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ABSTRACT Semantic segmentation of mechanical assembly images provides an effective way to monitor
the assembly process and improve the product quality. Compared with other deep learning models, Trans-
former has advantages in modeling global context, and it has been widely applied in various computer vision
tasks including semantic segmentation. However, Transformer pays the same granularity of attention on all
the regions of an image, so it has some difficulty to be applied to the semantic segmentation of mechanical
assembly images, in which mechanical parts have large size differences and the information quantity
distribution is uneven. This paper proposes a novel Transformer-based model called Vision Transformer with
Self-Adaptive Patch Size (ViT-SAPS). ViT-SAPS can perceive the detail information in an image and pays
finer-grained attention on the regions where the detail information locates, thus meeting the requirements
of mechanical assembly semantic segmentation. Specifically, a self-adaptive patch splitting algorithm is
proposed to split an image into patches of various sizes. The more detail information an image region has,
the smaller patches it is split into. Further, to handle these unfixed-size patches, a position encoding scheme
and a non-uniform bilinear interpolation algorithm used after sequence decoding are proposed. Experimental
results show that ViT-SAPS has stronger detail segmentation ability than the model with fixed patch size,
and achieves an impressive locality-globality trade-off. This study not only provides a practical method
for mechanical assembly semantic segmentation, but also has much value for the application of vision
Transformers in other fields. The code is available at: https://github.com/QDLGARIM/ViT-SAPS.

INDEX TERMS Deep learning, vision Transformer, mechanical assembly monitoring, semantic
segmentation.

I. INTRODUCTION
At present, the manufacturing industry has entered the era
of mass customization. Mass customized production needs
to constantly change product types according to the needs of
different customers. This production mode with changeable
product types makes the product assembly line constantly
reorganized. This increases the assembly difficulty, andwork-
ers are prone to errors such as assembly procedure errors,
missing assembly, and wrong assembly [1], [2], [3]. If these
errors are not detected in time, it will directly affect the prod-
uct quality and assembly efficiency. Therefore, effectively
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monitoring the assembly process and finding errors in time
has become an urgent problem in the modern manufacturing
industry. The traditional way to monitor the assembly pro-
cess mainly relies on workers’ visual comparison between
assembly drawings and assembly products. This method is
time-consuming and requires workers to have a high level of
professional knowledge.

In recent years, image semantic segmentation has devel-
oped rapidly, and it can be applied to the field of mechanical
assembly monitoring to replace the aforementioned manual
labor and realize automatic monitoring. Specifically, RGB
imaging sensors and depth imaging sensors are deployed on
the assembly line to collect mechanical assembly images,
and then semantic segmentation technology can be utilized to
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segment these images. By analyzing the segmentation maps,
the assembled parts can be identified, and the errors of miss-
ing assembly, wrong assembly, assembly procedure error,
etc. can be monitored more precisely and efficiently than the
traditional approach [2]. Thus, this method can improve the
quality and efficiency of mechanical product assembly while
avoiding the phenomenon of rework and reducing production
costs.

At present, semantic segmentation based on deep learn-
ing is the mainstream semantic segmentation technology,
which has been successfully applied to many fields, includ-
ing virtual reality, autonomous driving, medical image
analysis, etc. [4], [5], [6], [7]. However, applying seman-
tic segmentation to mechanical assembly monitoring has
some difficulties: (1) Mechanical assembly images have
insufficient color and texture information, which increases
the difficulty of mechanical assembly segmentation.
(2) Information quantity distribution in an assembly image
can be extremely uneven. Some regions of an assembly image
may include a large number of tiny mechanical parts, whereas
other regions may include mainly large mechanical parts or
even meaningless backgrounds.

The convolution neural network (CNN) is a deep learning
model mainly used for computer vision tasks. It was origi-
nally designed to imitate the animal optic nerve system and
once occupied a dominant position in computer vision tasks
such as image classification, object detection, and semantic
segmentation [8]. CNN has already been applied to mechan-
ical assembly monitoring. For example, Chen et al. [2] pro-
posed an improved 3D convolutional neural network model
(3D CNN) to detect missing assembly actions, and they used
a fully convolutional network (FCN) to segment and identify
different mechanical parts from complex assembly products
to check whether there are missing or misplaced mechanical
parts in the assembly process. Chen et al. [3] used YOLOv3
to locate and identify the assembly tools and identify the
assembly behaviors of workers to prevent assembly qual-
ity degradation caused by the lack of key operation steps
and misoperation. However, CNN has a limited receptive
field, and it is not good at learning and modeling long-range
dependency information in images [6], [7], [9], [10]. This
drawback severely limits the application of CNN in mechan-
ical assembly semantic segmentation. Since the mechanical
assembly is a complex structure with many mechanical parts
being closely connected and working together, the long-range
dependency information among these parts needs to be con-
sidered in high-precision semantic segmentation of mechan-
ical assembly.

In recent years, Transformer [11] has become a preva-
lent architecture in the field of natural language processing
(NLP) attributed to its self-attention mechanism. Since 2020,
Transformer has been successfully applied to computer vision
tasks, including image classification, object detection, and
semantic segmentation [8]. Such vision Transformer has a
receptive field of the whole image, and it can leverage the
global information of the image to overcome the disadvantage

FIGURE 1. Patch splitting mechanisms in vision Transformers. (a) The
original image; (b) The fixed-size patch splitting mechanism of the
existing vision Transformers; (c) The adaptive patch splitting mechanism
proposed in this paper.

of the limited receptive field of CNN [6], [7], [9], [10]. Thus,
vision Transformer provides a new thinking for mechan-
ical assembly semantic segmentation. However, there are
still problems in applying the existing vision Transform-
ers to mechanical assembly semantic segmentation directly.
As shown in Fig. 1 (b), in the existing vision Transformers,
an image is first split into a series of fixed-size (e.g., 16× 16)
image patches. Supposing the Transformer uses a constant
latent vector size of D through all its layers, each patch
is flattened and then mapped to D dimensions through a
trainable linear projection. Therefore, an image is converted
into a sequence of D-dimensional vectors, and then it can be
processed by a Transformer. Since the patches have the same
size, the Transformer pays the same granularity of attention
on each region of the image. It cannot perceive the detail
information inside a patch and pay special attention on it.
If some detail information in the input image falls into a
patch, it will be flattened into a vector, which may cause
the loss of local context information. Therefore, although the
existing vision Transformers have good global attention, it is
still difficult for these architectures to deal with mechanical
assembly images in which the information quantity distribu-
tion is extremely uneven.

To overcome the aforementioned limitation of the exist-
ing vision Transformers, this paper proposes a novel
vision Transformer model called Vision Transformer with
Self-Adaptive Patch Size (ViT-SAPS), which can pay
finer-grained attention on image regions with more detail
information. Compared with the existing vision Transform-
ers, ViT-SAPS can split image patches adaptively according
to the amount of detail information. If a patch has sufficient
detail information, then it will be further split into smaller
patches; otherwise, it will not be further split. As a result,
the more detail information an image region has, the more
attention is paid on this region to fully extract the inter-
nal information of an image. Fig. 1 shows the patch split
results of a mechanical assembly image using the existing
vision Transformers and ViT-SAPS. In the regions where
tiny mechanical parts concentrate, ViT-SAPS has finer patch
split granularity than the existing vision Transformers. In the
regions where there are few tiny mechanical parts, ViT-SAPS
has coarser patch split granularity than the existing vision
Transformers. Therefore, ViT-SAPS can provide an effective
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approach for semantic segmentation of mechanical assembly
images with uneven information distribution.

Specifically, the contributions of the ViT-SAPS proposed
in this paper include: (1) A self-adaptive image patch splitting
algorithm for Transformers is proposed, which can adap-
tively split image patches according to the detail information
distribution of the image. (2) Since ViT-SAPS use unfixed-
size patches, and the positions of these patches cannot be
effectively expressed by regular position encoding schemes,
a special position encoding scheme is proposed to address this
problem. (3) For unfixed-size patches, a non-uniform bilinear
interpolation algorithm used after sequence decoding is also
proposed.

The rest of this paper is organized as follows. Section II
presents an overview of current research. Section III out-
lines the research process and describes the self-adaptive
patch splitting algorithm, the position encoding scheme for
unfixed-size patches, and the non-uniform bilinear interpo-
lation algorithm in detail. Section IV presents experiments
conducted using the proposed method, including the datasets,
experiment settings, and the performance of ViT-SAPS.
Section V presents our conclusions and future work.

II. RELATED WORK
CNN-based semantic segmentation has been researched
extensively. In 2015, Long et al. [12] proposed FCN, which
laid the foundation for semantic segmentation research based
on deep learning. FCN realizes full convolution so that the
network can accept the input of any size, and the output of the
network is a spatial image rather than a class score. Although
FCN has made great progress compared with traditional
semantic segmentation methods based on artificial feature
extraction, FCN still has some limitations. When FCN out-
puts the final segmentationmap, it uses deconvolution for 8×

upsampling, which makes FCN insensitive to image details
and leads to rough semantic segmentation results. When FCN
performs pixel-by-pixel segmentation, it does not consider
the relationship among pixels and lacks spatial consistency.
To overcome these shortcomings, researchers have proposed
a series of neural network models for semantic segmentation
based on FCN, such as CRF-RNN [13] based on conditional
random field (CRF), DPN [14] based on Markov random
field (MRF), U-Net [15] and SegNet [16] using multi-level
feature fusion encoder-decoder structure, etc. These models
have continuously improved the segmentation accuracy and
efficiency.

However, these FCN-based models have a limited recep-
tive field, so they are not good at extracting global context
information. To address this problem, a lot of work has been
conducted. For example, DeepLab [17] and Dilation [18] use
dilated convolution to expand the receptive field. PSPNet [19]
and DeepLabV2 [20] use pyramid pooling to aggregate
the context information of different regions to improve the
ability to obtain global information. PSANet [21] proposes
a point-wise spatial attention module to dynamically cap-
ture long-range context; DANet [22] proposes dual attention

composed of position attention and channel attention to cap-
ture the global feature dependency in the spatial and channel
dimensions respectively. In GCAU-Net [23], a global atten-
tion module with self-attention mechanism is proposed to
learn the long-range dependencies of channel and position,
and a feature aggregation module is designed to fuse the
global context features with the low-level and high-level of
features generated by a CNN-based encoder. The above mod-
els have achieved tremendous progress in modeling global
context. However, these models are still constructed based
on FCN, and the spatial resolution of the input image is
still downsampled by the encoder, so some global contextual
information will still be lost.

In 2020, Transformer was extended to the field of computer
vision [24]. Vision Transformers split the input image into a
series of fixed-size image patches, thus representing images
as sequences and making image processing tasks similar to
natural language processing tasks. The Transformer encoder
has a global receptive field. It does not perform downsam-
pling, and has better modeling ability than CNN [25]. So,
it provides a new idea for semantic segmentation. In the
past two years, the research on Transformer-based semantic
segmentation has made many achievements [8]. For exam-
ple, SETR [9] is a Transformer-based semantic segmentation
model, which uses Vision Transformer (ViT) [26] as the
encoder, and utilizes three different decoders (Naive, PUP
and MLA) to perform semantic segmentation. Segmenter
[10] is also a Transformer-based semantic segmentation
model, and it differs from SETR in that: (1) In addition to
ViT, the encoder of Segmenter also uses DeiT [27], which
has lower requirements for the scale of the training set;
(2) The decoder adopts a pure Transformer architecture,
called mask Transformer. TransUNet [28] is a special model
for medical image segmentation, which combines the advan-
tages of Transformer and U-Net. In TransUNet, the input of
the Transformer is the patches split from the feature map
output from a CNN rather than the original image. This
is conducive to the extraction of global context informa-
tion. Then, the decoder upsamples the output features of the
encoder and then combines them with high-resolution CNN
feature maps to achieve an accurate target location. These
early Transformer-based semantic segmentation models have
a disadvantage, i.e., their Transformer backbones work based
on the patch splittingmechanism shown in Fig. 1 (b), and thus
they show poor locality in practice. In fact, these backbones
perform well in image classification tasks but perform poorly
in tasks requiring dense prediction at the pixel level, such as
object detection and semantic segmentation [29]. Therefore,
the performance of these early Transformer-based semantic
segmentation models is not satisfactory.

To overcome this disadvantage, a plethora of studies
have been conducted on the locality of vision Transform-
ers. In some research works [5], [28], CNNs are used
to enhance the locality of vision Transformers. In Focal
Transformer [30], a new self-attention mechanism is pro-
posed. When calculating the attention between a query patch
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FIGURE 2. The architecture of the proposed ViT-SAPS.

and other regions of the image, fine-grained self-attention
is performed in the closest surrounding regions whereas
coarse-grained self-attention is performed in the regions far
away. VOLO [31] is also a new self-attention mechanism,
which encodes fine-level local contexts into image tokens
in a way similar to patch-wise dynamic convolution. The
Transformer-based semantic segmentation model LSNet [32]
proposes a novel context formation fusion method based on
the cross attention structure, which fuses the global attention
features and low-level spatial features, and thus improves
the model’s accuracy in segmenting complex targets.
D-Former [6] proposes a local scopemulti-head self-attention
mechanism to provide locality, which performs self-attention
only within each local unit in the image. Tokens-to-Token
ViT [33] aggregates several neighboring patches into one so
that the aggregated patch has local information and solves
the problem of the poor locality of ViT. TNT [34] uses a
two-level Transformer: the outer Transformer is responsible
for global attention modeling, and the inner Transformer
is responsible for local attention modeling, thus unify-
ing global attention and local attention. PVT [29] is a
general-purpose Transformer backbone for computer vision
tasks such as image classification, object detection, seman-
tic segmentation, etc. PVT adopts a hierarchical architec-
ture, and different patch sizes are used at different stages,
so it can consider both locality and globality. Similar to
PVT, Swin Transformer [35], [36] is also a hierarchical
general-purpose Transformer backbone, which utilizes a
shifted window along the spatial dimension to reduce the
model’s computational complexity. Swin-Unet [7] is a pure
Transformer-based semantic segmentation model designed
using the backbone of Swin Transformer, and it is a U-shape
model similar toU-Net. Swin-Unet performs better thanCNN
models and CNN-Transformer hybrid models in medical

image segmentation. Some other vision Transformers also
adopt hierarchical architecture to improve locality, such as
SegFormer [37], Dynamic Transformer [38], Twins [39],
Multi-Scale Vision Longformer [40], etc. Although these
models have greatly improved the locality of vision Trans-
formers, they still pay the same granularity of attention on all
the regions of the input image and do not fully consider the
characteristics of mechanical assembly images. Therefore,
it is necessary to develop a vision Transformer suitable for
mechanical assembly semantic segmentation.

III. METHOD
A. OVERALL ARCHITECTURE
The architecture of the ViT-SAPS model proposed in this
study is shown in Fig. 2. The input image is first split
into several (e.g. 3 × 3) large patches. Then, the image is
further split according to the edge detection result. If an
aforementioned large patch contains sufficient edge pixels,
it is considered to contain abundant high-frequency compo-
nents, and thus it has much detail information and will be
further split into 2 × 2 smaller sub-patches; otherwise, if a
patch contains few edge pixels, it is considered to have little
detail information and it will not be further split. In this way,
ViT-SAPS can adaptively split an image into unfixed-size
patches according to the distribution of detail information
in the image. For image regions where the detail informa-
tion locates, ViT-SAPS gives finer-grained attention to fully
extract the key information. For image regions that contain
little detail information, ViT-SAPS use large patches, thus
effectively reducing the sequence length of the image and the
computational complexity of the model without affecting the
segmentation performance.

Next, regardless of the patch size, all the patches will be
flattened and linearly transformed into vectors of the same
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dimension. Then, these vectors are successively processed by
the Transformer encoder and semantic segmentation decoder
to obtain a patch-level class score. In this process, we adopt
position encoding to retain positional information of the
patches. In ViT-SAPS, the characteristic of unfixed-size
patches makes both the number and distribution of patches
differ among the images. As a result, the fixed learnable
position encoding of the existing vision Transformers cannot
be applied to this situation. Instead, we propose a position
encoding scheme specially for ViT-SAPS.

Finally, the patch-level class score is subjected to bilinear
interpolation to obtain the final segmentation map. Since the
patches are distributed irregularly in each image, the bilinear
interpolation algorithm of the existing vision Transformers is
unsuitable for ViT-SAPS. To address this problem, we pro-
pose a non-uniform bilinear interpolation algorithm. The
non-uniform bilinear interpolation process is guided by the
detailed information of the input image’s patch distribution.

The self-adaptive patch splitting algorithm, the position
encoding scheme, and the non-uniform bilinear interpolation
algorithm proposed in this paper will be discussed in detail in
the following subsections.

B. SELF-ADAPTIVE PATCH SPLITTING ALGORITHM
The purpose of self-adaptive patch splitting is to split the
image regions with more detail information into smaller
patches and split the image regions with fewer details into
larger patches. Hence, this study proposes a self-adaptive
patch splitting algorithm (Fig. 2). Considering an image x ∈

RH×W×C , the algorithm flow is described as follows.

1) For an image in the dataset, its height H and width W
are factorized as H = h × 2m andW = w × 2m, where
at least one of h and w is 1 or an odd prime, and m
is a positive integer. To facilitate the execution of the
subsequent steps, 2m should be a relatively large value,
such as 128 or even larger. If this condition is not met,
padding needs to be employed on the image in advance.

2) According to the factorization results, the image is
firstly split into h × w large patches sized 2m × 2m.

3) Edge detection is performed on the image to obtain an
edge-detected image.

4) According to the edge-detected image, the total num-
ber of edge pixels g in each large patch described in
step 2) is examined. If g is not smaller than a preset
threshold Tsplit , then this patch is considered to contain
much detail information. Therefore, this patch is split
into 2 × 2 sub-patches sized 2m−1

× 2m−1. Then, the
above splitting process is recursively performed until
the patch size is reduced to a preset lower threshold
Tpatch × Tpatch. Tpatch should be an integer power of
2. If g < Tsplit , no further split will be continued.

After the above process, the image is split into a sequence
of patches x = [x1, . . . , xN ] of different sizes. The maximum
and minimum patch sizes are 2m × 2m and Tpatch × Tpatch
respectively. The threshold Tsplit may have effect on the

FIGURE 3. The proposed position encoding scheme. This schematic
diagram is shown for an image of 16 × 16 pixels. The squares with gray
borders represent pixels in the image. The squares with green borders
represent the patches. In this schematic diagram, Tpatch = 4, so there
are 16 Tpatch × Tpatch areas in total. Each Tpatch × Tpatch area has a
learnable position encoding like ViT. Then, the position encoding of
the 8 × 8 patch located in the upper left corner of the image is equal to
the average of the position encodings of the four Tpatch × Tpatch areas
of 1, 2, 3, and 4.

sequence length N . The smaller Tsplit is set, the more likely
the image is to be split into smaller patches, and thus the
sequence length is larger. Meanwhile, different images may
have different sequence lengths N . Similar to the processing
of the existing vision Transformers, each patch is flattened
into a one-dimensional vector and then transformed into a
patch embedding x0 = [x0,1, . . . , x0,N ] ∈ RN×D of length D
through a linear projection. For the existing vision Transform-
ers, because each patch has the same size, only one learn-
able linear projection is required. However, for ViT-SAPS,
because the patches are of different sizes, each group of
patches with the same size requires an independent learn-
able linear projection. Meanwhile, since the patch splitting
operation of each image is different, after the patch splitting,
some detailed information about the patch distribution of each
image, including each patch’s size and its specific position in
the original image, needs to be transmitted to the interpolation
module following the decoder to restore the segmentation
map effectively.

C. POSITION ENCODING SCHEME
In the existing vision Transformers, the patch distribution of
each input image is consistent. This indicates that each token
in the patch sequence has a fixed position in the original
image. Therefore, a unified learnable position encoding can
be used for all the images to represent the position informa-
tion of each patch in the original image. However, this scheme
is not suitable for ViT-SAPS. This is because, in ViT-SAPS,
the lengths of the patch sequences are inconsistent, the sizes
of the patches are different, and the positions of the patches
are not fixed. Hence, it is difficult for ViT-SAPS to use fixed
patch position encoding like the existing vision Transformers.
To address this problem, this study designs a position encod-
ing scheme for ViT-SAPS, which is described as follows.

First, each image is split into a series of small areas sized
Tpatch × Tpatch, where Tpatch × Tpatch is the minimum patch
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FIGURE 4. The proposed non-uniform bilinear interpolation algorithm. In this schematic diagram, (a), (b), and (c) represent an image of 16 × 16 pixels.
The squares with gray fine borders represent pixels in the image. The squares with green bold borders represent the patches. The red dots represent
points with known class scores, i.e., the center of each patch. The centers of the pixels are the points to be interpolated. Because the pixel marked in
blue in Fig. 4(a) is not in the rectangular area determined by any four known points, according to the principle of bilinear interpolation, the class score
of the blue pixel cannot be directly determined by bilinear interpolation. The value of the dark blue triangle 8 in Fig. 4(b) is determined by performing
bilinear interpolation on the four points 4, 5, 6, and 7. The values of the 12 purple stars in Fig. 4(c) are determined by performing bilinear interpolation
on the four points 1, 2, 3, and 8. These 12 points, plus points 4, 5, 6, and 7, whose values are originally known, can be used to determine the value of
each pixel in the image using the ordinary bilinear interpolation method.

size, so that each patch in the image contains several such
Tpatch × Tpatch areas. Then, similar to ViT, a learnable posi-
tion encoding is arranged for each Tpatch × Tpatch area. The
position encoding of each patch takes the mean value of the
position encodings of all the Tpatch × Tpatch areas it contains
(Fig. 3). Such position encoding scheme can correctly reflect
each patch’s position in the original image, although the
distribution of patches in each image can be totally different.

In this way, the position encoding pos= [pos1, . . . , posN ]∈
RN×D is obtained and added to the patch embedding, thereby
obtaining the input sequence of the Transformer:

z0 = x0 + pos (1)

D. SEQUENCE ENCODING AND DECODING
In ViT-SAPS, the encoding and decoding process of the
sequence is the same as that of the existing Transformer-based
semantic segmentation models. The mapping of the l-th layer
in the Transformer encoder is denoted as Encoderl ( ), and the
output sequence is denoted as zl = [zl,1, . . . , zl,N ] ∈ RN×D.
Then,

zl = Encoderl (zl−1) , l = 1, 2, · · · ,L (2)

The input sequence z0 is processed by the Transformer
encoder with a total of L layers. The final output sequence
is zL . Subsequently, through the decoder, the sequence zL is

decoded into a patch-level class score zclass ∈ RN×K , where
K is the number of classes. That is,

zclass = Decoder (zL) (3)

E. NON-UNIFORM BILINEAR INTERPOLATION
ALGORITHM
In the existing Transformer-based semantic segmentation
models, zclass is transformed into a patch-level segmentation

map spatch ∈ R(H/P)×(W/P)×K , where P is the fixed patch size.
Then, the final pixel-level segmentation map s ∈ RH×W×K

is obtained by performing bilinear interpolation on spatch.
In ViT-SAPS, since the patches are non-uniformly distributed
on the original image, after zclass is obtained, the class score
of each pixel cannot be directly obtained by bilinear interpo-
lation, as shown in Fig. 4(a).

Considering the above problems, this study proposes a
bilinear interpolation algorithm for non-uniformly distributed
patches. With the help of the previously generated detailed
information about patch distribution (Fig. 2), the proposed
algorithm uses the patch-level class score zclass in the
non-uniformly distributed patches to complete the interpola-
tion computation of the class score of each pixel. According
to this method, in the final segmentation map s, the smaller
the patches, the denser the class scores obtained by deep
learning rather than by interpolating, and thus the higher the
interpolation precision. Hence, the segmentation precision is
also higher. On the contrary, the larger the patches, the lower
the interpolation precision. Thus, the segmentation precision
is also lower. This is consistent with the goal of this study
to improve the segmentation precision of vision Transform-
ers at image regions with detail information. The details of
the algorithm are described as follows, and the flowchart is
shown in Fig. 5.

1) The size of the minimum patch in the image being
processed is denoted as pmin × pmin, and the size of
the maximum patch is denoted as pmax × pmax. Let
i = pmin. Each i × i patch in the image is obtained by
splitting a 2i × 2i patch. Then, bilinear interpolation is
exploited to determine the values of the center points
of these 2i × 2i patches. For example, in Fig. 4(b), the
value of point 8 can be obtained by performing bilinear
interpolation on points 4, 5, 6, and 7.
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FIGURE 5. The flowchart of the proposed non-uniform bilinear interpolation algorithm.

2) Let i = 2i. If i < pmax, the interpolation process in
step 1) is repeated, i.e., the center point of each 2i × 2i
patch is obtained by performing bilinear interpolation
on the values of the center points of i× i patches in the
image; otherwise, go to step 3). After the interpolation
in steps 1) and 2), the values of the center points of
pmax × pmax patches in the image are known. This is a
necessary condition for the interpolation in step 3).

3) Let i = pmax. The center points of i × i patches in
the image are used to perform bilinear interpolation to
determine the values of the center points of (i/2)× (i/2)
patches whose values are still unknown. For example,
in Fig. 4(c), it is assumed that the image is split into
patches sized 4× 4. Hence, there are 16 such patches in
total. In these patches, the values of the center points 4,
5, 6, and 7 are known. The remaining 12 center points
can be determined by performing bilinear interpolation
on points 1, 2, 3, and 8.

4) Let i = i/2. If i > pmin, the interpolation process in
step 3) is repeated, i.e., the center point of each (i/2) ×

(i/2) patch whose value is still unknown is obtained by
performing bilinear interpolation on the center points
of i × i patches in the image; otherwise, go to step 5).
After the interpolation in steps 3) and 4), it is assumed
that the image is split into patches sized pmin × pmin.
Then, the values of the center points of such patches
are already known. This is a necessary condition for
the interpolation of step 5).

5) The ordinary bilinear interpolation is performed on the
center points of the above-mentioned patches sized
pmin × pmin to obtain the class scores of all the pixels in

the image. In this way, the complete segmentation map
s ∈ RH×W×K is obtained.

IV. EXPERIMENTS
A. DATASETS
Currently, there is still a lack of public datasets in the field
of mechanical assembly semantic segmentation. Therefore,
this study conducts experiments on a private dataset we built.
In the practical production process, since the color and tex-
ture information of the mechanical assembly is lacking, it is
not suitable to use color images for mechanical assembly
semantic segmentation. The pixels in the depth image indi-
cate the distance between the actual object and the sensor.
Hence, the depth image can describe the three-dimensional
information of the object. Besides, compared with color
images, depth images are not disturbed by environmental fac-
tors such as illumination, chromaticity, and shadows. Thus,
depth images are suitable for the semantic segmentation of
mechanical assemblies. Depth images can be acquired by
depth cameras. However, there are various mechanical parts
in common mechanical assemblies, and some are tiny in size,
which makes it difficult and laborious to manually label real
depth images. Therefore, massive training samples cannot
be obtained easily. Considering this, our dataset adopts a
computer synthesis method to generate mechanical assembly
depth images and the corresponding labels.
Our data samples contain depth images and their labels of

four reducer products at different assembly stages. There are
3004 data samples in total, with image size of 384 × 384
pixels. The appearances of the parts in each mechanical prod-
uct are shown in Fig. 6. The details of the parts included in
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FIGURE 6. The appearances of the parts in each mechanical product.

each assembly stage of each product are presented in Table 1.
The details of the number of samples in each assembly stage
of each product are presented in Table 2.

Based on these data samples, two datasets are built for
two different assembly monitoring tasks. The details of the
datasets are as follows.

Dataset 1: All the 3004 data samples are first randomly
shuffled and then divided at certain proportions to form the
training set, the validation set and the test set, which contain
1804, 600, and 600 samples respectively. This dataset can
be used at the situation where massive random sampling
is performed to detect errors in the mechanical assembly
process, so that the defective product rate can be obtained,
and thereby the assembly quality can be determined.

Dataset 2: In this dataset, one certain assembly stage is
selected from each of the four reducer products to form
the test set, including Stage 3 of Reducer 1, Stage 5 of
Reducer 2, Stage 1 of Reducer 3, and Stage 2 of Reducer 4.
Consequently, there are 646 samples in the test set. The
remaining 2358 samples are randomly shuffled, and then
divided to form the training set and the validation set. There
are 1768 and 590 samples in the training set and the validation
set, respectively. This dataset can be used to monitor the
assembly sequence of complicated products, i.e., to monitor
the assembly process, and determine whether there are any
mistakes in the assembly sequence.

B. EXPERIMENT SETTINGS
We replace the fixed-size patch splitting mechanism in the
DeiT-S [27] backbone with our self-adaptive patch splitting

mechanism to form a novel vision Transformer backbone
called DeiT-S-SAPS. Then, Mask Transformer [6] is taken
as the decoder to form a complete ViT-SAPS semantic seg-
mentation model. Due to the small size of our mechanical
assembly semantic segmentation dataset, the DeiT-S back-
bone pre-trained on ImageNet-22K [41] is used in our model.

In the patch splitting process, the edge detection method
should be carefully selected. We perform four popular edge
detection operators [42], [43] on an image of Reducer 2,
Stage 6. The results are presented in Fig. 7. In the edge-
detected images generated by the Sobel, Scharr, and Lapla-
cian operators, larger mechanical parts tend to have wider and
clearer edges, while smaller mechanical parts tend to have
finer and less clear edges. Using this type of edge-detected
image in the patch splitting process is not conducive to the
segmentation of small mechanical parts. It is desired that all
the mechanical parts have edges of the same width and gray
value. The Canny operator generates edges with a line width
of 1 pixel and a unified gray value, and thus perfectly meets
our requirements. Therefore, we adopt the Canny operator to
conduct our experiments.

In the experiments, the ViT-SAPSmodel is evaluated under
two situations: Tsplit = 15, Tpatch = 4 and Tsplit = 3, Tpatch =

4. Among them, the situation of Tsplit = 15 is adopted to
compare the self-adaptive patch splitting mechanism with
the traditional fixed-size patch splitting mechanism. When
Tsplit = 15, in all the 3004 data samples, each image con-
tains 592.8 patches on average. The traditional Transformer
semantic segmentation model for comparison uses fixed size
patches, and the size of each patch is 16 × 16. Thus, each
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TABLE 1. The details of the parts included in each assembly stage of each mechanical product.

TABLE 2. The details of the number of data samples in each assembly
stage of each mechanical product.

FIGURE 7. Edge detection results generated by 4 different operators.
(a) Sobel; (b) Scharr; (c) Laplacian; (d) Canny.

image contains (384 / 16)2 = 576 patches. Therefore, the two
models have similar average input sequence lengths, and it is
fair to compare the two models in this case. When Tsplit = 3,

each image contains up to 1604.8 patches on average, which
can provide more fine-grained semantic segmentation. This
case is adopted to reflect the high performance of ViT-SAPS.

To achieve the fastest running speed, the encoder and
decoder of ViT-SAPS are run on GPU similar to other
Transformer-based semantic segmentation models. Since
patch split and edge detection involve quite little parallel
computation, these works are run on CPU rather than GPU.
In non-uniform bilinear interpolation, there is also quite little
parallel computation. Hence, this work is also performed on
CPU rather than GPU.

C. RESULTS
We compare the performance of the proposed ViT-SAPS
model with that of several classic semantic segmentation
models and several recently proposed semantic segmenta-
tion models that perform excellently in other application
fields on our Datasets 1 and 2. The results of segmentation
intersection-over-unions (IoU) of 16 types of mechanical
parts are presented in Table 3 and Table 4.

1) ANALYSIS OF THE SELF-ADAPTIVE PATCH SPLITTING
MECHANISM’S VALIDITY
We demonstrate the validity of the proposed self-adaptive
patch splitting mechanism by comparing ViT-SAPS (Tsplit =

15) and Segmenter, as shown in Table 3 and Table 4. These
two models have the same encoder and decoder. The only
difference between them is that ViT-SAPS (Tsplit = 15) uses
the self-adaptive patch splitting mechanism, while Segmenter
uses the traditional fixed-size patch splitting mechanism.
It can be seen from Table 3 and Table 4 that ViT-SAPS
(Tsplit = 15) achieves higher segmentation performance
for all the mechanical parts except bearing sleeve 1 (C5)
than Segmenter. The superiority of ViT-SAPS is especially
significant in the segmentation of tiny parts such as bearing
end-shield (C3), bearing sleeve 2 (C6), bolt (C8), and oil
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TABLE 3. The segmentation IoU of the mechanical parts (Dataset 1).

TABLE 4. The segmentation IoU of the mechanical parts (Dataset 2).

scraper (C15). Bearing sleeve (Type 1) (C5) is a mechanical
part installed inside the bearing end-shield (C3) of Reducer 2
(Fig. 5). This part is difficult to observe from outside the
assembly, so all the models tested in this paper fail to rec-
ognize it. Note that when using the DeiT-S-SAPS backbone
in the model, the number of model parameters is more than
twice that of using the DeiT-S backbone. This is because
in DeiT-S-SAPS, an independent learnable linear projection
is required for each group of patches with the same size.
In DeiT-S, there is only one such linear projection. These
two backbones have the same number of parameters in their
Transformer encoders.

Moreover, it can be seen from the experimental results
that ViT-SAPS (Tsplit = 3) achieves much better segmenta-
tion performance for all the mechanical parts except bearing
sleeve (Type 1) (C5) than ViT-SAPS (Tsplit = 15). This is
because when Tsplit is smaller, the segmentation grain is
finer, and thus the ViT-SAPS model can capture more detail
information in the images.

2) ANALYSIS OF THE PROPOSED MODEL’S LOCALITY
For Dataset 1, the difference between the training set and
the test set is only the shooting angles of the images. The
models can learn all the assembly stages of all the products
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FIGURE 8. Segmentation performance of the pure Transformer models on the partial details of four mechanical products.

from the training set, and thus they are very familiar with the
assembly positions of all the parts in each assembly stage.
Therefore, the models seldom misjudge part types. The most
important factor that affects a model’s performance on this
dataset is its ability to segment part edges, i.e., its locality.
Among all the models tested in the experiments, the top five
in terms of mIoU are GCAU-Net (hybrid model of CNN and
attention mechanism), PSPNet (CNN-based), our ViT-SAPS
(Tsplit = 3) (pure Transformer), U-Net (CNN-based), and
Swin-Unet (pure Transformer). These experimental results
indicate that the locality of ViT-SAPS is slightly worse than
that of some CNN-based models and hybrid models, whereas
it is at a relatively advanced level among the pure Transformer
models.

Fig. 8 shows the segmentation performance of the pure
Transformer models for the partial details of the four mechan-
ical products on the test set of Dataset 1. Specifically,
Fig. 8(a) and 8(b) show the details of gear connections and
the cases where gears are shielded by each other, while
Fig. 8(c), 8(d), and8(e) show the details of some tiny parts,
namely oil scraper (C15), bearing sleeve (Type 2) (C6), bear-
ing end-shield (C3), and bolt (C8). It can be seen from these
figures that ViT-SAPS has much stronger detail segmentation
ability than Segmenter. The 16 × 16 patch size makes Seg-
menter almost impossible to recognize extremely tiny parts
like bolts. However, ViT-SAPS overcomes this difficulty by

splitting the image regions with these tiny parts into much
smaller patches. Moreover, it can be seen from these figures
that reducing Tsplit can further enhance the detail segmen-
tation ability of ViT-SAPS. Compared with Swin-Unet, our
ViT-SAPS achieves smoother segmentation of part edges.
When using Swin-Unet, burrs and even debris often appear
on part edges. This phenomenon rarely occurs in practice.
In contrast, the segmentation maps generated by ViT-SAPS
aremuch closer to reality. Overall, it can be concluded that the
self-adaptive patch splitting mechanism is a powerful method
to enhance the locality of vision Transformers.

3) ANALYSIS OF THE PROPOSED MODEL’S GLOBALITY
The test set of Dataset 2 contains assembly stages that the
model cannot learn from the training set. The model judges
the type of a part by synthesizing the part’s characteristics
and its surrounding environment. Therefore, the globality of
the model is crucial. The experimental results in Table 4
demonstrate that our ViT-SAPS (Tsplit = 3) achieves the best
mIoU of 62.64%. In Dataset 2, there are four types of parts
that are included in the training set but are not included in
the test set, namely sleeve (C7), cylindrical helical gear shaft
(C13), oil scraper (C15), and worm (C16). All the models in
the experiment mistakenly believe that the test set contains
sleeve (C7) and oil scraper (C15). Segmenter and ViT-SAPS
can accurately determine that the test set does not contain
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cylindrical helical gear shaft (C13) and worm (C16), whereas
other models cannot. Similar to Segmenter and ViT-SAPS,
Swin-Unet is also a pure Transformermodel. However, it may
lose some globality because it adopts a hierarchical structure
similar to CNN, resulting in the misjudgment of cylindrical
helical gear shaft (C13) and worm (C16). In the practical
production process, such misjudgment has a fatal impact on
the quality of mechanical assembly monitoring. Moreover,
it can be seen from the experimental results that for bolt (C8),
cylindrical spur gear (C9), and bevel gear (C11), the seg-
mentation IoU of the models with convolution on Dataset 2
is much lower than that on Dataset 1, whereas the pure
Transformer models do not have this problem. To sum up,
in mechanical assembly semantic segmentation tasks, pure
Transformer models are more stable and reliable than models
with convolution due to their excellent globality. ViT-SAPS
overcomes the poor locality of existing vision Transform-
ers without losing globality, thus achieving a pretty good
locality-globality trade-off.

V. CONCLUSION
This study proposes a novel vision Transformer called
ViT-SAPS which is able to perceive the detail information in
the image. ViT-SAPS can split the detailed and non-detailed
regions of the image into patches with different sizes and
pay finer-grained attention on the image regions where the
detail information locates. Information distribution in differ-
ent regions of a mechanical assembly image is extremely
uneven. Hence, ViT-SAPS is suitable for the mechanical
assembly semantic segmentation task and can provide solu-
tions to automated mechanical assembly monitoring. The
experimental results indicate that the adaptive patch split-
ting mechanism of ViT-SAPS is superior to the common
fixed-size patch splitting mechanism in processing images in
which the information quantity distribution is uneven, thus
meeting the requirements of mechanical assembly seman-
tic segmentation. The experimental results also show that
ViT-SAPS performs well in both locality and globality, and
therefore it can be extended to solve other image segmenta-
tion problems.

One limitation of our method is that the patch distribu-
tion in the input images is different from each other, so
ViT-SAPS needs to consider each image independently when
performing patch splitting and bilinear interpolation. Since
this complex work is not suitable for GPU parallel process-
ing, this paper uses CPU to complete this work, which is
time-consuming and becomes the bottleneck of the model.
The time cost of segmenting a single image is on the order
of 1 second. This time cost can meet the needs of semantic
segmentation in assembly monitoring, but it cannot meet
the needs of other applications with high real-time require-
ments. Therefore, the acceleration of model processing is the
key issue of future work. In future work, we will promote
ViT-SAPS to other datasets and computer vision tasks, such
as image classification and object detection, and then evaluate
its performance. Meanwhile, we will popularize the idea of

self-adaptive patch size to other existing vision Transformer
models. For example, hierarchical models like PVT and Swin
Transformer.
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