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ABSTRACT Automatic circle detection is one of the most important construction elements to design
more complex industrial image tasks such as target detection, manufacture inspection and process control.
Most of the literature concerning multi-circle detection can be categorized under deterministic or stochastic
perspectives. Deterministic approaches combine geometric and histogram information to identify circle
shapes. However, deterministic techniques are unable to detect circles in presence of noise, shape variance,
or occlusion. On the other hand, stochastic methodologies such as metaheuristic algorithms have been also
proposed as alternatives to deterministic approaches for circle detection. Although these techniques are in
general more robust, they allow detecting only one circle per execution, translating the detection problem
into a unimodal optimization problem. Under such conditions, it is necessary to execute multiple times
the algorithm to identify all the circles contained in the image. In this paper, the multi-circle detection
problem has been reformulated as a multimodal optimization problem. The proposed approach adopts the
Multimodal Flower Pollination Algorithm (MFPA) to detect all the circular instances contained in the image.
Experimental results suggest that the proposed approach significantly improves the multi-circle detection
problem.

INDEX TERMS Circle detection, evolutionary algorithms, flower pollination algorithm (FPA), multimodal
optimization.

I. INTRODUCTION
Automatic circle detection problem involves the detection of
circular shapes over images and video streams. The impor-
tance of automatic circle detection can be presented in several
fields on engineering, science, and industrial processes [1].
Circle detection is considered as the elemental construction
phase for more complex industrial image processing tasks
such as manufacture inspection [2], target detection [3], and
process control [4]. Most of the related literature to multi-
circle detection problem can be categorized under determin-
istic and stochastic methodologies. Deterministic approaches
commonly consider the use of geometric and histogram infor-
mation on an image to correctly locate circular shapes. Hough
transform methods [5] employs an edge detector based on a
parametric representation of circles and a voting mechanism.
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Histogram-basedmethods commonly used the peak detection
information by filtering and averaging the image histogram.

Deterministic approaches provide interesting characteris-
tics to detect circles over an image. However, most of these
techniques present some issues in presence of noise and
shape artifacts. To overcome such difficulties, researchers
have proposed stochastic methodologies to overcome these
issues. In general, stochastic circle detection methods include
mechanisms such as random sample consensus [6], random-
ized Hough transform [7], fuzzy Hough transform [8], and
evolutionary optimization algorithms.

In stochastic methods, the obtained solution of each
methodology is based on the principle of randomness to
mimic the abstraction process of uncertainty in human
knowledge. Random processes significantly improve the
performance of geometric and histogram-based methods
by incorporating noise information on their structures and
shape invariance to produce fitted solutions. The use of
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stochastic methods for circle detection has been employed
in many fields. Even when stochastic versions of traditional
Hough transform or random sample consensus methods
have significantly improved the accuracy of the detection
of circle shapes, these techniques present some drawbacks
such as local minima stagnation [9], premature conver-
gence [10] and scalability in high dimensionality [11], and
real-time implementation [12]. Under such circumstances,
researchers have adopted evolutionary algorithms to formu-
late the circle detection problem as an stochastic optimization
problem [13], [14], [15].

Evolutionary optimization algorithms are a scalable alter-
native so solve complex optimization problems. Evolutionary
computing combines the abstraction process of several nat-
ural, physical, or social phenomena with algorithmic struc-
tures to produce search strategies for global optimization.
Some examples of evolutionary methods are categorized
considering a bioinspired metaphor. Under this scheme, the
Genetic Algorithm (GA) [16], the Artificial Bee Colony
(ABC) [17], and the Flower Pollination Algorithm (FPA) [18]
are some of the most popular methods. Also, considering
a physical approach, the Gravitational Search Algorithm
(GS) [19], as well as the Electromagnetism-like Optimization
(EMO) [20] method are developed. Additionally, inspired by
human social behavior, state-of-art literature exposes theWar
strategy optimization algorithm (WAR) [21] which is a novel
search strategy based on ancient war strategy.

Over the last decade, researchers have adopted evolution-
ary algorithms to detect circular shapes within an image.
In [22], the Teaching Learning Algorithm (TLA) has been
proposed to improve the circle detection problem using the
gradient information in the search space. A hybrid evolu-
tionary segmentation approach based on Kapur thresholding
method and the traditional Hough transform is presented
in [23]. In the paper, authors improve the search mechanism
of circular shape by combining a segmentation methodology
to focus the search procedure into promising search zones
in the search space. Then, the Hough transform is applied
to detect into the promising zones of the histogram to effi-
ciently detect leucocyte sections in hematological images.
Pruthi et al. [24] proposed a segmentation method consider-
ing the optimization process of an elliptical model in con-
junction with the Glowworm Swarm Optimization algorithm
to detect glaucoma. In the paper, the evolutionary method is
capable for search the optimal solution of the segmentation
process considering the elliptical fitting of the solutions.
Ayala-Ramirez et al. [25] proposes the use of GA as a circle
shape detector. In the experimental section, the GA is able
to detect multiple circular shapes but presents overlapping
problems. Dasgupta et al. [14] adopts the Bacterial Forag-
ing Optimization Algorithm to detect multiple circles over
images. The proposed method is based on an objective func-
tion considering the center locations and radio lengths among
candidate circles. A comparison study of recent evolutionary
approaches for circular shape detection is presented in [26].

Most of the published literature related to circular
shape detection using evolutionary algorithms has attracted
the attention of many researchers who combine different
approaches to significantly improve circular shape detection
over images. However, most of these approaches consider a
multi-circle detection problem as a unimodal optimization
task. Under this methodology, several suboptimal solutions
may lead into false positive detection. Under such perspec-
tive, the algorithmic structure of unimodal evolutionary algo-
rithms is not capable to handle multiple optima detection in a
single run.

Therefore, from a practical perspective it is desirable to
detect and maintain all possible circular shapes during the
optimization process. The process of finding multiple optima
solutions in a single run is known asmultimodal optimization.

In multimodal optimization schemes, several mechanisms
to efficiently locate, maintain and register both optimal and
sub-optimal solutions during the optimization process are
required. Over the last decade, somemultimodal optimization
algorithms have proposed to adopt multimodality into the
structure of their exploration and exploitation stages. These
multimodal evolutionary strategies have been developed to
operate under the real-world multimodal objective functions
to obtain not only the optimal solution but also a set of
possible sub-optimal solutions. In this paper, the Multimodal
Flower Pollination Algorithm (MFPA) [27] has been adopted
the original structure of the Flower Pollination Algorithm
(FPA) [18] with the extension of multimodal capabilities to
detect optimal and sub-optimal solutions into a multi-circle
detection problem.

In this paper, the multi-circle detection problem has been
reformulated as a real multimodal optimization problem. That
is, at each single iteration, the MFPA method can detect not
only the best fitted circle in an image but also all potential
circles in an image in a single run. The inherent nature of
multi-circle detection problem indicates that the detection
problem is not solved only by the fittest circle found but for
all the potential solutions may be involved in the optimization
process. Under such circumstances, the multi-circle detection
problem must be solved by a real multimodal optimization
algorithm. The experimental study of the proposed approach
indicates that MFPA can detect most of the circles even in
presence of noise, overlapping objects and avoiding false
positive circles in a single run of the algorithm. Experimental
results suggest the superior performance of theMFPA against
traditional unimodal optimization algorithms commonly used
in multi-circle detection problem.

The structure of the paper is organized as follows:
Section III describes the algorithmic structure of the original
MFPA. In Section III, the multimodal formulation of multi-
circle detection problem is defined. Section IV describes the
main parts of the multi-circle detection problem into the
evolutionary stages of the MFPA. The experimental study is
analyzed in Section V. Finally, In Section VI some conclu-
sions and future search directions are presented.
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II. MULTIMODAL FLOWER POLLINATION
ALGORITHM (MFPA)
Multimodal Flower Pollination Algorithm (MFPA) is the
modified version of the original Flower Pollination Algo-
rithm (FPA) to solve multimodal optimization problems pro-
posed by Galvez et al. [27]. The original FPA methodology
is based on the biological process of flower pollination. The
pollination process consists by transferring pollen between
flowers for their reproduction. This mechanism can be carried
out by living organisms such as insects, honeybees, birds,
or other animals or by non-living organism such as water and
wind.

The computational procedure for the FPAmethod, consists
of simplifying the biological aspects of flower pollination in
terms of three stages.

• Global pollination trough Lévy flights. Under this mech-
anism, living organisms travel through Lévy flights
over the entire search space (exploration stage). Lévy
flights mimic the peculiar behaviors of living organ-
isms for traveling long distances to deposit pollen over
flowers.

• Local pollination considering flower constancy. Under
this procedure, the flower constancy among pollination
agents and flowers is achieved by local movements.
This mechanism enhances the exploitation stage over the
search space.

• Switch probability. This procedure controls the switch-
ing strategy between global pollination and local polli-
nation during the optimization process.

The MFPA method extends the search capabilities of the
original structure of FPA to locate multiple optima at a sin-
gle execution. Most of the application of evolutionary opti-
mization algorithms tend to converge into only one global
optimum. However, the global solution may be composed
by expensive or impractical parameters. Under such circum-
stances, the MFPA efficiently identify multiple global and
local optima. The MFPA operates using three computational
procedures. The first procedure is calledMemory Mechanism
(MM), which involves the use of a memory structure to
maintain not only good fitness solutions but also bad fitness
solutions as potential optima solutions. The second procedure
called Selection Strategy (SS), consists of selecting individu-
als directly from the memory structure to increase the popu-
lation diversity of the solutions. The third procedure called
Depuration Procedure (DP) is a depuration mechanism to
avoid redundant solutions. To operate over these procedures,
MFPA divides the evolutionary process into three stages. The
first stage (s = 1) involves from 0 to 50% of the maximum
number of iterations (MAX_ITER). The second stage (s = 2)
involves from 51 to 90%. And the third state (s= 3) involves
from 91 to 100%.

Under this scheme, MFPA obtains a collection of solutions
which correspond to optimal values for a given objective
function. From an optimization point of view, the objec-
tive function to be solved by the MFPA (considering a

minimization approach) can be generalized as follows:

Xbest
= arg minJ (X) (1)

where Xbest corresponds to the collection of solutions which
minimizes the objective function J during the optimization
process. X corresponds to the population of individuals.
In MFPA, a population of individuals at k-th iteration can be
represented as Xk

=
{
xk1, x

k
2, . . . , x

k
n
}
, where n corresponds

to the total number of individuals within the population.
Additionally, each element of the population represents a
d-dimensional solution vector: xki =

{
xki,1, x

k
i,2, . . . , x

k
i,d

}
,

where i ∈ {1, 2, . . . , n} indexes a certain solution within the
n-th element within the population. In the following subsec-
tions, the multimodal optimization process of the MFPA is
described in terms of the three computational procedures.

A. MEMORY MECHANISM (MM)
In multimodal optimization problems, global and local
optima must be correctly identified. To indicate whether
a solution can be potential optimum, it must fulfil with
two characteristics; it represents good fitness values and
it is considered as the best solution within its neighbor-
hood. Under such circumstances, the MM mechanism of
the MFPA uses a memory structure to register potential
candidate optima considering the previously characteristics.
This memory structure also considers not only new solutions
but also past solutions during the evolutionary process. The
memory structure is composed by an array of g-th M ={
m1,m2, . . .mg

}
elements, where each element corresponds

to a d-dimensional solution vector
{
mw,1,mw,2, . . . ,mw,d

}
in the optimization problem, where w ∈ {1, 2, . . . , g}.
To achieve a correctly memory registration for a given
element, the MM procedure is conducted over two stages:
memory initialization and memory capture. The memory ini-
tialization stage only occurs when k= 0. In this stage, the best
solution in the population is registered into the memory. Once
this initialization procedure is complete, the capture phase is
conducted according to the following description.

1) CAPTURE PHASE
The main objective of this stage is to register potential optima
during each iteration of the evolutionary process. To register
a solution xki into the memory structure, xki is tested applying
two fitness value rules. These fitness rules fulfil the two
previously described features to register potential optima into
the memory structure.

a: SIGNIFICANT FITNESS VALUE RULE
Under this rule, the comparison of the fitness value for the
solution xki and the fitness value of the worst element inside
the memory mworst is conducted. This rule considers the
solution xki as a candidate global or local optimum if its fitness
value is better than the fitness value of mworst . After this,
the rule considers whether the solution xki corresponds to a
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new optimum or it is like other element inside the memory.
To compute this similarity, the normalized distance

∥∥Di,g∥∥
among xki solution respect to the rest of elements inside the
memory structureM is calculated as follows:

∥∥Di,g∥∥ =

∥∥∥∥∥∥
(

xki,1 − mg,1

lupper1 − l lower1

)2

+

(
xki,2 − mg,2

lupper2 − l lower2

)2

+ . . . +

(
xki,d − mg,d

lupperd − l lowerd

)2
∥∥∥∥∥∥ (2)

where lupper
{1,2,...,d}

and l lower
{1,2,...,d}

corresponds to the fixed upper
and lower bounds within the search space defined by (1).
And mg, represents an element of the memory. Next, it is
computed a probability function parameterized by the current
state of the evolutionary process s as follows:

P
(∥∥Di,n∥∥ , s

)
=
∥∥Di,n∥∥s (3)

where
∥∥Di,n∥∥ corresponds to the distance among xki and the

nearest element ofmemorymn. The effect of the current state,
s (3), indicates that large distances will be promoted at early
iterations of the evolutionary process increasing the proba-
bility that the solution xki belongs to the memory structure.
In counterpart, in final iterations of the evolutionary process,
small distances will be computed decreasing the probability
that the solution xki belongs to the memory structure. Finally,
to decide if the solution represents a new optimum or similar
solution respect other elements inside the memory structure,
a random number α is produced. Then, if α is less than
P
(∥∥Di,n∥∥ , s

)
, the solution xki will be considered as a new

optimum hence, it will be registered into the memory. Oth-
erwise, the fitness value of the solution xki is compared to the
fitness value of themnmemory element. The complete signif-
icant fitness value rule can be generalized by the following:

M =

{
mg+1 = xki , α < P

(∥∥Di,n∥∥ , s
)

mn = xki , if J
(
xki
)

< J (mn)
(4)

b: NON-SIGNIFICANT FITNESS VALUE RULE
The Significant Value Rule involves the incorporation of
a given solution into the memory structure if the solution
represents good fitness value. Contrary to this, the Non-
Significant Fitness Value Rule will register solutions with
worse fitness values. Under this rule, the incorporation of the
solution xki is based on the computation of the probability of
the relationship among the xki and the best xbest and worst
xworst solutions currently available in the population. The
probability function is then computed as follows:

p = 1 −
J
(
xki
)
− J

(
xbest,k

)
J
(
xworst,k

)
− J

(
xbest,k

) (5)

Then, (6) is calculated. In this equation, the probability P
corresponds to a probability greater than 0.5 if the solution

xki have good fitness value.

P =

{
p, 0.5 ≤ p ≤ 1
0, 0 ≤ p < 0.5

(6)

Finally, to test whether the solution xki can be part of the
memory structure, a random value β must be less than the P
probability from (6). Then, the normalized distance from (2)
is computed to obtain the shortest distance value determined
by the n-th element of the memory (mn). For the inclusion of
the solution xki into the memory structure, the following rule
is applied:

M =

{
mg+1 = xki , if γ <

∥∥Di,n∥∥s
no change, Otherwise

(7)

where γ is a random number among the range [0-1], which
indicates if the tested solution must be part as a member of the
memory structure or not. This scheme contributes to increase
the population diversity within the memory structure. s cor-
responds to the actual state of the evolutionary process.

B. SELECTION STRATEGY (SS)
This procedure extends the capabilities of the original elitist
selection criterion from the FPA to incorporate multimodal
capabilities. MFPA considers a selection mechanism for cap-
turing potential global and local optima. In the SS strategy,
a new population Xnew is composed by the first n memory
elements, where n corresponds to the size of the popula-
tion. The selection mechanism replaces each individual of
the original population for each element belonging to the
memory structure to improve population diversity over the
entire optimization process.

C. DEPURATION PROCEDURE (DP)
The MM and SS mechanisms of MFPA, allows multiple
optima to be registered into the memory structure at each iter-
ation of the optimization process. However, the memory can
contain element redundancy for that, a depuration procedure
must eliminate element redundancies insider the memory
structure improving the identification of valid and significant
optima. The execution of theDPmechanism occurs at the end
of each stage s of the evolutionary process.

In MFPA, the DP procedure computes the distances
between memory elements to eliminate concentrations of
redundant elements while maintains the most significant
memory elements. To accomplish this task, it is obtained the
distance among elements within the memory. Then, a depu-
ration ratio is computed for each element of the memory
considering the midpoint between each pair of memory ele-
ments. Then if the fitness value of the midpoint among two
memory elements J

((
mi

+ mr
)/

2
)
is not worse than J

(
mi
)

and J (mr ) ,mr is cataloged as part of the same neighbor-
hood (concentration) of the solution mi. Otherwise, the mr
element is considered part of another concentration. If the
last condition occurs, then the 85% of the distance among the
solutionmi and themr element is considered as a maximum
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depuration ratio. Finally, all the memory elements inside the
neighborhood generated by the depuration ratio are removed.

III. PROBLEM FORMULATION
In this paper, the multi-circle detection has been formulated
as a minimization problemwhich objective is to obtain global
and local solutions. Where each solution represents a circle
in a given image. The mathematical description of the multi-
circle detection problem is defined as:

J (C) = −

Ns∑
h=1

E(ci)

Ns
(8)

where C, corresponds to any circumference (global or local
optima) which minimizes the correspondence function E(·)
regarding the number of pixels Ns of the i-th circumference
(ci). The correspondence function E(·) is defined as:

E (ci) =

{
1, if the pixel (xi, yi) is an edge point
0, Otherwise

(9)

where (xi, yi) corresponds to a pixel belonging to a edge
point of the circumference ci.

IV. MFPA FOR MULTI-CIRCLE DETECTION
In counterpart to unimodal optimization problems, multi-
modal optimization problems yield to a set of possible global
and local optima solutions. Under such circumstance, the set
of optimal solutions depends directly on the context of the
application. In multi-circle detection problem, it is required
to obtain most of the circles within an image in a single
run. In this context, the computational procedure for multi-
circle detection problem operates over two different domains
in order to implement the correspondence function of (8).
The index space domain involves an edge map obtained by
a pre-processing stage. Then, each solution of the MFPA is
transformed into circle space domain to compute an estimated
circumference.

As a result, the implementation of the MFPA involves
several stages to minimize (8). At first, a pre-processing
stage must be applied to eliminate noise and false positive
circles from source image. In the pre-processing procedure,
a Gaussian filter has been applied to each benchmark image.
To obtain an edge map from the original image, the Canny
edge detector has been applied. After the Canny algorithm,
four types of dilatation operations have been applied to the
edge map with the objective of reduce the search space i.e.,
the edge pixels in the edge map. These dilatations remove
lines that are 3 pixels length and with angles of 45◦, 90◦,
135◦ and 180◦ (measured in a counterclockwise direction
from the horizontal axis). The effect of such dilatations can be
seen in Fig. 1. In comparison to other pre-processing filters,
the Gaussian and Canny filters present several advantages
such noise reduction, edge preservation and smoothness. The
Gaussian filter increase the structural information of the
edges rather than other filters where structural edge informa-
tion may be lost. On the other hand, the Canny filter is more

sensible to compute significant edge information. Since the
proposed approach operates over an edge map, the required
images for the optimization process, must contain robust edge
information. For this paper, the standard deviation for both
Gaussian and Canny filters was configured by 2. And for the
Canny filter, the lower threshold was set by 0.1 and 0.3 the
highest threshold, respectively.

FIGURE 1. Image dilatation for edge map. (a) Edge map without
dilatations. (b) Edge map with dilatations.

From Fig. 1, it can be shown that the image dilatations can
remove noisy patterns in the edge map and preserve enough
circle pixels to detect them.

After the pre-processing stage is achieved, the initialization
process of the MFPA considers a population of individuals
(circles) in the index space domain. Then, each solution is
transformed into a parametric representation of a circle to
obtain an estimated circumference to compute the corre-
spondence among the estimated circumference and the edge
map. Also, the multimodal capabilities of the MFPA register
potential circles in a memory structure. Finally, a depuration
procedure eliminates redundant circles obtain by the explo-
ration and exploitation operators of the MFPA. The imple-
mentation of the computational procedures forMFPA to solve
multi-circle detection problems is described in the following
sub-sections.
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A. INITIALIZATION
In MFPA (as well as the rest of tested evolutionary methods),
an individual (circle) ci is composed by a 3-dimensional
vector ci = (pi, pj, pk ) where pi, pj and pk corresponds
to three randomly chosen points of the edge map. In this
representation, each solution is expressed in the index space
domain. To compute the fitness value (8), a circle space
domain representation is required for each solution to obtain
the estimated circumference. In this representation, a solution
is encoded by a 3-dimensional vector ci = (x0, y0, r) where
x0 and y0 corresponds to the circle’s center and r represents
the circle’s radius. The transformation of index space domain
and circle space domain is based on the second-degree equa-
tion of a circle as follows:

(x − x0)2 + (y− y0)2 = r2 (10)

To compute the 3-dimensional vector ci = (x0, y0, r), the
following mathematical description is defined as:

A =

[
x2j + y2j −

(
x2j + y2i

)
2 ·
(
yj − yi

)
x2k + y2k −

(
x2i + y2i

)
2 · (yk − yi)

]
B

=

[
2 ·
(
xj − xi

)
x2j + y2j −

(
x2i + y2i

)
2 · (xk − xi) x2k + y2k −

(
x2i + y2i

) ] ,

x0 =
det(A)

4
((
x j − x i

)
(yk − yi) − (xk − x i)

(
yj − yi

)) ,
y0 =

det(B)
4
((
x j − x i

)
(yk − yi) − (xk − x i)

(
yj − yi

)) ,
r =

√
(x0 − xd )2 + (y0 − yd )2, d ∈ {i, j, k} (11)

The mathematical description in (11) corresponds to the
computation of the circle center (x0, y0, and the radio r based
on the circle equation [28]. A graphical description for the
index space domain and the circle space domain can be shown
in Fig. 2.

FIGURE 2. Candidate circle (solution) ci from index space domain and
circle space domain.

Then, the approximated circumference obtained by the cir-
cle space representation is computed using the Bresenham’s
Algorithm [29].

B. MEMORY MECHANISM (MM)
In the capture phase of the MM mechanism, each solution
is compared against the worst element within the memory
structure to determinate whether the Significant Value Rule
will be applied. If that is the case, then the probability
P
(∥∥Di,n∥∥ , s

)
described in (3) is calculated; however, the nor-

malized distance
∥∥Di,g∥∥ is calculated using the circle space

representation of the solutions and memory elements, giving
as result the (12):

∥∥Di,g∥∥ =

∥∥∥∥∥∥
(

xk0,i − mg,x0

lupperx0 − l lowerx0

)2

+

(
yk0,i − mg,y0

luppery0 − l lowery0

)2

+

(
rki − mg,r

lupperr − l lowerr

)2
∥∥∥∥∥∥ (12)

where xk0,i, y
k
0,i and rki are the coordinates x, y and radius

of the circle represented by the i-th solution in the current
k iteration; mg,x0 , mg,y0 and mg,r are the coordinates x, y
and radius of the circle represented by the g-th memory
element; lupperx0 , luppery0 and lupperr are the upper bounds for the
coordinates x, y and radius of the circles and l lowerx0 , l lowery0 and
l lowerr are the lower bounds of the circles. After P

(∥∥Di,n∥∥ , s
)

is calculated, the Significant Value Rule behaves exactly as
it was defined in (4). In the case where the Significant
Value Rule is not applied, the probability P defined in (6) is
calculated to determinate whether the Non- Significant Value
Rule will be applied. If this rule is applied, then

∥∥Di,g∥∥ is
calculated as described in the (12) and the process continues
as described by (7).

C. SELECTION STRATEGY (SS)
The selection strategy is applied at the end of each iteration.
Here, the memory size h is compared with the current pop-
ulation size n. If h > n, the new population Xnew is formed
by the best n memory elements; otherwise, Xnew is formed
by substituting the first h population solutions with all the
memory elements.

D. DEPURATION PROCESS (DP)
At the beginning of the depuration process, the circle space
representation of the memory elements is calculated. Next,
the Euclidean distance and midpoint pg,i between each one
of the circle space representation of the memory elementsmg
and mi is calculated, being g ̸= i. Then, the midpoint pg,i
is evaluated in the objective function; if the fitness value of
pg,i is not worse than the fitness values of mg and mi, mi is
considered being part of the same concentration of solutions
around mg. However, if the fitness value of pg,i is worse than
the fitness values of mg and mi, the element mi is considered
part of another concentration of solutions and thus, the 85%
of its distance with mg will be saved as a depuration range.
Finally, all the solutions inside the depuration range of each
one of the mg solutions are removed from the memory.
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V. EXPERIMENTAL RESULTS
In this section, the performance of the MFPA has been
compared against three commonly used unimodal evolution-
ary approaches; namely Differential Evolution (DE) [30],
Harmony Search (HS) [32] and Grey Wolf Optimizer
(GWO) [15]. Additionally, the performance of the proposed
method is compared against Multimodal Particle Swarm
Optimization (MPSO) [26]. All the evolutionary algorithms
used in this experimental study, have been proposed to
solve multi-circle detection problem. DE [31], HS [33], and
GWO [34] by a unimodal fashion, and MPSO considering a
multimodal perspective [35].

Due to the lack of standard benchmark dataset for cir-
cle detection problem, a dataset conformed by synthetic
and real images is considered. The proposed dataset in this
paper consists of 25 images. 15 images are synthetic, and
10 images are real-world photos where circular shapes are
contained. For all the images considered in the dataset, the
resolution was 640 × 480 pixels. The synthetic images
incorporate several complexities regarding different geomet-
ric shapes and noise. The experiments have been performed
using MATLAB R2022b running over Windows 11 Pro,
12th Gen Intel Core i7-CPU, 3.60 GHz with 16 GB RAM.
Furthermore, for each image a list of Ground Truth Circles
(GTC) GI = {(x1, y1, r1), (x2, y2, r2), . . . , (xm, ym, rm)} is
also defined, where m is the total number of GTC on an
image I . The GTC list is used to measure the precision of
circle location, size and number of circles found by the tested
evolutionary algorithms. For the performance comparison,
several indexes have been considered in the experimental
study. The first performance index is the Vector of Coinci-
dence (VC), which stores information regarding how many,
and which circles were found. The coincidences value indi-
cates the number of circles found in the image including
redundant solutions. The Effective Circle Number (ECN)
computes how many circles each evolutionary approach is
able to recognize eliminating redundant circles in the image.
Also, the Nearest Circle Distance (NCD) is the distance
among an approximated circumference and its corresponding
GTC. To avoid random effect, the mean and standard devia-
tions are also calculated to obtain robustness measurements.

To make a fair comparison of the tested algorithms and the
experimental study, the number of iterations and the number
of solutions in the population has been set to 100 and 200,
respectively for each evolutionary scheme. To eliminate the
random effect, each algorithm has been executed 30 times for
each image. At the end of each single run, only the solutions
with a fitness value equal or less than -0.9 were considered
to avoid false positive solutions. Additionally, as the DE,
HS, and GWOmethods do not have multimodal mechanisms
to preserve multiple optima through the iterations, redun-
dant solutions have been removed. To maintain compatibil-
ity in published literature, each evolutionary method was
implemented following their original guidelines proposed by
the authors. For the numerical performance comparison, the

TABLE 1. Parameter configuration.

parameters of each evolutionary methodology, was config-
ured according to published literature related to solve multi-
circle detection problem. Such parameter configuration is
exposed in Table 1.

For all the experiments, each particle (circle) considers the
low radius threshold was set to Rmin = 10 pixels, while
the high radius threshold value was given by the following
equation:

Rmax =
min(widthI , heightI )

2
(13)

where min(widthI , heightI ) corresponds to the minimum
value in pixels between the width and height of the current
image I . Both thresholds were experimentally obtained to
eliminate false positives. For the low radius threshold, 10 pix-
els seemed like a value small enough to do no let the algorithm
find little circles formed by the noise in the image, as for the
high radius threshold, the value was selected such that the
largest possible circle wound not be larger than the image,
i.e., it can fit completely in it.

A. PERFORMANCE CRITERIA
To analyze the performance of the MFPA against DE, HS and
GWO, a vector of coincidences VC used to measure how
many and which circles were found by each evolutionary
approach. The number of elements of this vector is equal
to the GTC in the analyzed image and each element of the
vector corresponds to the number of times that a ground
truth circle was found; thus, the first vector element of
VC is the number of times that the first ground truth cir-
cle was found, the second element is the number of times
that the second ground truth circle was found, and so on.
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TABLE 2. Original images, edge maps and circles considered as ground truth form the non-synthetic images.
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TABLE 2. (Continued.) Original images, edge maps and circles considered as ground truth form the non-synthetic images.

For example, if an image I contains 3 ground truth circles,
i.e, GI = {(x1, y1, r1), (x2, y2, r2), (x3, y3, r3)}, and the coin-
cidence vector VC contains VC = (2, 1, 1), it means that the
algorithm found the circle (x1, y1, r1) 2 times and the circles
(x2, y2, r2) and (x3, y3, r3) one time each. Furthermore, in this
case it is said that the algorithm obtained 4 coincidences i.e.,
it found a total of 4 circles.

The coincidence vectors are also used to calculate the
Effective Circle Number (ECN), which represents the cardi-
nality of the coincidence vector VC where each component
must be greater than zero. Generally, it can be said that the
coincidences metric counts the total number of circles found
by the algorithm considering redundant solutions, while ECN
counts the number of circles found by the algorithm without
redundant solutions.

To associate a solution ci with a ground truth circle GTCi,
the Nearest Circle Distance (NCD) between the obtained
solution by an algorithm and each of the GTC is calculated

as follows:

NCD =
|ci − GTCi|

|GTCi|
(14)

where ci is the i-th solution expressed in the circle space,
GTCi is de i-th ground truth circle and || is the norm function.
The NCD metric represents the minimum error which mea-
sures how close a solution ci is to the nearest ground truth
circle. The NCD is used as a measure of the precision of a
solution, as the larger this value is, more different the solution
is from the ground truth circle to which is more alike.

To eliminate the random effect, the mean µ(VC) and stan-
dard deviation σ (VC) of the elements of the coincidence vec-
tors are computed. In the ideal scenario, each algorithm finds
all the circles once, resulting in µ(VC) = 1 and σ (VC) = 0.
Ifµ(VC) < 1 then, the algorithm did not find all the circles in
the image, and ifµ(VC) > 1, the tested algorithm foundmore
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circles than it should. On the other hand, if σ (VC) > 0 then,
the algorithm found some circles more times than others.

It is important to notice that µ(VC) and σ (VC) are metrics
that complement each other, as the mean could be equal
to 1 even if not all the circles were found, or the standard
deviation could be 0 even if the number of circles found is
not correct. So, to have a good insight of the performance of
the algorithm both values should be analyzed. For example,
in the case that VC = {0, 1, 0, 3}, despite that µ(VC) = 1,
2 circles were not found, and one was found 3 times. This
scenario is reflected in the value of σ (VC) which in this case
is 1.4142. Another example is the caseVC = {3, 1, 2, 1}; here
σ (VC) = 0, but the algorithm found some circles multiple
times, which is shown by the value of µ(VC) that in this case
is 1.75.

B. PERFORMANCE COMPARISON
In this section, the numerical results for the performance
comparison among MFPA and the rest of tested algorithms is
presented. To measure the performance of each evolutionary
algorithm, the performance indexes from Section V-A must
be computed. Since the performance metrics evaluate the
GTC, a definition of GTC is required.

For the synthetic images, the GTC can be easily identified
as these only consist in simple black shapes on a white
background. However, this is not the case in some of the real
images due to observer interpretation. To avoid ambiguities in
real images, the circles considered for the experimental study
had been selected by analyzing the edge maps of the images,
as the shapes can easily be identified. The edge maps and the
ground truths that were used in the experiments can be shown
in Table 2.
For the performance analysis, Tables 7, 8 and 9 (These

tables are organized in Appendix A) report the numerical
results for each algorithm. In the tables, it is exposed each
GTC considering the form (x, y, r). Table 7 contains 10 syn-
thetic images with different complexities regarding different
geometric shapes. Table 8 contains 10 real photos containing
circle shapes. Finally, Table 9 exhibit the performance results
of synthetic images containing noise to test the scalability
of the proposed method and the rest of tested algorithms.
Each experiment has been conducted through 30 independent
runs to avoid random effect. According to the ECN metric,
Table 7 suggests that only the MFPA method obtains the
total number of circles for each image. These results indicate
that the proposed method is able to capture all potential
optima within a multimodal environment. Under such situ-
ation, MFPA obtains each circle without redundancy. This is
corroborated by the VCmetric. Since the VC vector measures
the coincidences among GTC and approximated circles, it is
considered only the cardinality of the VC vector. Contrary to
theMFPA, the rest of evolutionary methodologies considered
in the experimental study do not detect efficiently most of the
circles. According to the NCD metric, which computes the
error distance among the GTC and the approximated circles
by each image, almost all the tested algorithms produce good

results comparing their distances among an approximated
circle with a ground truth circle. The numerical results of the
MPSO, indicate that the multimodal strategy of MPSO, does
not obtain reliable results since it computes multiple false
positive outcomes.

From the numerical results from Table 7, the proposed
method is the only approach that obtains most of the ground
truth circles with consistent results, also considering the
results of the MPSO, it is quite clear that the multimodal
structure of the MFPA outperforms the multimodal strategy
for MPSO in terms of robustness. The memory management
of the MFPA efficiently captures potential optima using a
multimodal optimization approach for multi-circle detection
in a single run. Contrary to the rest of algorithms, these
algorithms are not capable to detect multiple optima in a
single run.

Table 7, indicates that the proposed method is able to
detect most of the circles even when overlapping circles,
overlapping shapes and complex geometric shapes are pre-
sented. This is achieved by the balance of the exploration and
exploitation operators and the memory management rules to
produce non-redundant solutions.

The multimodal nature of the multi-circle detection prob-
lem is an evident approach of the lack of capabilities of
unimodal optimization algorithms to detect multiple circles
in a single run. Under such circumstances, the outstanding
performance of the proposed multimodal algorithm achieves
a better alternative to the multi-circle detection problem.

To test the scalability of the proposed method against uni-
modal optimization methods, Table 8 exhibits the numerical
results of the performance analysis considering real photos
containing multiple circular shapes.

According to Table 8, MFPA outperforms the rest of tested
algorithms in terms of the ECN metric. By analyzing the
ECN metric, the MFPA method presents some issues even
when it performs better than its competitors. This is due to
the inherent artifacts of real photos. Commonly, real photos
contain several image artifacts such as: color similarity, sharp
contrasting edges and color sensibility. However, even when
these issues are presented, the proposed approach is able
to approximate most of the ground truth circles. As it can
be deduced from the numerical results of the NCD method,
the proposed approach obtains the lowest error distances
among GTC and approximated circles than DE, GWO, and
HS methodologies. These results are validated considering
the VC vector which corroborates the ECN metric.

It can also be shown that from some images, no algorithm
can obtain a single circle, This could be caused by the position
of the circle in the image making this optimal harder to be
found, also, some parameters could be needed to be set in
specific values in order to find it or even the number of circles
in the image could be too large for the number of solutions in
the populations and so, a larger number of solutions could be
needed.

Even with some of these issues, the proposed method out-
performs its competitors in most of the cases.
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The numerical results obtained by the MPSO indicates that
the multimodal methodology is not capable of finding mul-
tiple circles efficiently. On the other hand, the MFPA is
capable to locate potential circle solutions in a more efficient
multimodal approach than unimodal approach for the multi-
circle detection problem.

On the other hand, synthetic images containing noise are
interesting test images to evaluate the performance of a
multi-circle detection problem. Since noisy synthetic images
contain point noise, the optimization process can present dif-
ficulties since each point noise contributes to the sensibility
of a circle detection problem. Under such circumstances,
synthetic images with noise can significantly restrict the per-
formance of any optimization technique. Additionally, to the
image noise, the obtained edge map to compute the objective
function adds image artifacts to the images. The Canny algo-
rithm produces duplicate number of circles in the image. This
effect can be observed in Fig. 3.
According to Table 9, only the MFPA is capable to detect

most of the circles in a single run even with the presence
of noise. The structure of the MFPA method allows to oper-
ate over noisy images containing overlapped and duplicate
circles. It is quite evident that the rest of unimodal and
multimodal methods are prone to fail against image noise.

FIGURE 3. Comparison between an image and its edge map. (a) Original
image. (b) Edge map obtained by Canny algorithm to detect inner and
outer edges of the contours.

In Table 3 are shown the most representatives examples
of the outcomes for each evolutionary algorithm for every

image in the dataset from Tables 7, 8 and 9. In Table 3, it can
be visually demonstrated that almost every image obtained
by the MFPA method found every circle, while the other
algorithms struggled to find all of them as more complex
the images become (for example, images 18, 21, 22, 23,
24 and 25). In images 8 and 9 it is more notorious the
problem mentioned previously concerning circles defined by
contours, however this exposed another advantage of multi-
modal approach which is the capacity of finding circles even
if they are relatively close to each other.

From the visual results in Table 3, it can be demonstrated
that the proposed methodology outperforms the rest of tested
algorithms commonly used in the multi-circle detection prob-
lem. The balance among exploration and exploitation in
combination of the memory structure of the MFPA method
produce the best outcomes. The visual results indicate that
the MFPA is able to find most of the circles even in complex
images containing noise. The multimodal capabilities of the
MFPA allows the accurate detection of most of the circles in
a single run of the evolutionary method.

C. SENSITIVITY ANALYSIS
In this section, a sensitivity analysis is conducted in order to
gain insight about how themultimodal nature of the algorithm
affects the experimental outcomes. For that, an example of
each type of image (noiseless synthetic images, real photos
and noisy synthetic images) is selected to perform new exper-
iments in which the values of µ(CV) and σ(CV) are ana-
lyzed when the percentage of the distance between memory
elements used in the depuration procedure as depuration ratio
is changed. The considered values by the analysis were 5%,
15%, 25%, %35, 45%, 55%, 65%, 75%, 85% and 95%. The
algorithm has been executed 30 runs per image. Furthermore,
the test images containing the greater number of ground truth
circles per image set were chosen. In Tables 4, 5 and 6 are
shown the mean values of the outcomes of those 30 runs and
the plots of such values can be seen in Figures 4, 5 and 6.

In Table 4 and Fig. 4, it is clear how µ(CV) and σ (CV)

values start being relatively high and stabilized near the ideal
scenario value when the depuration ratio percentage value is
greater than 25%. However, µ(CV) reached its best value at
85% and σ (CV) at 75% (here, best value means that they
are closer to the ideal scenario value). It is also interesting
to notice that, when the depuration ratio percentage value
is greater than the one in which µ(CV) and σ (CV) were
closer to the ideal scenario values, µ(CV) and σ (CV) start
to increase.

In Table 5 and Fig. 5, a similar behavior than the previous
case can be seen. Here, both µ(CV) and σ (CV) reach their
best value when the depuration ratio percentage value is 85%
and when the percentage values is 95%, they get far from the
ideal scenario value.

The case shown in Table 6 and Fig. 6 is a bit different,
here the behavior of µ(CV) and σ (CV) as the depuration
ratio percentage value increases seems more erratic which
could be due the amount of noise in the image. However,
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TABLE 3. Most representative examples of the algorithms’ outcomes for each image in the dataset.
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TABLE 3. (Continued.) Most representative examples of the algorithms’ outcomes for each image in the dataset.
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TABLE 3. (Continued.) Most representative examples of the algorithms’ outcomes for each image in the dataset.

it is interesting to notice that, when the depuration ratio
percentage value is 85%, µ(CV) and σ (CV) tend to be near
the ideal scenario value. However, different from previous
cases, here σ (CV) gets better value at 95% instead of getting
worse.

With this analysis, it can be shown that when the depu-
ration ratio percentage has lower values, the algorithm finds
a considerable number of redundant circles in the images.
This makes sense because lower depuration ratio percentage
values cause the algorithm to identify with grater probability
near located solutions in the search space as belonging to
different concentrations. Furthermore, it is interesting that in
general, µ(CV ) and σ (CV ) tend to be closer to the ideal
scenario value when the depuration ratio percentage value is
greater than 25% but tend to be far from it as the percentage
value is higher than 85%. As a conclusion, it can be shown
that values near 85% could in general lead to be acceptable
results. However, due the erratic behavior described in the
third case, this could be different for noisy images and each
case should be analyzed independently if results are not the
expected.

TABLE 4. µ(CV) and σ (CV) values obtained from running 30 times the
algorithm over the image taken from the synthetic noiseless image set.

D. COMPUTATIONAL EFFORT AND TIME COMPLEXITY
In this section, the computational effort as well as the com-
putational complexity of the evolutionary algorithms is dis-
cussed. To compute the computational effort among the
tested methodologies, the average execution time for each
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FIGURE 4. Plots of the µ(CV) and σ (CV) values from the values shown in
Table 4.

TABLE 5. µ(CV) and σ (CV) values obtained from running 30 times the
algorithm over the image taken from the real photo set.

FIGURE 5. Plots of the µ(CV) and σ (CV) values from the values shown in
Table 5.

experiment is described in Tables 7-9 in seconds (s). As it
can be shown in Tables 7-9, it is quite evident that DE,
HS, GWO, and MPSO executes faster than MFPA. However,
the obtained results by the MFPA represent more consistent
results in terms of the performance indexes. The multimodal
mechanism of the proposed MFPA for solving multiple circle
detection problem results into a novel perspective which exe-
cution time is not so long comparing to the execution time
achieved by the GWO. Under such circumstances, the pro-
posed multimodal methodology for circular shape detection
is computationally efficient approach compared to unimodal
formulation in terms of execution time.

To analyze the computational complexity of theMFPA and
the rest of algorithms. It is considered K as the maximum

TABLE 6. µ (CV) and σ (CV) values obtained from running 30 times the
algorithm over the image taken from the synthetic noisy image set.

FIGURE 6. Plots of the µ(CV) and σ (CV) values from the values shown in
Table 6.

number of iterations, d as the number of considered dimen-
sions for an optimization process, and n as the popula-
tion size. The computational complexity of the DE variant
in the experimental study; DE/rand/1/bin is computed as
O(n · d · K) [36]. Also, the computational complexity of the
HS algorithm isO(n · d ·K) [37]. As it can be shown, either the
algorithmic structures of DE and HS are not complex, which
makes efficient alternatives to implement to solve multiple
optimization problems. On the other hand, the computational
complexity of MPSO is O(n2). However, comparing the
performance results in the experimental analysis, it can be
demonstrated that GWO and MFPA obtain better results in
terms of accuracy and robustness. Under such circumstances,
the computational complexity of GWOandMFPAmay repre-
sent more complex algorithmic structures. The computational
complexity of the GWO is divided into two main processes:
the leader selection mechanism O(n) and the update position
strategy O(n · d) for each iteration ek. For that, the complete
complexity is reduced to O((n + (n · d) · K)). On the other
hand, to analyze the complexity order of the MFPA, the
complexity of the original FPA must be analyzed.

The original optimization process of the FPA can be
divided into global pollination and local pollinatio. Consider-
ing both evolutionary processes in the algorithmic structure,
the complexity order is O(2n) which can be reduced into
O(n). For that, the complete complexity of the FPA given K
iterations is given by O(n · d · K). Finally, since the MFPA

47898 VOLUME 11, 2023



J. Gálvez et al.: Multi-Circle Detection Guided by Multimodal Optimization Scheme

considers a multimodal strategy to preserve potential optima
in a single run, the complexity order can be divided into the
five mechanisms of the MFPA namely, Global pollination,
Local pollination, Memory Mechanism, Selection Strategy
and Depuration Procedure. Since MFPA uses the Global
and Local pollination procedures for the original FPA, the
complexity is O(n). For the MM mechanism, the complexity
isO(n2) due to the comparison among the entry elements and
the stored elements in the memory structure. Also, consider-
ing the SS procedure, the elitist criterion can consist of pre-
serving only the best solutions during the entire optimization
procedure. Under such circumstance, the complexity for the
SS mechanism is O(1). The last multimodal operator for the
MFPA namely, Depuration Procedure, consist of evaluating
the Euclidean distance of each memory element to eliminate
redundant solutions. Under this perspective, the complexity is
given by O(n2). The entire computational complexity of the
MFPA can be computed asO(n+ n2 + 1+ n2), which can be
reduced into O(2n2 + n + 1). From the previous complexity
analysis, it can be deduced that the unimodal evolutionary
algorithms presented in this paper achieve linearly time com-
plexity. However, the purpose of this paper is to reformulate
the circular shape detection problem into a multiple circular
detection. For that, the presented paper incorporates a mul-
timodal version of the original FPA (MFPA), to efficiently
store and manage multiple optima, where each solution cor-
responds to unique circular shape. Under such approach, the
MFPA incorporates several procedures to extend multimodal
capabilities. Most of multimodal strategies in published liter-
ature are based on niching and speciation which incorporates
quadratic terms in their algorithmic structures. Under such
circumstances, theMFPA also contains quadratic complexity.
For that, MFPA is an efficient methodology considering a
multimodal optimization approach.

E. DISCUSSIONS AND LIMITATIONS
Most of the published research related to evolutionary
algorithms present the design and application of unimodal
evolutionary algorithms to solve multimodal optimization
problems. Real-world optimization problems commonly
yield into unimodal and multimodal mathematical formula-
tions. Unimodal optimization problems relate to the process
of finding a single global optimum over objective functions
which mostly represent multimodal topologies. However,
from a practical point of view, global optima may not always
be realizable due to several realistic constraints. For that, uni-
modal evolutionary algorithms may not be suitable to oper-
ate into multimodal topologies. Under such circumstances,
multimodal evolutionary algorithms can be an alternative
methodology to obtain multiple optimal solutions during the
optimization process. In this paper,

multiple circle detection problem within images is refor-
mulated as a multimodal optimization problem. For that,
a multimodal evolutionary algorithm which can find multiple
circles in a single run is required. The MFPA extends the
capabilities of the original FPA to incorporate multimodal

functionality in its evolutionary strategy. The multimodal
capabilities of the MFPA are divided into three main pro-
cedures. The first computational procedure is the Memory
Mechanism (MM). In this procedure, each solution competes
to be preserved in future generations. This mechanism only
stores potential optima at each generation in a memory
structure. This process is based on the distance and the
fitness value of each solution. As a result, the MM allows
to increase the population diversity at each iteration. The
second procedure is the Selection Strategy (SS). Under this
process, new solutions are added into the memory structure at
each iteration. This procedure improves the exploration stage
(global pollination operator of the original FPA) of the opti-
mization process by exploringwider zones in the search space
in future generations. Since theMM and SSmechanisms store
new elements into the memory structure, a cleaning process
to maintain diversity and balance among exploration and
exploitation stages is required. Under such circumstances,
the third computational component called Depuration
Procedure (DP) cleans the memory structure in order to
eliminate redundant solutions in the memory avoiding the
formation of solutions clusters. This mechanism improves the
exploitation stage (local pollination operator of the original
FPA) by exploring narrower zones in the search space in
future generations. According to the performance results of
the MFPA and the rest of tested evolutionary methods, it is
quite evident that the combination of the MM, SS and DP
procedures in conjunction to the original FPA operators,
result into a powerfulmultimodal scheme for solvingmultiple
circle detection problem. The remarkable performance of the
MFPA against the rest of evolutionary methods is based on
the balance among exploration and exploitation strategies
improving the population diversity at each step during the
entire optimization process. However, even when the MFPA
outperforms the rest of unimodal algorithms in the multiple
circle detection problem. The MFPA presents some draw-
backs. At first, the MFPA takes more execution time than the
rest of unimodal techniques considered in the experimental
study. The larger computational effort in the MFPA is due to
its quadratic algorithmic structure. One future work direction
of the proposed methodology is to reduce the algorithmic
complexity over multiple circle detection problem. For that,
some improvements can be implemented in the MFPA such
as: improvement of the depuration procedure so the com-
parison among each memory element can be computed con-
sidering another distance metric. The memory structure can
be implemented considering a dynamic memory allocation
process to accelerate memory access. Also, the fitness-based
rules can be substituted considering a fuzzy approach, where
membership functions may consider distance and fitness to
generate some thumb rules to model uncertainty and improve
population diversity.

VI. CONCLUSION
Most of related literature in multi-circle detection problem
is based on a unimodal optimization perspective, where
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TABLE 7. Synthetic images with different complexities regarding geometric shapes.
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TABLE 7. (Continued.) Synthetic images with different complexities regarding geometric shapes.

evolutionary algorithms present an interesting alternative to
automatic circle detection task. However, under a unimodal
approach, each circle is detected over a single execution
of the optimization algorithm. Under such circumstances,

multi-circle detection yields to multiple executions of the
optimization process. Since real-world applications are
modeled as multimodal optimization surfaces, the exten-
sive necessity of real multimodal optimization algorithms
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TABLE 8. Real photos containing multiple circle shapes.
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TABLE 8. (Continued.) Real photos containing multiple circle shapes.

VOLUME 11, 2023 47903



J. Gálvez et al.: Multi-Circle Detection Guided by Multimodal Optimization Scheme

TABLE 9. Synthetic images with different complexities containing noise.
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is required. In this paper, the multi-circle detection prob-
lem has been reformulated as a real multimodal optimiza-
tion problem. In the proposed approach, a single run of a
multimodal optimization algorithm yields to multiple optima
solutions. The proposed approach considers the Multimodal
Flower Pollination Algorithm (MFPA) to obtain multiple
circles on an image in a single run. According to the exper-
imental study, MFPA presents outstanding performance in
comparison with traditional unimodal optimization algo-
rithms commonly used in multi-circle detection problem. The
proposed method finds in most of the cases all the circles
in the analyzed images in a single execution. Furthermore,
the experimental results suggest that MFPA considers high
tolerance to the presence of noise, outperforming the rest of
the algorithms in noisy and real images. Also, the proposed
method is able to remove redundant solutions.

This research work considers how multimodal approaches
can be a viable alternative to solve practical problems that
require multiple solutions to being localized despite being a
relatively little explored area in metaheuristics. However, it is
possible that the adaptation of problems to the multimodal
approach could not being as trivial as applying the algorithm
directly on the search space of the problem and thus, it could
be necessary a deep analysis of the problem and the algorithm
for it to work properly. For example, in the multi-circle
detection problem, it is necessary to change how solutions
are expressed in thememory capture phase and the depuration
procedure tomake sensewith themain goal of themultimodal
optimization process. Possible future work could consist in
adapting other real-world problems (not necessarily related
to image analysis) to be solved using multimodal approaches
since, as it was shown, multimodal techniques can be a good
alternative and even a more fitting approach to tackle certain
types of problems that otherwise, could require a more com-
plex or expensive process for being solve

APPENDIX
In this Appendix, the numerical results for Section V. are
presented.

See Table 7–9.
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