methods by combining the detection of
geometric characteristics with the extraction of local salient
facial characteristics. This mixture increases the recognition
rate despite the high complexity. In Table 3, we present some
methods belonging to this category.

C. DEEP 3D FACE RECOGNITION METHODS
Following the emergence of new acquisition techniques, 3D
devices and 3D modeling tools, 3D shapes have become
simpler and more understandable.

CNNs are also sophisticated means for analysis, features
extraction, classification and 3D shape verification. Since the
power of deep learning models has allowed researchers to
build deep generative models for 2D shapes, deep learning
models for 3D shapes are also possible. In this classification,
there are two categories: Fine-tuned 2D CNNs-based and
Deep 3D CNNS-based approaches.

1) FINE-TUNING CNN-BASED APPROACHES
In this category, Deep 2DCNNs are used for 3D face analysis,
feature extraction, and classification. In Table 4, selected
approaches are presented. There are two types of solutions:
• 3D domain representation reducing and passing from 3D
to 2D or 2.5D (depth) representations.

• Adaptation of convolutional layers channels to acquire
3D inputs.

TABLE 3. Hybrid feature-based 3D face recognition approaches.

TABLE 4. Fine-tuning CNNs-based approaches.

Fine-tuning CNN-based approaches consist in reducing the
3D data into another representation such as, 2D plane pro-
jection (RGB rendring), generation of depth images (depth
maps), and range images creation.

The advantage is summarized in the use of deep 2D CNNs,
like VGG-Face or ResNet, which are pretrained from large
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TABLE 5. The most widespread data augmentation techniques for 3D
faces.

2D face images. This makes features extraction very efficient
because deep 3D CNNs suffer from lack of 3D datasets. Yet,
the disadvantage lies in the passage of the 3D representation,
which is very close to reality in terms of volume, to the 2.5D
or 2D representation. This conversion or transformation gen-
erates data loss which subsequently decreases the recognition
rates.

Fine-tuning CNN-based approaches were successfully
used on data augmentation to overcome the problem of lim-
ited 3D datasets. Several data augmentation techniques for
the used data are listed in table 5.

2) DEEP 3D CNN-BASED APPROACHES
In this category, 3D scans are used directly without the con-
version to other representations or planes. Deep 3D CNNs
work with 3D faces (meshes, point clouds, voxels, etc). 3D
CNNs can be classified as following:

Voxel-based deep 3D CNNs: This classification involves
the volume and grid occupancy. In fact, a 3D shape is rep-
resented as voxels and a 3D CNN is applied over the entire
3D volume. O-CNN [40] and 3D ShapeNets [41] are the
most known voxel-based deep 3D CNNs. Since most 3D face
datasets are in the form of a triangular mesh, a voxelisation
step is required. The success of the voxelization stage depends
on the starting mesh which must be a regular one. It is worth
noting that the previously mentioned deep 3D CNNs are used
for 3D objects recognition, completion, and prediction.

Mesh-based deep 3D CNNs: In this classification, deep
CNNs usemeshes and graphs [42]. Authors in [43] worked on
the generalizations of deep CNNs on non-Euclidean domains
to save significant parts of the object or its fine details and
topological structures. In [44], deep CNNs assume the input
shape as a mesh with a sphere-like topology where the goal
was to introduce a conformal mapping from the mesh surface
into a flat torus. The main shortcoming of these methods is
that they significantly limit the exploitation of the maximum
possible workspace available, especially as the neighborhood

factor is taken into account since the mesh or graph represents
a set of relationships between points in space.

3D deep CNNs based on point cloud: This category
of deep 3D CNNs is inspired from the voxel-based deep
3D CNNs, including VoxNet and 3D ShapeNet with a
small change. It involves the use of density occupancy
grids representations for the input data. In [45], the authors
proposed PointNet (deep 3D CNN) based on the imple-
mented architecture of the Point Cloud Library (PCL) [46]
for 3D point cloud processing. To the best of our knowl-
edge, the results showed that PointNet is the fastest deep
3D CNN.

There are deep 3D CNNs that are suitable for extracting
spatial and temporal features in facial video frames [47], [48],
[49], [50]. In this study, we are interested in deep 3D CNNs
that extract the geometric features of a 3D face. 3D FR using
deep 3D CNNs is still developing. The major problem lies in
the limitation of the 3D face datasets. Indeed, training a deep
CNN requires a large dataset. On the other hand, due to our
state of the art study, several 3D CNNs have been used in the
context of object recognition.

In this paper, the objective is to recognize 3D faces using
deep 3D CNNs. 3D scans of faces are used without reducing
the domain of representation. For this reason, we used a 3D
CNNworking directly with this complex geometric represen-
tation. The advantage of this contribution is the use of 3D
faces as they are defined, but the major problem remains with
the limited size of the current datasets. Therefore, in order to
outperform deep 2D face recognition, a big dataset for 3D
CNN training is needed.

III. 3D FACE RECOGNITION BASED ON 3D ShapeNets
A. OVERALL PIPELINE
Our method consists of 3 main phases: 3D Data prepro-
cessing, 3D Data augmentation, and features extraction and
classification based on 3D ShapeNets which is a 3D CNN.
Our contribution consists in applying 3D ShapeNets to 3D
FR, which has not previously been used to the best of our
knowledge.

It is also important to mention that in our work we did not
make domain reducing of 3D data representation because we
used a deep 3D CNN which had as input 3D volumes. One of
the goals of this paper is to find a solution to the issue related
to the small number of subjects in 3D face datasets that 3D
CNNs can validate. We used two types of input:

• 3D reconstructed faces from 2D face images since 2D
face datasets are sophisticated and have a large number
of classes, each having a large number of subjects. It is
true that 3D reconstruction from single 2D image is
not as one captured with 3D acquisition devices, but
we gained a 3D representation that was mathematically
valid and very close to the real world.

• 3D face datasets that were acquired by 3D devices.
Certainly, we have applied preprocessing and data aug-
mentation steps to enlarge the number of 3D scans.
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It is worth mentioning that this stage is time-consuming;
however, as it was a part of our previous work, we opted for
using it [51]. Furthermore, we thought of the good quality
of the mesh built once the initial one was obtained in case of
using 2D datasets. We focused on mesh regularity to facilitate
the voxelization step. We used butterfly algorithm for mesh
subdivision accompanied by BPA algorithm for good quality
and face shape preservation. Fig. 4 presents the proposed
overall pipeline of our work. Each step will be detailed in the
following subsections.

B. DATA PREPROCESSING
1) 3D FACE RECONSTRUCTION
To start with, a comparative study between 2D and 3D
datasets is performed. It was concluded that the 2D datasets
were wider and contain a big variety of classes as shown in
table 6.

TABLE 6. Study of the most widespread datasets of 2D and 3D faces.

3D datasets are not large enough to train a deep CNN.
We treat two types of input: faces coming from 2D datasets
(i. e. RGB images) and 3D faces captured by 3D devices
(i.e. 3D scan files such as ‘‘.off’’). Therefore, we establish
3D face reconstruction from faces in 2D datasets since our
objective is to extract features using deep 3D CNN which is
3D ShapeNets and the input should be a 3D volume applied to
perform 3D face recognition. In a previous work [51], we pro-
posed 3D face reconstruction in the context of face alignment
and frontalization. This implies that 3D reconstruction may
be used to deal with several 2D FR problems and limitations.

In Pseudo Code (1), we present the generalized steps
of 3D reconstruction (details are presented in our previous
work [51]).

Pseudo Code (1): 3D Mesh Reconstruction From 2D Face
Image

Input: 2D face images
Output: 3DFace
1. Read input images from dataset
2. For #image

2DFace← Face Detection and Cropping from input images
2DL a n d ma r k s← Landmarks Detection and Extraction (2DFace)
68L a n d ma r k s← Estimate the location of 68 (x, y)-coordinates that

map the facial structures on the face (2DFace) using dlib library
EdgesC a n n y← Edge Detection (2DFace, ‘Canny’)
EdgesP r ew i t t ← Edge Detection (2DFace, ‘Prewitt’)
Regions←MSER Features Detection (2DFace)
2Dk e y p o i n t s← Reshape (68L a n d ma r k s, EdgesC a n n y,
EdgesP r ew i t t , Regions)

3Dk e y p o i n t s← Delaunay Triangulation (2Dk e y p o i nt s)
3DFace← 3D Mesh Generation (3Dkeypoints)
Write off (3DFace)

2) FACIAL SURFACE EXTRACTION
At this stage, each 3D face follows some pretreatment steps.
Whatever the nature of the 3D face is, preprocessing is essen-
tial for meshes generated from 2D images or meshes acquired
directly by 3D cameras. Preprocessing is conducted for two
reasons. First, it is conducted for facial surface extraction.
It ignores the useless information, namely the background,
ears, neck, etc. Secondly, it is performed for remeshing which
is essential and it served in the voxelization step, which will
be detailed later.

For facial surface extraction (Fig.5), we start by detecting
the nose tip (Pseudo Code (2), Line 3), which is our starting
point. We represent it by the point having the largest depth
value along the Z axis following this Pseudo Code.

We determine the extraction radius suitable for any face
shape (r = length of Bounding Box * 0.6) (Pseudo Code (2),
Line 7). It is chosen following a series of experiments and
the extracted area is calculated using the geodesic distance to
obtain an oval shape compatible with any facial shape. It is
worth noting that the extraction method is invariant to scale
and pose variations.

For 3D faces generated from 2D images and undergoing
pose variations, we notice the presence of missing parts,
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FIGURE 4. Overview of our proposed method.
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FIGURE 5. Facial surface extraction using region growing segmentation
method.

Pseudo Code (2): Salient Facial Surface Extraction
Input: 3D Face
Output: 3DFaceP a t c h

1) [vertex, face]← Read 3DFACE
2) [m, i]← max (vertex (:, 3))
3) NoseT i p← vertex (i,:)
4) A← triangulation2adjacency (face)
5) Box, LengthBB, r← CalculateBoundingBox (vertex)
6) vring← ComputeVertexRing (face)
7) 3DFACEP a t c h← RegionGrowingGeodesic (face,

vertex, vring, i, r)
8) Write ([’3DFaceP a t c h.off’], 3DFaceP a t c h.vertex,

3DFaceP a t c h.face)

called self occlusions. Therefore, correction consisting in
missing parts reconstruction and meshing is made. This cor-
rection is detailed in our previous research work [51].

After 3D face shape correction and meshing missing parts
(Fig.6), the resulting 3D face is ready for the remeshing step.
First of all, this step is used to connect the new added vertices.
In addition, the facial surface subdivisions of the mesh is
performed to properly prepare our 3D mesh for voxelization.

3) FACE REMESHING
This step is performed using the Butterfly subdivision algo-
rithm [66] and the Ball Pivoting Algorithm (BPA) [67] for
3D mesh subdivision and triangular interpolation as shown
in Fig. 7.

This process is very essential for 3D mesh preprocess-
ing. We check mesh regularity by computing the vring of
each vertex, which is the connection number of each one.
To get a regular mesh, all vertices must have the same vring.

FIGURE 6. Missing parts reconstruction and meshing: (a) Reconstructed
3D face from 2D face image, (b) Face rotation to show missing parts
caused by pose variation, (c) Symmetric vertices generation, (d) Shape
correction and missing parts reconstruction.

FIGURE 7. 3D mesh subdivision based on butterfly and BPA with shape
preserving.

Therefore, at each subdivision iteration, vertices and connec-
tions are added. Then, a regularity test is performed if the cri-
terion is not checked. BPA operates refinement, interpolation
and shape preserving. Indeed, these two algorithms go well
together and guarantee a very good remeshing.

4) MESH VOXELIZATION
In this work, we used 3D ShapeNet, which is a voxel-based
deep 3D CNN. For this reason, the voxelization step was
performed. It consists in representing the obtained 3D mesh
as a binary tensor in the following way:
• ‘1’ indicates that the voxel is inside the mesh surface.
• ‘0’ indicates that the voxel is outside the mesh or in an
empty space.

As long as mesh regularity is checked, the 3D voxed vol-
ume will be of very good quality and each vertex in place will
be represented by a voxel. It is true that we cannot see the
details of the facial surface in this representation. However,
each voxel is significant in the occupancy grid (Fig. 8). This
is why 3D ShapeNets were designed for objects and not for
complex surfaces such as faces. In this work, we reveal this
challenge to see if this 3D CNN is really effective for facial
recognition.

C. 3D DATA AUGMENTATION
As detailed in the previous sections, 3D data augmentation
is essential to train a deep CNN, especially when using
3D datasets. Since we converted 3D meshes into voxels,
we obtained an occupancy grid. Indeed, we put the 3D face
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FIGURE 8. 3D mesh voxelization.

FIGURE 9. View-based 3D data augmentation: generation of 12 views.

volume in a box that we can look at from different angles. It is
not a pose variation because our volume is stable in the box,
but it is a change of angles of view. For this reason, it is called
a view-based 3D data augmentation technique. As a result,
different views give meanings to space occupation. For each
face, we generated 12 views equivalent to a consecutive rota-
tion of 15◦ accross yaw (180◦: 15◦ = 12 views), as illustrated
in the following figure.

The choice of the number of views is made following a
series of experiments, which allowed us to notice that for each
15◦, there are remarkable changes in the occupancy grid with
an important meaning. Contrary to objects recognition, the
angle of rotation can be reduced to less than 15◦ over 360◦ to
get better results.

D. 3D ShapeNets FOR 3D FACE RECOGNITION
In this work, we used 3D ShapeNets as a 3D CNN which
takes as input a 3D volume. We no longer need to reduce the
representation of our input data or passing through fine-tuned
CNNs.

As mentioned in the previous subsections, we represent 3D
faces as a probability distribution of binary variables on a
3D voxel grid using a Convolutional Deep Belief Network
(CDBN) [68]. CDBNs are hierarchical generative models
for deep learning, which are effective in image processing
and object recognition. They contain multiple layers of Con-

FIGURE 10. 3D Face ShapeNet architecture.

volutional Restricted Boltzmann Machines (CRBM) [78].
CDBNs work comfortably with high-dimensional images
including complex shapes representations and are translation-
invariant. The 3D ShapeNet architecture is represented in
Fig.10.

1) 3D FACE ShapeNets ARCHITECTURE
The first layer: (L1) is the input layer. The grid size in
our experiments is 30 × 30 × 30, which is equivalent to
165 × 165 2D image. Face labels are presented as standard
1:K softmax variables and they are duplicated for the final
RBM in order to enforce the label training.

The second layer: (L2) takes as input a volume pointing
to the 3D face mesh with 48 filters of size 6 and stride 2.
The volume is represented as a probability distribution of
binary variables (1 refers to the occupied space and 0 for the
empty space in the occupancy grid). Only non-empty learning
signals are considered to ignore training distraction and to get
meaningful features.

The third layer: (L3) has 160 filters of size 5 and stride
2. Each filter has 48 × 5 × 5 × 5 parameters. The con-
volution layer is then used to reduce model parameters by
weight sharing while ignoring pooling in the hidden layers
whose purpose is to prohibit properties invariance for the
recognition task. In this layer, the CRBM training is used
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to establish different convolution CUDA kernels for parallel
computational elements with the next layers. We notice that
the purpose of RBM in 2D CNNs consists in learning cen-
tered filters and departing from boundaries. In 3D ShapeNets,
RBM is used to collect only persistant learning signals.

The fourth layer: (L4) has 512 filters of size 4 and each
CRBM filter is connected to all the feature channels in the
previous layer.

The fifth layer: (L5) is a standard fully connected RBM
with 1200 hidden units. Data are propagated from the bottom.

The last layer: (L6) has 4000 hidden units and takes as
input stacked variables and parameters which aremultinomial
label variables and Bernoulli feature variables. The purpose
is to model the set of possible outcomes, model evaluation,
and training costs. The final hidden activations are computed
using Fast Persistent Contrastive Divergence (FPCD) [76]
and RBM for the joint training of data and labels.

2) 3D FACE ShapeNets TRAINING
The first layers are trained using a different objective function
called Contrastive Divergence (CD), which minimizes the
divergence between data distribution and derivatives with
regard to the parameters that can be accurately and efficiently
approximated [69].

CDn = KL(p0 ∥ p∞)−KL(pn ∥ p∞) (1)

where p0 is the data distribution, and KL is the Kullback-
Leibler divergence. They are computed as follows:

KL(p0 ∥ p∞) =
∑
x

p0(x) log
p0(x)
p(x;W )

(2)

W refers to the probability distribution parameters over x.
The purpose of CD (Eq. 1) consists in reducing computation
per gradient step and the variance of estimated gradient.
Mathematical demonstration is summarized in [77].

In contrast, the top layer is trained using FPCD. In the
first layer, only non-empty voxels are taken into account. The
purpose is to minimize the whole volume for RBM and to dis-
tract learning. Once the system is pretrained, we conduct 3D
classification and retrieval experiments to evaluate extracted
features along all previous layers. Other technical configura-
tions and settings of 3D ShapeNet are detailed in [41].

3) 3D FACE ShapeNets CLASSIFICATION
3D ShapeNets have shown good results in object recognition
and proved the model ability of features learning from 3D
data automatically. In this work, we demonstrate that this
model is also effective in 3D FR.

3D FR using 3D ShapeNets is conducted based on features
evaluation where a linear SVM is trained for 3D face scans
classification with regard to average classes accuracy for
marching. Moreover, L2 distance is established for pairwise
similarity measurement. A ranked list of the remaining test
data is returned in response to a query from the test set,
using the similarity measure. Indeed, the recognition task

consists in estimating the distribution between tested and
trained features. The classification method is free energy.

IV. EXPERIMENTAL RESULTS
The conducted experiments are performed for LFPW, BU-
3DFE, and FRAV3D datasets using 3D ShapeNets. The
code implementation is based on the Graph toolbox, image
Processing MATLAB toolbox for 3D mesh processing, and
MeshLab which is linked to the NVIDIA packages to accel-
erate training. All our experiments were performed using
NVIDIA CUDA development 9.2 and were run on intel
(R) Core (TM) i7-7500U, 2.70 GHz and 2.90 GHz with 8 Go
RAM.

For model pretraining, we set the following parameters:
Labels are duplicated 10 times for the final RBM with the
purpose of enforcing label training. Epochs and learning rate
values are presented in Table 7. CRBM 2 is the Convolu-
tional RBM training of the second layer which uses different
convolution CUDA kernels with L3 and L4. CRBM is the
Convolutional RBM training of L3 and L4. RBM training
with positive and negative phases uses persistant CD. RBM
Last consisting of FPCD RBM training for the joint training
of data uses labels sparsing of the last top layer.

TABLE 7. Model pretraining parameters.

Number of epochs, batch size and learning rates were cho-
sen after a series of experiments using optimizers [81], which
resulted in finding the appropriate model hyperparameters.
In addition, we have taken into consideration the fact that the
model memorizes the data when there are too many epochs
and fails to learn it. In this paper, the goal is to highlight that
3D ShapeNets can be applied on complex shapes like the face.

Once the model is pretrained with the full 3D shape, dis-
criminative recognition test is established using a seperate test
data. Predicted labels are estimated while calculating the free
energy for each label hypothesis. We compute accuracy as
follows:

Accuracy = 6

(
predicted label == Label

n

)
(3)

As an evaluation metric, we utilized the AROC and ROC
curves which are used in such issues. AROC is an accom-
plishment plot of a classification model at each classifica-
tion threshold calculated by numerically integrating an ROC
curve. Therefore, we started with the calculation of ROC
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curve as following:

True Positive Rate

=
True Positives

(True Positives+ False Negatives)
(4)

False Positive Rate

=
False Positives

(False Positives+ True Negatives)
(5)

In our experiments, we present the AROC curves by drawing
the area under the ROC curve and positioning the accuracy
found in each AROC.

A. EXPERIMENTATION AND RESULTS ON LFPW DATASET
LFPW dataset [56] is a collection of face photographs that are
specifically devised to accurately understand and investigate
unconstrained face recognition. LFPW contains 3,000 face
images acquired from various sources from the World Wide
Web. The associated persons’ names were utilized to label
every individual face in the dataset.

In this work, we used the outcomes of image sets from an
evaluation of face parts (facial fiducial points) which were
trained on 1,132 images and tested on 300 images. Therefore,
the dataset was divided into two parts, one for training and
another for testing.

To validate our work and the revealed challenge when
using 3D ShapeNet for 3D face recognition, we have estab-
lished 2 supplementary classifications for this database as
shown in Table 8. Apart from the original decomposition,
we classified train and test images manually according to
gender-related (male or female) and age-related (children,
adults, and elderly people).

TABLE 8. Proposed classification on LFPW dataset.

It is important to mention that for each 2D face image,
we generate a 3D face mesh. Once the mesh is created,
we carried out preprocessing operations for facial surface
extraction. A remeshing step is also performed to have a
regular mesh. Indeed, having a regular mesh, allowed the
voxelization step to be conducted perfectly, which increases
the recognition rate.

Once the dataset is ready, we establish 3D view-based data
augmentation. As a result, for each face volume, 12 views
are created. We create the pretrained model using training

TABLE 9. Quantitative results on LFPW dataset.

FIGURE 11. ARoc curves of LFPW dataset: (a) ARoc of age-related
classification, (b) ARoc of gender-related classification.

volumes. The recognition test is performed using test vol-
umes. Therefore, after running the pretrained model, we test
the recognition ability (discriminative) of the model using a
seperate test data. The classification method is free-energy.
The obtained results are presented in the following table.

The recognition rate is about 80% for the age-related
classification using 3D ShapeNet (Fig.11(a)). On the other
hand, we got a recognition rate of approximately 73.57%
using images that are trained and tested with VGG-16 [82],
which is a 2D CNN. In the recognition testing for gender
classification, we obtained around 87% using 3D ShapeNet
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(Fig.11(b)) and 82.79% using VGG-16. For face identities
recognition, we obtained 94.25% using 3D ShapeNet against
89.23% using VGG-16.

It is important to mention that for 2D recognition test using
VGG-16, no additional pretreatment (such as alignment) was
conducted on the faces, except for face detection and face
cropping.

In the literature, LFPW dataset is used for face detection
and facial landmarks localization. For this reason, we did not
conduct comparisons with 3D FR additional peer approaches
especially deep-based approaches on LFPW experiment.
We first used this dataset to show that 3D reconstruction
solves the problem of limited 3D datasets. In addition, the
exploitation of 2D faces datasets in the framework of 3D FR is
now possible even if it is from single 2D face image. Second,
we would like to show that 3D FR rates are more important
than 2D FR rates.

B. EXPERIMENTATION AND RESULTS ON BU3D-FE
DATASET
This dataset [62] includes 100 subjects with 2,500 facial
expression models. The database contains 100 subjects
divided into 56 female classes and 44 male classes, with ages
ranging from 18 to 70 years old, and having a variety of
ethnic/racial ancestries, including White, Black, East-Asian,
Middle-east Asian, Indian, and Hispanic Latino. Each subject
performed seven expressions in front of a 3D face scanner.
With the exception of the neutral expression, each of the
six prototypic expressions (happiness, disgust, fear, anger,
surprise, and sadness) includes four levels of intensity. There-
fore, each subject presents 25 instant 3D expression models,
resulting in a total of 2,500 3D facial expression models in
the database. A corresponding facial texture image captured
at two views is associated with each expression shape model.
It is about +45◦ and −45◦. As a result, the database consists
of 2,500 two-view texture images and 2,500 geometric shape
models.

After establishing the preprocessing operations mentioned
in the previous sections and the remeshing steps, we per-
formed mesh voxelization. For each volume, we also gen-
erated 6 views as data augmentation. Therefore, the dataset
is ready to be tested on 3D ShapeNets. We divided classes
randomly into two parts, 70% for training and 30% for
testing.

A recognition rate of 97% was obtained with 3D
ShapeNets (Fig.12) vs about 86% with VGG-16. We tested
VGG-16 using the 2D images in the dataset. In table 10,
a comparison with state of the art approaches is
established.

C. EXPERIMENTATION AND RESULTS ON FRAV3D DATASET
FRAV3D database [65] includes 106 subjects, one woman
to three men approximately, each having 16 pose variation.
Apart from pose variations, there are expression and light
variation, for each subject. 3D scans are captured using a

TABLE 10. Comparison of the recognition rates with the state-of-the-art
on BU3D-FE dataset.

FIGURE 12. ARoc and Roc curves of BU-3DFE dataset: (a) ARoc curve of
BU-3DFE, (b) Roc curves of some peer approaches testing 3D FR and 2D
FR on BU-3DFE dataset.

Minolta VIVID 700 scanner. FRAV3D also contains texture
information (2D images) and VRML files for 3D ones.

3D scans of this database are in poor condition due to the
noise evoked by the acquisition devices. Therefore, we per-
formed smoothing steps based on laplacian smoothing of
noisy surface meshes [72]. Also, a step of hole filling was
conducted based on Delaunay triangulation.

Once 3D mesh of 3D scans is ready, we establich facial
surface extraction and remeshing steps to conduct mesh vox-
elization. For each obtained volume, we generated 6 views as
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FIGURE 13. ARoc curve of FRAV3D dataset.

TABLE 11. Recognition rates comparison with the state-of-the-art on
FRAV3D dataset.

data augmentation. We randomly used 70% of the scans for
training 3D ShapeNet and 30% for testing. The recognition
rates are 98.31% when using 3D ShapeNet (Fig. 13) vs.
about 89.15% with VGG-16. We tested VGG-16 using the
2D images in the dataset. In table 11, a comparison with the
state of the art is established.

FIGURE 14. Recognition rates of the different sizes of the extracted
patches of 3D face images.

D. SELF EVALUATION
Apart from the comparison with the state of the art
approaches, we carried out a series of tests to justify our
qualitative and quantitative results and the choices of the
used parameters and techniques. Besides highlighting the
robustness of our contribution through the rates obtained,
we would like to emphasize the quality of our work. We start
by the chosen radius of the region extracted from the 3D face.
We already mentioned that the surface covered by the radius
(r= length of Bounding Box * 0.6) is sufficient to extract the
salient facial surface, which is suitable for any face shape.
We made several tests to determine the extraction radius as
shown in Fig. 14.

The choice of the radius of the extracted patch is very
important. If r is bigger than the length of Bounding Box
multiplied by 0.6, unwanted and unnecessary parts of the
face, such as the ears and the neck, will be existing. As a
result, the recognition rate can be degraded as shown in
Fig.14.

Once we perform salient facial surface extraction of the
face, we establish shape correction for faces with missing
parts caused by pose variations, especially for 3D faces
reconstructed from single 2D image (LFPW dataset). Then,
we perform remeshing for mesh regularity. This step is essen-
tial to have better voxelization and subsequently a better
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FIGURE 15. Recognition rates when using regular and irregular meshes.

recognition rate. The histogram in Fig.15 shows that regular
mesh increases the recognition rate.

A regular mesh helps to have a perfect voxelization. In fact,
each vertex in the space has an occupancy value in the
occupancy grid which makes the difference, especially with
complex surfaces such as the face in our case.

When comparing the results in BU3D-FE dataset,
we notice that the difference between the recognition rate that
obtained with regular mesh (97.08%) and that obtained with
irregular mesh (87.13%) is less than the difference between
the two other datasets. This difference is explained by the fact
that meshes of the BU3D-FE dataset are semi-regular, while
meshes of FRAV3D dataset need several processing steps for
hole filling, denoising, etc.

For the choice of the the number of views for 3D data
augmentation, we performed several tests to demonstrate
that 12 views are sufficient to give significant information.
Indeed, less than 12 views allow no change in the occupancy
grid. At each rotation of 15◦, the angle of view brings a
remarkable change. Indeed, changing the angle of view dur-
ing yaw axis across 180◦ is useful, while performing a full
360◦ turn is not useful because we need views that recover
the face surface and not the rear head. Unlike objects, the
generated views must cover 360◦.

To ensure that our approach is efficient and effective, the
time factor is considered. Curves in Fig.16 show the con-
sumed time in each step.

E. DISCUSSION
The experiments carried out proved that the 3D domain gives
good results because the geometric information is real and
close to reality. Our contribution lies in the use of a 3DCNN
that processes 3D volumes.

In this paper, we presented how we adapted 3D ShapeNet
to facial recognition. To the best of the authors’ knowledge,
3D ShapeNets are used for the first time in face recognition.
Indeed, the use of 3D ShapeNet was challenging because
voxel grid representation is adequate for objects but not for
faces. However, the conducted experiments proved the oppo-

FIGURE 16. Computed time consumed during the preprocessing step per
face image.

site (Table 9, 10, and 11) which urged us to test other 3D
CNNs that work with other 3D representations as mentioned
in the state of the art.

Following the experiments we conducted, the recognition
rates obtained using 3D ShapeNet are 79.17% (age-related
classification on LFPW), 86.68% (gender-related classifi-
cation on LFPW), 94.25% (LFPW identity identification),
97.09% (on BU-3DFE dataset), and 98.31% (on FRAV3D),
respectively. These results are higher than those obtained
using 2DCNNs (51.94%, 82.13%, 81.67%, 86% and 89.15%,
respectively).

V. CONCLUSION
Our contribution consists in Deep 3D face recognition using
3D ShapeNet. This deep 3D CNN works with 3D volume
inputs.We used two types of datasets: a 3D dataset containing
images captured by 3D acquisition devices, and a 2D dataset
of which we reconstruct the 3D shapes. The first encountered
challenge was testing 3D ShapeNet on faces because this 3D
CNN was tested only on 3D objects. The second challenge
was the use of 2D dataset to reconstruct 3D inputs. The
obtained results proved that the reconstruction is considered
successful since the recognition rate in 3D domain was higher
than the one obtained in 2D domain. It was also proven that
working on 3D face recognition is always more effective than
2D face recognition. A future study to test other 3DCNNs and
other datasets should be carried out.
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