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ABSTRACT Object detection is a safety-critical aspect of autonomous driving, allowing vehicles to identify
moving objects in the scene for tracking, prediction and decision making. Current detectors, however, tend to
provide point estimates for detected objects, which lack information on the variability of the prediction and
how well it fits the model that produced the prediction. Proper uncertainty estimation can be incorporated
into traditional object detection pipelines to produce a measure of uncertainty alongside traditional point
estimate object predictions. In this work, uncertainty estimates are implemented for LiDAR and camera
object detectors using Bayesian theory, and the resulting output distributions are assessed using signal
detection theory to generate an uncertainty based classifier that can evaluate its own performance. The
classifier can be used to track the ratio of false positive to true positive detections, defined as the anomalous
detections ratio. Findings from this work indicate that this novel metric is responsive to degraded driving
conditions including night time driving and lens obstructions for the RGB camera, while in LiDAR data, the
metric is responsive to snowfall and simulated rain conditions. These results are focused on the classification
and regression of vehicle objects, making use of the sizeable ground-truth sets for vehicles that are provided
in publicly-available autonomous driving data sets.

INDEX TERMS Autonomous driving system, Bayesian neural network, probabilistic object detection,
sensor fusion, uncertainty in object detection.

I. INTRODUCTION
The task of object detection is a core component of any
autonomous driving system (ADS), feeding downstream pro-
cesses that track, predict and plan for interactions with objects
in the driving environment. Current state-of-the-art models
have shown remarkable accuracy in object detection using
sensors such as RGB cameras and LiDAR sensors. These
systems provide a set of object predictions (recognition) and
their location in the environment (localization), which can be
used in the decisionmaking process for autonomous vehicles.

A drawback to traditional object detection methods is that
the recognition and localization tasks produce point esti-
mates of detected objects, offering an estimated confidence

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

value of the detection (0.0-1.0) alongside a set of bounding
box coordinates enclosing the object. However, these out-
puts do not capture how well the predictions fit the prior
evidence acquired in the training process in forming its
confidence level and bounding box parameters. As driving
conditions, viewpoints and occlusion rates vary extensively,
a more detailed prediction of the uncertainty associated with
detection outputs is needed and can alert the autonomy sys-
tem of the presence of degraded sensor performance during
operation.

One way to provide a predictive output distribution instead
of a point estimate is to employ Bayesian neural networks
(BNNs) [30] which learn weight distributions but are too
computationally complex for modern detection architectures.
Instead, BNNs have been approximated to form Bayesian
object detectors in recent works [15], [21], [39], enabling
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networks to extract uncertainty alongside their predictions.
Uncertainty can be viewed as a measure of how unsure a
neural network is about its predictions. The field of proba-
bilistic object detection is rapidly emerging as an approach to
expand system robustness in an open world setting. Thus far,
uncertainty has been used in theDeepNeural Network (DNN)
itself, as a feedback mechanism to increase accuracy of single
sensor detectors [15], [39] and in a fusion network feedback
loop [10]. A recent survey [11] outlines the main approaches
and performs a detailed comparison study on probabilistic
object detection methods proposed to date.

In this work, uncertainty estimation is evaluated for LiDAR
and RGB camera object detectors, using an approximation
of the Bayesian neural network introduced by Kendall and
Gal [21]. Evaluation is performed on the Kitti, Waymo, and
Canadian Adverse Driving Conditions (CADC) datasets [13],
[31], [35]. These datasets allow for uncertainty evaluation
under varied weather scenarios. Using a reformulation of
signal detection theory in combination with uncertainty esti-
mation, a novel metric called the anomalous detections ratio
(ADR) is developed, which measures the viability of using
detection uncertainty to differentiate between true and false
positives at inference time. The responsiveness of the metric
in real world and simulated adverse weather conditions is
analyzed, to determine if it can be used to assess degraded
sensor performance in adverse conditions.

The main contributions of this work include:
• Implementation of a Bayesian object detector architec-
ture for both LiDAR and RGB camera data, capable of
estimating uncertainty.

• A comprehensive evaluation of uncertainty estimation
techniques for camera and LiDAR object detectors
across multiple datasets, degraded via augmentation
techniques and naturally differing operating conditions.

• Development and evaluation of a novel metric, the
anomalous detections ratio (ADR), that can indicate
sensor performance degradation, with tests on real
adverse conditions such as low-light driving, rain and
snow.

More details about many of the contributions in this work
can be found in [18]. The remainder of this paper is orga-
nized as follows: Section II briefly describes general related
work, Section III outlines techniques used in this research to
model uncertainty, Section IV presents the framework that
we use for image detection, Section V describes the datasets
that we use in our experiments, Section VI shows how we
apply statistical methods to calculate our results, which are
presented in Section VII, Section VIII provides concluding
remarks, and Section IX proposes future work.

II. RELATED WORK
Modern object detection relies on convolutional neural net-
works, in either single-stage [29], [32] or two-stage region
proposal architectures [16], [34]. In this work, we develop
a two-stage Faster-RCNN [34] baseline detector that can be
used with both camera and LiDAR data for probabilistic

object detection evaluation under adverse weather conditions.
In the second stage, objects are localized with a smooth
L1 loss function and classified with a cross entropy func-
tion, producing point estimate predictions of bounding boxes.
Probabilistic object detectionwas made tractable through the
approximations to BNNs introduced in Kendall and Gal’s
work [21]. It proposed that two types of uncertainty can be
extracted using Bayesian deep learning techniques: aleatoric
uncertainty, which captures noise inherent in the input to a
neural network, and epistemic uncertainty, which captures
noise within the model itself. The authors model aleatoric
uncertainty through loss attenuation, and epistemic uncer-
tainty through Monte-Carlo dropout sampling.
Liu et al. build on Kendall and Gal’s work by proposing an

ensemble of object detectors to extract epistemic uncertainty,
rather than dropout [26]. While this method avoids many
of the pitfalls of Monte-Carlo dropout uncertainty estima-
tion, such as incompatibility with batch normalization lay-
ers during training, it is computationally expensive. Recent
work by Harakeh et al. [15] has implemented both epistemic
and aleatoric uncertainty estimation in a single stage image
detection network. The authors increase detection accuracy
by incorporating uncertainty into a detection clustering stage,
similar to and in-place of, non-maximum suppression. This
work shows that uncertainty can be used in a feedback loop
to increase accuracy.

Similar work by Zhang et al. extracts and evaluates uncer-
tainty using a LiDAR sensor instead of an RGB camera [39].
The authors evaluate uncertainty extensively against metrics
such as IoU (overlap) and object distance. The authors also
claim that simply including uncertainty measurement into the
object detector can result in a boost in robustness and accu-
racy. Further work by Feng et al. [10] leverages uncertainty in
a fusion network that combines the RGB camera and LiDAR.
The authors use uncertainty estimation to increase robustness
to LiDAR noise in the region proposal stage, resulting in
a boost in baseline detection accuracy. They also evaluate
the effects of temporal misalignment between sensors and
how uncertainty can significantly boost detection accuracy
in these scenarios. These works present a powerful idea
of leveraging uncertainty in a fusion network, but do not
extract uncertainty for both sensor modalities and only model
aleatoric uncertainty.

In our work, both aleatoric and epistemic uncertainty are
estimated for both classification and regression tasks in a
two-stage probabilistic object detector. It is designed to be
compatible with both LiDAR and RGB camera sensors and
is trained on a range of datasets and conditions. Thus, we can
evaluate and compare the extracted uncertainty between the
two sensors to better understand if it is an informative mea-
sure, specifically in adverse weather conditions.

III. UNCERTAINTY ESTIMATION
Bayesian modelling provides a method to estimate uncer-
tainty by transforming traditional point estimate predictions
into full probability distributions. A Bayesian modelling
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approach treats model parameters as random variables that
are described by a ‘‘prior’’ distribution over the weights p(θ ).
A posterior distribution of the parameters p(θ |D) can be
obtained from training the machine learning model on data
D = (X ,Y), by multiplying the network output, modelled as
the likelihood P(Y|X , θ) by the prior p(θ ) and dividing by the
marginal probability P(Y|X ), forming Bayes theorem. How-
ever, in practice the marginal probability cannot be evaluated
analytically, and the posterior must be approximated with a
surrogate distribution p(θ |X ,Y) ≈ q∗(θ ) using Kullback-
Leibler (KL) divergence [21].

Likewise, a predictive posterior p(y∗|x∗,D) is computed
by integrating the predictive likelihood of an outcome with
the approximated posterior q∗(θ ). This is also approximated
in practice, by either using ensembles of ML models or
multiple stochastic runs through one ML model by enabling
Monte-Carlo dropout sampling at inference.

In the interest of brevity, details about the methods that
we use to model epistemic and aleatoric uncertainty, for
localization and classification detections, are not included
here. A detailed discussion of these methods can be found
in [18], [12], and [39].

IV. NETWORK ARCHITECTURE
As illustrated in Fig. 1, a Faster R-CNN network architecture
was chosen for both the LiDAR and RGB camera object
detectors, with pre-processing to allow a common neural net-
work architecture for both sensor modalities. Resnet-101 [17]
and FPN [25] backbones are used with ROI-Align pool-
ing on 2D image and bird’s-eye view (BEV) LiDAR data
for the 2D and 3D detection tasks, respectively. A baseline
implementation from Chen and Gupta was used [7]. Major
modifications include the added support for various datasets
(Kitti, Waymo, CADC) and support for the LiDAR based 3D
object detector. Uncertainty estimation support was added,
following the approach in [21].

FIGURE 1. Proposed detection framework.

V. EXPERIMENTS
A. DATASETS
In this work, datasets were chosen to act in a comple-
mentary way, to test different aspects of the object detec-
tors, as well as provide varying adverse weather conditions.

TABLE 1. AP results for Kitti.

Dataset selection was restricted to those that 1) contain
synchronized and calibrated LiDAR and RGB camera data,
and 2) include accurate and extensive ground truths for
training purposes. We note that in some recent works [27],
[28], improvements in object detection have been shown by
forcing bounding boxes to be on a ground plane. We have
not included such enhancements in our object detectors at
this time, for consistency when comparing our results to
other successful 3D object detection methods like [4], [34],
and [23]. These comparison are provided in Tables 1 and 2,
which are described below.

1) KITTI
The Kitti Vision Benchmark Suite [13] is considered a pio-
neering dataset that popularized the use of synchronized
frames of data between a GPS, IMU, LiDAR and set of RGB
cameras [13]. Kitti contains 7, 481 synchronized frames,
which each have associated labeling information. In this
work, Kitti is used as a baseline test to ensure nominal accu-
racy of the object detectors used in our experiments.

Mean average precision results from training on the Kitti
dataset for each sensormodality are given in Table 1. Ablation
is performed by training a baseline detector for both sensors
(Base), alongside the detector with standard augmentation
applied (Base +) and finally with uncertainty estimation
enabled as well (i.e. loss attenuation and dropout) (Base++).
For the RGB (Image) detector, results are shown for our work,
Faster-RCNN [34], and YOLO-V4 [4]. Our LiDAR detector
results are compared against similar two stage BEV LiDAR
object detectors, PointPillars [23] and BirdNet [1].

2) WAYMO
The Waymo dataset contains over 230,000 annotated data
frames using five LiDAR sensors, five cameras, a GPS and
an IMU [35]. Waymo includes over 1000 scenes of data, each
containing approximately 20 seconds of a drive, annotated
at 10 Hz. Each scene is labeled for various environmental
conditions, such as day, night, twilight, rainy, or sunny.

In this work, the various labeled weather scenarios enable
analysis of detector uncertainty in real world conditions.
Specifically, the Waymo dataset allows for the analysis of
the effects of changing illumination conditions for the RGB
camera through day time and night time scenes, while the rain
and sun dataset split can be used to analyze the effects of rain
on uncertainty-based metrics.
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TABLE 2. AP results for Waymo.

Relative to Kitti, it is more difficult to achieve high AP
results with the Waymo dataset, due to an increase in ground
truth density and variety of objects in the frame. This includes
an increase in the distance of object labels, resulting in a
larger variation of bounding box size in the image perspective
and a higher number of vehicles at a far distance (with few
points) in the LiDAR BEV perspective. As shown in Table 2
the RGB camera and LiDAR detectors are compared against
similar two stage detector architectures (including YOLO-
V3+Faster-RCNN [33], RW-TSDet [19], SECOND [37],
and HorizonLiDAR3D [9]) to ensure that our detectors are
performing nominally. The state-of-the-art results for recent
Waymo-tested object detectors are included, which outper-
form our detectors. These methods have gone through signif-
icant architecture optimization, such as anchor free detection,
Cascade R-CNN and multi-scan aggregation [9], [19].

3) CANADIAN ADVERSE DRIVING CONDITIONS
The Canadian Adverse Driving Conditions Dataset [31] con-
tains approximately 7,000 frames of data across 75 scenes
featuring various adverse weather scenarios. Each frame con-
tains captured data from eight cameras, one LiDAR, a GPS
unit and an IMU [31]. Rather than focus on night/day driving
like Waymo, CADC aims to capture and label data across
various snowy conditions experienced in the harsh Canadian
winter. CADC includes labels for five snowfall levels: none,
light, medium, heavy and extreme. Also, scenes are labeled
to include information such as road snow cover camera lens
occlusion from snow.

In this work, CADC is leveraged to analyze uncertainty
metrics involving snowy conditions on the LiDAR object
detector. Also, the effects of obstructions (snowflakes) on an
RGB Camera lens can be analyzed to understand if obstruc-
tions degrade camera performance significantly. This is use-
ful, as obstructions are common and can come from many
sources including snow, dirt or even a broken lens.

No benchmarks are available for the CADC dataset, and
no released works discuss AP for the same split used. Thus,
AP results are released as a baseline, shown in Table 3.

VI. MODELING STATISTICS
The approach taken in this work is to directly model uncer-
tainty estimates via the added network output parameters
gw(xi) and sample variance of the T Monte-Carlo samples.

TABLE 3. AP results for CADC.

Although this approach does not allow for uncertainty esti-
mates to be physically interpretable, less noise is intro-
duced into the distribution as it is directly modelled.
Furthermore, uncertainty estimates do not need to be physi-
cally interpretable in this work, as degraded sensor states can
be detected through relative changes in the distributions of
uncertainty with the use of modeling statistics.

Tomodel uncertainty for degraded state detection, aleatoric
and epistemic uncertainty estimates are independently
extracted for every detection during inference. Epistemic
uncertainty is extracted by computing sample variance of
the T Monte-Carlo samples of predicted regression values
and classification logit scores, while aleatoric uncertainty is
extracted by computing the mean of the T samples of the
additional network output parameters gw(xi). For the regres-
sion task, the sample variance values obtained are modelled
as the independent diagonal elements I of a multi-variate
Gaussian covariance matrix. Similarly for the classification
task, the sample variance is also used to directly estimate
uncertainty from the noise in the logit score samples.

Special care must be taken when formulating statistical
models of uncertainty, because the output of the neural
network, which is described by the predictive likelihood
function p(y∗|x∗,D), can form any arbitrary distribution.
This is due to the Gaussian prior placed over each weight
p(wi) ∼ N (0, σ 2), meaning the output distribution is a sum
of a large number of Gaussian distributions.

Due to the arbitrary nature of the distributions of uncer-
tainty produced by the network, non-parametric techniques
are leveraged to model distributions of uncertainty estimates,
such as Kullback-Leibler (KL) divergence and multivariate
Kernel Density Estimators (KDEs) [8], [36]. Using KDEs,
a nominal distribution of uncertainty values can be modelled,
when each sensor is in a non-degraded state. Then, the esti-
mated uncertainty density from the nominal distribution at
run-time can be used to predict if a detection belongs to
(i.e. is classified as) the distribution of false positives (FP)
or true positives (TP), similar to the averaged precision (AP)
metric. An example of KDEs is shown in Fig.2. It depicts
distributions of variance for an uncertainty parameter; true
positive uncertainty is shown in blue, with the corresponding
KDE in orange, and false positive distribution in green, with
its KDE in red.

A. DETECTION THEORY
Signal detection theory (SDT) was originally formulated
to analytically find the optimal signal strength at which to
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FIGURE 2. Example histogram of true positives (blue) and false positives
(green) of a uncertainty parameter. Univariate KDEs are estimated over
the TP split (orange) and FP split (red ), respectively.

differentiate radar returns from two different types of
objects, A and B. In this problem, two Gaussian probabil-
ity distributions of signal return strength are defined, one
belonging to the return for a type A object, the other for
type B. An incoming return signal can be compared to both
distributions and a decision can be made about what the
object is likely to be. Any arbitrary point β can be chosen
to represent the decision point between classifying the type
of object represented by the return. Transferring this concept
to object detection for vehicles and uncertainty estimation
is straightforward, as the distributions are defined as uncer-
tainty estimates belonging to False Positives (FP) and True
Positives (TP).

The performance of the classifier can be evaluated by
classifying a set of detections from the validation set as true
positives or false positives based on the decision point β.
The associated detection can then be compared to the ground
truth from the validation set, to determine if the detection
truly was a false positive or true positive. If the object has a
significant overlap with any ground truth, its signal is denoted
as TP (IoU ≥ 0.7), or if it has little to no overlap with
a vehicle (IoU < 0.7), the signal is denoted as FP. Using
the combination of the two classifications, we can define
four types of probabilities: hit, miss, false alarm (FA) and
correct rejection (CR). For example, a hit represents the
probability of a FP detection being correctly distinguished;
it represents the chance that a true anomaly is classified as
such. Thus, from leveraging SDT, an analytical understanding
of uncertainty measures as a metric can be gained.

We can calculate the probabilities of correctly predicting
TP and FP detections on the SDT classifier by integrating
the conditional area of the distribution, either (−∞, β) or
(β, ∞) to produce PHIT, PMISS, PFA, and PCR. Only PHIT
and PFA need to be evaluated using Equations 1 and 2,
as the other two are complements of the first pair

(PMISS = 1 − PHIT,PCR = 1 − PFA).

PHIT =

∫
∞

β

pFP(x)dx (1)

PFA =

∫
∞

β

pTP(x)dx (2)

To understand the effects of moving the threshold value
β on the classifier performance, it is swept across a range
of values, producing a plot of PHIT as a function of PFA.
The generated plot is called the receiver operating char-
acteristic (ROC) curve. The informativeness of the classi-
fier can be quantified by computing the area under the
curve (AUC), which is a commonly-used metric for machine-
learning applications [5].

To extend SDT from Gaussian distributions to non-
parametric density functions, the decision boundary β is
re-defined as a minimum threshold parameter. An incoming
detection can be classified with a response of good detection
or anomaly by computing the difference in densities between
KDEs at the query point x∗, representing the estimated uncer-
tainty associated with the detection. The detection is clas-
sified as a true positive if the TP density function exceeds
the FP density function plus some threshold β, as seen
in Equation 3.

TP := pTP(x) > pFP(x) + β (3)

VII. RESULTS
This section evaluates uncertainty as a metric for discriminat-
ing between true- and false-positive detections. Results are
given for the Kitti, Waymo, and CADC datasets.

A. COMPARING UNCERTAINTY FOR TP AND FP
DETECTIONS
To produce uncertainty results we use an inference run over
a validation set of the data. For each detection we check
the bounding box against any corresponding ground truth.
If the detection’s IoU metric is ≥ 0.7 then it is recorded
as a true-positive detection (TP), else false-positive (FP).
We model the distribution of the uncertainty (variance) pro-
duced by this experiment (see Figure 2) for TP and FP detec-
tions and use KL divergence to quantify their differences.

For the 2D image-based object detector, uncertainty is con-
sidered for several combinations of regression parameters:
the bounding box center (xc, yc), size (l,w), and all four
(xc, yc, l,w). For the LiDAR detector, parameter combina-
tions include: center of the bounding cuboid (xc, yc, zc), size
(l,w, h), heading (ry), and all seven (xc, yc, zc, l,w, h, ry).
For classification, both detectors are simplified to a binary

classifier containing the foreground (fg) and background (bg)
class. The fg is defined as the ‘‘Vehicle/Car’’ and the bg class
forms the complement.

A visualization comparing TP and FP uncertainties is
given in the form of a contour plot in Fig. 3. It shows, using
Waymo data, a distribution of TP blue and FP red aleatoric
regression uncertainty for the parameters (l,w). The figure

VOLUME 11, 2023 44993



M. Hildebrand et al.: Assessing Distribution Shift in Probabilistic Object Detection Under Adverse Weather

TABLE 4. Regression results for various parameters.

TABLE 5. Classification results for various parameters.

indicates that the distributions are dissimilar. Compared using
KL divergence, these distributions produce a score of 3.3.
The same measures were taken using epistemic regression
uncertainty, which produced a KL divergence score of 3.0.

Results for various regression parameters are summarized
in Table 4 and for classification parameters in Table 5. For
each dataset there is one row showing aleatoric results (Ale.)
and one row for epistemic (Epi.). The left side of the tables
show results for the 2D image sensor, and the right side cor-
responds to LiDAR. While various levels of KL divergence
are shown for the parameters, the column labelled ‘‘All’’
indicates that the combination of all parameters within an
uncertainty measure results in the largest divergence. This
suggests that the multi-dimensional KDE that models the
distributions is able to leverage information from each uncer-
tainty parameter in a complementary fashion.

The results in the ‘‘All’’ column in Table 4 are on average
1.8× larger for aleatoric uncertainty in comparison to epis-
temic uncertainty. Similarly, in Table 5 this factor is 1.3×.
The tables show that in most cases epistemic uncertainty
gives the smallest KL divergence score for most parameters,
indicating it is the least informative measure.
Sensor Comparisons: Care must be taken when analyzing

KL divergence scores from one sensor to another, given that
the regression tasks may operate in a different number of
dimensions. But the classification task can be compared for
relative uncertainty values between the LiDAR and image
detectors. On average, aleatoric classification uncertainty
gives a 1.1× larger KL divergence for the image detector
relative to LiDAR over all datasets. For epistemic classication
uncertainty the image detector gives a 1.5× larger diver-
gence. These results indicate that the image detector uncer-
tainty estimates may be more informative than their LiDAR
counterparts.

FIGURE 3. Contour plot of aleatoric regression uncertainty for the image
detector (l, w) on Waymo. True positive distribution in blue, false positive
distribution in red .

FIGURE 4. Image detector KL divergence for all tasks.

Dataset Comparisons: Examination of the results across
the three datasets shows that Waymo produces the highest
KL divergence scores. This may be a result of the increase
in the diversity of training data for Waymo compared to the
other datasets. Even epistemic uncertainty, which according
to Kendall and Gal, should be reducible with more data [21],
is significantly higher for Waymo. An illustration of these
results is provided in Fig. 4. Each colored bar corresponds
to a column labelled ‘‘All’’ for the 2D image sensor from
either Table 4 or 5. For example the column identified as
epistemic_cls_all is epistemic classification uncertainty and
aleatoric_reg_all is aleatoric regression uncertainty.

B. RECEIVER OPERATING CHARACTERISTIC
The experimental results given above indicate that we can
use non-parametric KDEs to model uncertainty distributions
of TP and FP detections, and use SDT to distinguish them.
We wish to utilize this method to form a classifier of TP
and FP detections that can be used during inference. This
classifier needs to achieve a high performance that yields
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a desired probability of TP, and an acceptable probabil-
ity of FP detections. The receiver operating characteristic
(Section VI-A) provides such a metric that can describe the
performance of our uncertainty-based classifier.

1) EXPERIMENTAL SETUP
Following the procedure described earlier, an inference run is
performed over the validation split of a dataset, collecting out-
put detections and associated uncertainty values into a results
database. The database comprises 15, 000 detections drawn
from the validation run. We compare detections to ground
truth objects and discriminate between FP (IoU < 0.7) and
TP (IoU ≥ 0.7). An N -dimensional multi-variate KDE is
used to generate two density distributions over the TP/FP
split. For the classification task N = 2, corresponding to
the foreground (vehicle) and background class (complement).
For the regression task, a multivariate KDE is generated of
dimension N = 4 for the image detector and N = 7 for
LiDAR. Additionally, total predictive uncertainty is included,
which is up to an N = 18 dimensional KDE (for LiDAR),
containing all parameters for aleatoric and epistemic regres-
sion and classification.

Using equation 3, each detection can be classified as TP or
FP based on a density threshold β. By performing a sweep
over a range of thresholds a receiver operating curve (ROC)
can be obtained. The area under the curve (AUC) can be
calculated by using discrete integration, giving an estimate of
the performance for each uncertainty parameter combination.
Furthermore, we can pick a desired ROC operating point
via the threshold value (βopt ) which is set by choosing a
maximum acceptable FA rate on the ROC curve; for this work
the probability FA = 0.1 is selected, to create a conservative
anomaly classifier. An example ROC curve generated using
the Waymo dataset for the 2D image detector can be seen
in Fig. 5. This result includes filtering of detections using
a 0.5 confidence threshold, because the uncertainty values of
low confidence detections would not be indicative of sensor
performance.

2) ANALYSIS
Complete AUC results over all datasets for the image detec-
tor are shown in Table 6, and for LiDAR in Table 7. For
each dataset, results are shown for three confidence levels:
0.01, 0.5, and 0.7. These results demonstrate that for each
sensor and dataset at least one metric has a good AUC
(≥0.8) at the highest confidence threshold (0.7). This indi-
cates high metric informativeness, even with a significant
threshold applied, which cannot simply be filtered out with-
out reducing recall.

Tables 6 and 7 indicate that the combination of all uncer-
tainties generates the most informative classifier in most
cases, with aleatoric bounding box uncertainty occasionally
outperforming it. However, not all metrics appear highly
informative, especially at high confidence thresholds. Uncer-
tainty parameters like epistemic classification uncertainty
demonstrate the highest drop in performance with increasing

FIGURE 5. ROC curve for the image detector on Waymo with
0.5 confidence threshold.

TABLE 6. Image detector ROC AUC metric.

TABLE 7. LiDAR detector ROC AUC metric.

confidence threshold, with near random guess performance
at 0.7 confidence threshold for the Kitti trained LiDAR
detector.

A comparison between the AUC metric and the KL diver-
gence scores reveals a positive correlation between the two
measures. This is indicated by identical ranking order of mag-
nitude between the two measures, which is generally (from
lowest to highest): epistemic classification, epistemic regres-
sion, aleatoric classification and finally aleatoric regression
uncertainty. Although this general order has some notable
exceptions like the CADC ImageDetector, the KL divergence
scores reflect this as well. Thus, many of the same trends
identified in KL divergence between datasets, sensors and
metrics hold with the AUC metric.

C. ADVERSE CONDITIONS
This section presents test cases under adverse conditions,
including rain, fog, and snow,which is the primarymotivation
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for our uncertainty metric analysis. After filtering results
using a .5 confidence threshold, the performance of uncer-
tainty metrics is quantified by computing the ratio of false
positives to true positives FPTP , using the SDT classifier created
from the nominal KDEs of uncertainty outputs. This metric is
defined as the Anomalous Detections Ratio (ADR). To com-
pute ADR, the uncertainty values produced for each detection
are used as input values to the nominal KDEs of TP and FP
detections described in Section VII-B1, above. Each of these
nominal KDEs produces a likelihood value corresponding to
the current detection’s uncertainties, and Equation 3 classifies
this detection as being either TP or FP. No ground truths are
required to compute ADR, since it is estimated using only the
uncertainty likelihoods that are stored in the nominal KDEs.
Thus, in a actual usage scenarioADR can bemeasured in real-
time, and a running average of ADR provides a mechanism
to assess whether a sensor is currently working well and
producing a high ratio of correct detections, or whether that
sensor is more likely to be producing detections that have a
relatively-low likelihood of being correct.

The datasets are augmented by generating additional test
cases using simulated distortions, including random dropout
of pixels at 20% and 40%, simulated lens obstruction, and
fog [20]. We use augmentation methods akin to those dis-
cussed and evaluated in [3] and [38]. For the LiDAR detector,
a point cloud rain simulator is implemented that can distort
point clouds using estimated power loss and back scatter
equations measured in mm/h [14]. In this work, the test
cases include relatively common rain rates, defined as light:
1 mm/h, medium: 3 mm/h and heavy: 5 mm/h.

1) WAYMO IMAGE DISTORTIONS
Using the Waymo dataset with RGB camera four splits on
the validation dataset are tested: day, night, rainy, and the full
set (as a control test). After performing an inference run over
each split, the average precision is computed over the two
levels of difficulty. Waymo includes a (20 second) sequence
of images labelled rainy, illustrated by Fig. 7, in which
image features are distorted due to water droplets and
spray.

We produced a detection classifier from the aleatoric
regression uncertainty measure to classify detections as TP
or FP. Aleatoric regression uncertainty is chosen over all
uncertainties as findings indicate a comparable performance
but reduced computational cost for this measure. Table 8
indicates that ADR is highly responsive to adverse conditions
that give reduced AP. Night driving (Fig 6) and driving in the
rain with an obscured camera lens (Fig 7) report increases in
the ADR of 1.4× and 2.1× respectively. This result suggests
that uncertaintymetrics can be used to detect a degraded state,
as ADR increases when AP decreases.

We performed the following simulated degradation tests:
pixel dropout at 20% (Fig 8) and 40% (Fig. 9), fog
(Fig 11), and lens obstruction (dirt spatter) (Fig 10). The
results indicate a clear inverse correlation between ADR

TABLE 8. Waymo image adverse conditions.

TABLE 9. Waymo image simulated adverse conditions.

FIGURE 6. Image - Waymo - a) day test case. b) night test case. White:
Ground truth boxes. Green-to-blue: more uncertain detections.

FIGURE 7. Image - Waymo - rain test case. White: Ground truth boxes.
Green-to-blue: more uncertain detections.

FIGURE 8. Image - Waymo - 20% dropout test case. White: Ground truth
boxes. Green-to-blue: more uncertain detections.

FIGURE 9. Image - Waymo - 40% dropout test case. White: Ground truth
boxes. Green-to-blue: more uncertain detections.

and AP across the board of simulated tests. As an exam-
ple, 20% dropout results in a 1.5× increase in ADR and
12% decrease in AP. Fog simulation also reports a relatively
large (1.4×) increase in ADR and decrease (19%) in AP,
which is attributable to fog partially obscuring ground truth
objects in some frames. The full set of results can be viewed
in Table 9.
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FIGURE 10. Image - Waymo - spatter test case. White: Ground truth
boxes. Green-to-blue: more uncertain detections.

FIGURE 11. Image - Waymo - fog test case. White: Ground truth boxes.
Green-to-blue: more uncertain detections.

2) WAYMO LiDAR DISTORTIONS
Using the Waymo dataset and the LiDAR detector, the same
four splits are investigated. These tests use all of the same
methods as described above, apart from the signal classifica-
tion using a 3D IoUmetric, rather than in 2D. In an important
test of asymmetric sensor distortion, the night-driving split is
tested and compared between the LiDAR and camera sensors.
While the camera reports a nearly∼1.5× increase in theADR
with a ∼3% AP drop, the LiDAR sensor reports relatively
small changes in both ADR and AP (Table 10). This result
supports the idea introduced by Bijelic et al. that asymmetric
sensor distortion can result in AP drops in one detection
modality, while not affecting another [2].

The rain simulation algorithm is used to augment the
dataset with light (1 mm/h), moderate (3 mm/h) and heavy
(5 mm/h) rain conditions, by distorting the LiDAR point
clouds. The AP and ADR results can be seen in Table 11,
while example LiDAR pseudo images distorted with rain can
be seen in Fig. 12.
Similarities are found between the image dropout distor-

tion tests and the LiDAR rain simulation tests, as it requires a
significant decrease in AP to report a large increase in ADR.
The findings indicate that ADR is efficacious in detecting
a degraded rain state: the heaviest rain rate 5 mm/h reports
a ∼4.2× increase in the ADP, with a ∼30% drop in AP.

TABLE 10. Waymo LiDAR adverse conditions.

TABLE 11. Waymo LiDAR simulated rain.

FIGURE 12. LiDAR - Waymo - simulated rain test case. White: Ground
truth boxes. Green-to-blue: more uncertain detections. a) no rain b)
1mm/h c) 3mm/h d) 5mm/h.

TABLE 12. CADC LiDAR snowfall adverse conditions.

FIGURE 13. LiDAR - CADC - Snowfall test white: Ground truth boxes.
Green: detections. a) light snowfall b) medium snowfall c) heavy snowfall.

TABLE 13. CADC LiDAR adverse conditions.

3) CADC LiDAR DISTORTIONS
This section evaluates the various adverse snowfall condi-
tions in the Canadian Adverse Driving Conditions (CADC)
dataset. Nominal KDEs are generated using a split that
removes the various snowfall rates (Light, Medium, Heavy,
Extreme, as visualized in Fig. 13) from the dataset. Next,
two splits are used in a comparison test, to investigate the
relationship between AP and ADR in snowfall conditions.
The first split contains frames from None and Light levels
of snowfall, while the second half contains Medium, Heavy
and Extreme. For this test the all uncertainty metric is chosen,
as it is the only metric that scores above an 0.8 AUC at
a 0.5 confidence threshold. Findings indicate that LiDAR
experiences degraded performance in higher snowfall condi-
tions, losing approximately 7% AP. Also, ADR reports a rel-
atively large increase of 1.4×when comparing the two splits,
indicating that the metric is responsive to snowfall-related
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sensor degradations. The full set of results are shown
in Table 12.

VIII. DISCUSSION AND CONCLUSION
In this paper, an object detector supporting the RGB cam-
era and LiDAR sensors is developed using a Faster R-CNN
architecture as a baseline framework. Then, using the approx-
imate modelling of a Bayesian neural network, the baseline
object detector is modified to generate estimates of four
types of uncertainties: aleatoric regression, epistemic regres-
sion, aleatoric classification and epistemic classification. The
focus of our work is on uncertainty estimation, and in this
context our network architecture with uncertainty estimation
reports AP results that are comparable to previous results
from the literature.

We perform a comprehensive analysis of the four types
of estimated uncertainty over three datasets, Kitti, CADC,
Waymo, for our two sensor types. As a preliminary analysis,
KL divergence is used as a disparity measure between the sets
of uncertainty values associated with true positive and false
positive detections. This is followed by an investigation into
the performance of uncertainty estimation as a discriminative
classifier using signal detection theory (SDT), with its perfor-
mance measured by the AUC metric. Last, a novel metric is
presented in this work, defined as the anomalous detections
ratio (ADR). We evaluate the responsiveness of this novel
ADR metric by using cases that involve adverse weather and
simulated sensor degradation.

Findings from the KL divergence and AUC metric anal-
ysis indicate that the two measures are highly correlated,
as they follow similar trends across uncertainty measures,
sensor types and datasets. Aleatoric regression uncertainty is
found to be significantly more discriminative between false
positive and true positive detections when compared to other
uncertainty types. In general, epistemic uncertainty demon-
strates the poorest results; but this could be due to a lack of
variability in our Monte-Carlo output samples, since dropout
was enabled only in the last few layers of the network. The
image detector is found to produce higher KL divergence and
AUC metric scores than the LiDAR detector, indicating that
the 2D RGB image is a more informative input or perspective
than a LiDAR BEV pseudo-image. Waymo is observed to
consistently give the highest KL divergence and AUC metric
scores, indicating that highly varied data in large datasets
results in more informative uncertainty measures. However,
regardless of the trends indicated, the results from the SDT
analysis demonstrate that uncertainty measures are informa-
tive when used as false positive and true positive classifiers,
producing a minimumAUC of 0.8 for all sensors and datasets
at a confidence threshold of 0.7, with at least one uncertainty
measure.

Our results with the RGB camera object detector show
that the novel ADR metric is highly responsive to degraded
conditions such as night time driving and obscured images in
the rain, produced from theWaymo dataset. In both test cases,
drops in AP correspond to increases in ADR, indicating an

inverse correlation between the two metrics. Further testing
with simulated image distortions such as dropout, fog and
lens spatter also demonstrate a similar relationship between
AP and ADR, but appear less sensitive than real-world
adverse weather conditions. Results using the LiDAR object
detector indicate that ADR is responsive to degraded snowfall
conditions in the CADC dataset split chosen, as well as
simulated rain conditions with the Waymo dataset. This is
evidenced by an overall drop in AP and increase in ADR,
suggesting the two are inversely correlated for the LiDAR
object detector as well.

As stated above, the emphasis of this work is on being
able to leverage the ADR method in real-time as a metric
for assessing whether a sensor is currently working well,
or not. In this context, while absolute detection accuracy is
not as important as the ability to produce the ADR metric
as a running average, we need to support a sufficiently-
high detection rate for real-time usage. We have supported
this goal in our approach that uses a two-stage backbone
network, rather than just a single stage. Thusly, we are able
to ameliorate much of the possible deleterious effects on
performance by computing the Monte-Carlo samples needed
for uncertainty estimation in only the second-half (refinement
stage) of the network, not in the network backbone. Of course,
the absolute performance of any object detector will be highly
dependent on the compute-hardware chosen, such as CPU,
GPU, or custom accelerator. In addition to the Faster-RCNN
network that we have used, it would be of interest to test
the ADR metric with other two-stage networks; however,
there should be little variation in performance between the
two-stage backbones when controlling for the number of
parameters in the backbones and inference time if training
on large scale datasets, such as Waymo and the like.

Overall, the novel ADR metric demonstrates a responsive-
ness to real world and simulated degraded performance test
cases, suggesting that uncertainty estimation can be an infor-
mative measure for assessing sensor performance degrada-
tion. However, there is a significant amount of work remain-
ing when it comes to ensuring the safety of autonomous
vehicles on the road today and in the future. Current datasets
are just beginning to enable research into the realm of adverse
conditions, and more high quality data is needed to enable a
deeper analysis. The applications space of uncertainty estima-
tion still remains largely unexplored, especially in the context
of sensor fusion, which is discussed below.

IX. FUTURE WORK
As an extension of the in-depth analysis of uncertainty esti-
mates in object detectors, we propose that this work is the
beginning of a research stream,which focuses on autonomous
driving in adverse conditions with multiple sensors. Two
possible avenues of future work are proposed below.

A. FUSION NETWORKS
In this paper, uncertainty estimation is performed for sensors
in independent domains. However, in real-world multi-sensor
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systems, an autonomous driving system (ADS) must reduce
all of its inputs down to a single set of decisions made to
control the vehicle. Thus, future work must be performed
to combine, or fuse, information between sensors and per-
ception systems. Combining fusion with uncertainty estima-
tion could result in a flexible fusion architecture, capable
of dynamically fusing sensors. This is especially relevant
when considering adverse conditions, as asymmetric sensor
distortion can degrade fixed fusion architecture performance
if the distortion was not experienced during training. Thus,
we present two flexible fusion approaches, involving late
fusion and feature fusion, respectively.

1) LATE FUSION
One approach to flexible fusion is to combine detections in a
late fusion voting based scheme. In this approach, indepen-
dently produced detections can be matched between sensor
modalities using the IoU metric and then combined using
uncertainty. This approach could increase the robustness of
the object detector if driven with uncertainty, as detection
voting can be weighted with uncertainty metrics, such as the
inverse of the ADR. However, the current detector configura-
tion does not support 3D object detection with the late fusion
technique, as the image detector only operates in 2D.

To support late fusion, 3D object detection with the RGB
camera must be implemented, in one of two suggested
approaches. In the first approach, LiDAR point cloud data
can be transformed to the image domain, where a sparse
depth encoding over the image can be obtained. Next, depth
completion can be applied, even with a simple algorithm
such as linear interpolation, to obtain an RGB-D image. This
RGB-D image is capable of natively storing 3D information
in its depth channel, just like the LiDAR point cloud. An alter-
native approach to adding 3D support for RGB image object
detection is to use stereo camera sensors to predict in 3D,
much like existing works Stereo R-CNN [24].

2) FEATURE FUSION
Feature based fusion is another approach that can be lever-
aged to extend this work into the fusion domain. The
suggested approach is to follow the feature-level fusion
architecture that was introduced by works such as MV3D
and AVOD [6], [22]. These works leverage a two stage
architecture (i.e. Faster R-CNN) to fuse data at the region pro-
posal layer, where each proposal is a cropped set of features.
In the original fusion implementation, these cropped propos-
als or ROIs, are fused by performing element-wise addition
between the features produced from each sensor’s feature
extractor, before being presented to the second stage detector.
Uncertainty estimation can also be implemented at the region
proposal stage. Adding uncertainty into the fusion method
could out-perform basic element-wise addition, as cropped
ROIs from sensors in degraded states will introduce unwanted
noise into the fused ROI. Specifically, asymmetric sensor
distortion scenarios (such as night time driving), could result

in poor performance with element wise addition, as an RGB
camera would add unwanted noise to the nominally operating
LiDAR sensor.

As future work, two possible techniques are proposed
to perform feature-level fusion with uncertainty estimates
extracted from the region proposal layer. The first involves
element-wise multiplication of ROIs with a mask ten-
sor, which is known as the attention masking technique.
Uncertainty can be used to drive the values of this mask ten-
sor, acting to attenuate feature information in high uncertainty
scenarios. Alternatively, uncertainty estimates for every ROI
can be reduced to a scalar value, either through averaging
operations or a simple multi-layer perceptron. This scalar
value can be used as a uniform attention mask across the
entire ROI, before element wise feature level fusion is
applied. This technique can be thought of as a region proposal
mixture of experts method, where each expert is a different
sensor type.
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