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ABSTRACT Recently, the advent of the non-invasive brain-computer interface (BCI) for continuous
decoding of upper limb motions opens a new horizon for motor-disabled people. However, the performance
of discrete-decoding BCIs based on discriminating different brain states are still more robust. In this study,
we aimed to cascade a discrete state decoder with a continuous decoder to enhance the prediction of hand
trajectories. EEG data were recorded from nine healthy subjects performing a center-out task with four
orthogonal targets on the horizontal plane. The pre-movement data of each trial has been used for training
a binary discrete decoder which identifies the axis of the movement based on common spatial pattern
(CSP) features. Two non-parametric continuous decoders based on Gaussian process regression (GPR) have
been designed for continuous decoding of hand movements along each axis using the envelope features of
EEG signals in six frequency bands. In addition to those four principal orthogonal targets, some targets
at random directions on the horizontal plane were recorded to evaluate the generalizability of the proposed
model. The discrete decoder attained the average binary classification of 97.1% for discriminatingmovement
along the x-axis and y-axis. The proposed state-based method achieved the mean correlation coefficient
of 0.54 between actual and predicted trajectories for principal targets over all subjects. The trajectories of
random targets were also decoded with a mean correlation of 0.37. The generalizability of the proposed
paradigm proved by the findings of this study could open new possibilities in developing novel types of
neuroprostheses for rehabilitation purposes.

INDEX TERMS Brain–computer interface, continuous decoding, electroencephalography, Gaussian process
regression, state-based decoding.

I. INTRODUCTION
The main objective of brain-computer interfaces (BCIs) is
to translate brain activity patterns into meaningful control
commands which enables motor-deficient people to inter-
act with the environment via an external device such as a
computer or a prosthetic limb [1], [2]. The application of
the BCI system is not only confined to helping paralyzed
patients, it also includes mental-state monitoring, stroke reha-
bilitation, gaming, and entertainment [3], [4], [5], [6]. How-
ever, restoring upper limb movement via circumventing the
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dysfunctional neuromuscular pathway is of utmost impor-
tance in the neuroengineering and rehabilitation fields.
Hence, Inferring hand movement kinematics from brain
recordings has been investigated inmany studies. Georgopou-
los and his colleagues proved that the direction of handmove-
ment can be predicted from the activity of population motor
neurons in the arm area of the primatemotor cortex [7]. Taylor
et al. proposed an online closed-loop BCI based on decoding
continuous trajectory from spiking activities which enabled
the monkey subjects to control the position of a cursor in real
time [8]. Several studies are reporting successful trajectory
decoding BCIs based on spiking activities of human subjects
with sever-motor disabilities [9], [10], [11]. Other types of
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invasively-recorded brain activities such as local field poten-
tials (LFP) or electrocorticography (ECoG) have already been
used as an information source for decoding upper limb kine-
matics [12], [13]. The crucial advantage of invasive BCIs
is their acceptable performance. However, it comes at the
expense of requiring surgery which involves the risk of brain
tissue scarring and post-surgical infections. Additionally, the
long-term signal stability of chronically-implanted electrodes
is a matter of discussion [14], [15]. These drawbacks limit
the applications of invasive BCIs. Therefore, there is ongoing
interest in the development of trajectory decoding BCIs based
on non-invasive modalities such as EEG recordings.

The feasibility of using non-invasive brain recordings for
continuous decoding of hand movement parameters was
first proved in a paper by Bradbery et al. [16] where
the velocity trajectories of hand movements were recon-
structed from low-delta EEG potentials in a 3D center-
out task. The problem of estimating hand motion param-
eters from EEG signals has attracted widespread attention
recently [17], [18], [19], [20], [21]. Korik et al. [18] demon-
strated the role of band-power features from mu, beta, and
low-gamma frequency bands in EEG-based motion trajec-
tory prediction. They obtained a maximum of 0.4 Pearson
correlation coefficient between the actual and reconstructed
trajectories. Mondini et al [19] exploited the low-delta EEG
potentials to reconstruct hand motion trajectories in a pursuit-
tracking task. They achieved the mean correlation coefficient
of 0.32 between prediction and actual movement trajectories
at their best scenario. In an exhaustive study, Ubeda et al. [17]
examined the problem of movement decoding based on EEG
recordings from the discrete and continuous perspective in
a center-out-reaching task with eight targets. Their findings
showed that movement trajectories could be reconstructed
via a linear regression model with statistical significance
from low-frequency contents of EEG signals. Nevertheless,
they concluded that the classification of movement direction
may be a more reliable and appropriate approach compared
to continuous decoding of hand position due to the poor
performance of regression model prediction.

Discrete decoding of hand movements from EEG data
during the movement execution period has been studied com-
prehensively in the literature [17], [22], [23], [24]. In a study
by Waldert [22], the four directions of a center-out paradigm
were decoded with an accuracy of 55% using EEG power
spectrum features. Robinson et al [23] exploited a regu-
larized wavelet common spatial pattern to extract features
from EEG signals and achieved a four-class classification
accuracy of 80.24% for discriminating hand directions in a
center-out experiment. The movement discriminative capa-
bility of EEG data from pre-movement interval was also con-
firmed [25], [26], [27]. Lew et al. [26] verified the feasibility
of using EEG data before the onset of movement for hand
directions classification with an accuracy of 76% in a four-
class scenario. The preparation phase of a center-out task was
also analyzed in [27] for binary classification of left versus

right and up versus downmovements with the highest attained
discrimination accuracy of 85%. Compared to continuous
decoding, the overall results of discrete decoding studies
based on EEG recordings are more competent for real-life
applications.

In the present work, a novel methodology based on the
combination of a discrete decoder and a nonparametric non-
linear continuous decoder has been proposed to enhance the
overall performance of hand movement trajectory predic-
tion from EEG recordings. For this sake, EEG data were
recorded from nine healthy subjects performing a center-out-
reaching task with four orthogonal targets on the horizontal
plane. In addition to the principal targets located on two
orthogonal axes, several trials with targets placed in random
directions (i.e. outside the orthogonal axes) on the horizontal
plane have been recorded from each subject. The random
targets required simultaneous movement along both orthog-
onal axes. The objective behind recording random targets
was to assess the generalizability of the proposed model
trained only on the four orthogonal targets. The proposed
approach is called state-based because it first determines the
axis in which the movement happened (i.e. discrete state)
and then exploits the corresponding proper regressor. The
discrete state detection is based on power features extracted
from slow cortical potentials (SCPs) which have been known
to be informative for direction decoding even before the onset
of movement [26], [27]. A common spatial pattern (CSP)
feature extraction method alongside a support vector machine
(SVM) classifier with a nonlinear kernel has been exploited
for designing the discrete state decoder. Gaussian process
regression (GPR) was employed for continuous decoding
of hand positions using the envelope features of EEG sig-
nals extracted from six frequency sub-bands. Our findings
revealed that the proposed method offers statistically signifi-
cant results on both principal and random targets compared
to the conventional method which is not state-based. The
state-based approach has been employed in some movement
parameter estimation studies based on invasive brain record-
ings [28], [29]. However, as far as we know, this is the
first study that investigates the performance of a state-based
decoder in a generalized EEG center-out task with random
targets aiming to improve the hand trajectory predictions.

The rest of the paper is prepared as follows: Materials
and Methods are presented in Section II. It comprehensively
describes data acquisition, experimental task, and method-
ology including discrete and continuous decoder design.
Section III is dedicated to the results. Discussions are summa-
rized in Section IV. Finally, Section V is left for conclusions.

II. MATERIALS AND METHODS
A. PARTICIPANTS AND EQUIPMENT
Nine healthy right-handed male subjects between the ages
of 25-36 with correct or corrected-to-normal vision partici-
pated in this study. All subjects had no history of epilepsy,
neurological diseases, mental disorders, or head injury.
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FIGURE 1. (A) EEG electrode montage showing recording channels. The channels denoted in red were discarded from the analysis.
(B) A participant performing the task in the experimental environment. (C) Targets layout. The principal targets are denoted with T1, T2, T3,
and T4. The random targets were placed randomly over four quadrants in the area designated by green color. (D) Timeline for the
experimental task alongside the cue screen pictures of the experiment. The thick red line shows the 500 ms interval used for state detection.

The overall health of subjects were check by a general physi-
cian before recording session. The experiment was carried
out in one session for each subject. All the procedures were
approved by the Ethics Committee of the Iran University of
Medical Sciences (Ethics ID: IR.IUMS.REC.1400.382.). All
subjects were informed about the details of the experimental
task and gave written consent in accordance with the Decla-
ration of Helsinki prior to the data acquisition session. Data
acquisition took place at the National Brain mapping Lab
(NBML) at the University of Tehran, Iran.

The sufficient number of subjects for our experiment was
determined based on statistical power analysis which was
performed using G∗power software [30]. Statistical power
analysis describes the relationship of four factors of statistical
hypothesis testing: sample size (N), significance criterion (α),
effect size (d), and statistical power. Statistical power is the
probability that a statistical hypothesis test correctly rejects
the null hypothesis. We performed a power analysis to verify
whether the number of participants in our study was sufficient
to show the superiority of the state-based approach over the
conventional method. Considering the results of the proposed
method and conventional method, the effect size calculated
by G∗power was equal to d=2.13. Effect size measure rep-
resents the magnitude of a relationship between variables.
Given the calculated effect size, α = 0.05, and Power = 0.9,
the minimum number of subjects calculated by G∗Power
software for the Wilcoxon signed-rank test is equal to seven.
Thus, in our experiment with nine subjects, our sample size
was enough to justify the results of the statistical test.

A g.HIamp device (g.Tec, GmbH, Austria) equipped with
63 active electrodes was used for EEG data recording at
a sampling rate of 512 Hz. The electrode placement was
according to the extended international 10-20 system with
the ground electrode positioned at Fpz and the reference
electrode placed at the right mastoid. The EEG electrode
montage is illustrated in Fig. 1(A). The electrooculogram
(EOG) signals were captured simultaneously with three addi-
tional passive patch electrodes positioned at the right eye’s
superior, inferior, and outer canthi. The position of the right
hand’s palmwas recorded via a LeapMotion controller (Leap-
Motion Inc. USA). The hand movement was sampled at
115Hz. To reduce the sensor noise, the LeapMotion signals
were smoothed with a low-pass Butterworth filter (zero-
phase, fourth order, and cutoff frequency at 1Hz). Fig. 1(B)
portrays a subject performing the task in the experimental
environment.

B. EXPERIMENTAL TASK
To address the main objective of the study, a cue-based
center-out reaching task was designed. The task required
hand-reaching movement towards four principal targets posi-
tioned on two orthogonal axes at an equal distance of 10cm
from a center position called home located on the horizontal
plane. This design is in line with the conventional center-out
task which is well-known in the literature [23], [25], [31].
To evaluate the generalizability of the proposed method,
we incorporated different random targets happening in ran-
dom directions into our center-out task. The random targets

42766 VOLUME 11, 2023



S. M. Hosseini, V. Shalchyan: State-Based Decoding of Continuous Hand Movements Using EEG Signals

would happen at directions that are at least 20 degrees away
from principal orthogonal axes. In other words, the directions
of random targets were drawn from a uniform distribution
which its values happen at [20◦ 70◦], [110◦ 160◦], [200◦

250◦], and [290 340◦] intervals. The random targets were
distributed uniformly over all four quadrants of the horizontal
coordinate plane with the home position considered as the
origin. Hence, there are two types of targets in this study,
principal targets for training the model and random targets for
assessing the model’s generalizability. Fig. 1(C) represents
the task targets’ positions layout which shows the orthogonal
principal targets and the area in which the random targets
happen. Four principal targets are labeled T1, T2, T3, and T4.
All targets whether principal or random require 10 cm hand
displacement from the origin to be reached.

The timeline for the experimental task is depicted in
Fig.1(D). The experiment was conducted as follows: the par-
ticipants were seated comfortably on a chair positioned 50cm
away from the computer screen with their arms resting on the
table. To reduce the friction with the table surface during task
execution, the subjects were asked to place their right hand
on a mouse pad. At the beginning of each trial, the right-
hand palm position of the subjects was mapped into a red
circle cursor at the home position on the computer screen. The
home position was denoted with a thin white rectangle at the
center of the screen. The hand position data were recorded
via LeapMotion device which was placed on a leg 25 cm
above the table surface. Every trial began with a 4 seconds
rest period. Then, a target denoted by a bold white rectangle
appeared at one of the four principal target positions or a
random target position. After 3 seconds, the white rectan-
gle turned black indicating the go cue. The subjects were
instructed to start reaching the target after the go cue. When
the target was touched by the cursor, its color changed to
white and disappeared after 400ms (return cue). Then, the
subjects returned the cursor to the central position to end the
trial. So the hand movement in each trial consists of reach-
ing and returning phases. If the subject could not complete
the movement within 10 seconds after the go cue, the trial
was terminated and discarded. The graphical user interface
(GUI) of the task was implemented via PsychToolbox 3 in
MATLAB 2019b (The MathWorks, Inc.).

The experiment was completed in one session for each
subject. Each session consists of four data recording blocks.
In each block, the subjects performed 40 trials toward prin-
cipal targets (ten attempts for each principal target) and six
trials toward random targets. The order of presenting trials
to the subjects was random in each recording block. A break
interval of 2-3 minutes was applied between recoding blocks.
In total, each subject performed 160 principal target trials and
24 random target trials. The number of random target trials
was 15% of the total number of principal target trials. The
random target trials were only used for testing the general-
ization capability of the algorithm. They were not intended
for training the models.

In this study, the 500 ms of data before the go cue was
used for state-decoder design. Although the subjects were not
allowed to move their hand in the pre-movement interval, the
brain activity in this interval carried discriminative informa-
tion for direction decoding [25], [27]. The data in the move-
ment phase including reaching and returning were employed
for designing a continuous decoder as well (Fig. 1(D)).

C. PREPROCESSING DATA
The raw EEG data were band-pass filtered using a zero-
phase fourth-order Butterworth filter with 0.2-45Hz band-
width. The EOG signals were also bandpass filtered in the
0.5-5Hz frequency range [32]. The powerline interference
was eliminated with a notch filter at 50 Hz. Next, independent
component analysis (ICA) based on the EEGlab toolbox [33]
was exploited to remove the artifacts related to muscle con-
traction, heart beating, and eye movement from recorded
EEG data. The ICA components exhibiting a correlation
higher than 0.4 with EOG signals were considered artifacts.
After eliminating artifact-related components, EEG signals
were reconstructed from the remaining components. To avoid
any residual artifacts, the seven most frontal electrodes in
rows Fp and AF besides the electrodes, TP9, P9, and P10
were excluded for further analysis (Fig. 1(A)). The remaining
53 electrodes were used for data processing. In order to
enhance the spatial resolution of EEG signals, the surface
Laplacian filter was applied to movement phase data [34].
The hand movement position data recorded via LeapMotion
in the movement phase of each trial were upsampled to the
sampling rate of 512 Hz to be equal in sample length to the
corresponding recorded EEG data. All signal analysis was
performed with MATLAB 2019b (The MathWorks, Inc.).

D. STATE-BASED APPRAOCH AND CLASSIFCATION
The state-based approach is composed of two steps: first,
the discrete-state decoder determines the movement cate-
gory (class) of the current test trial. Then, the corresponding
regression model based on the predicted movement category
of the test trial is employed for trajectory decoding. The key
idea of the state-based approach is to train the continuous
decoder (regressor) for each axis only with the trials featuring
hand movement along that specific axis. For instance, the
regressor model for the x-axis should only be trained on the
trials with hand movement towards targets T1 and T3 in our
task. The movements towards T2 or T4 do not produce hand
displacement along the x-axis, so these data should only be
used for training the y-axis regressor model. This approach
will lead to better decoding performance along each axis
compared to the conventional non state-based technique. In a
center-out task with movement along orthogonal axes, the
state-based decoder recognizes the axis of movement, so it
does not produce unwanted displacement along the axis in
which the movement does not happen. To implement a state-
based decoding approach, one requires designing a discrete
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state decoder that discriminates movements along the x-axis
and y-axis. To this end, the trials featuring movement along
the x-axis (reaching towards T1 or T3) and the trials with
movement along the y-axis (reaching towards T2 or T4) were
labeled as class 1 and class 2 respectively. Determining the
axis in which the movement happens is of great importance
for achieving competitive performance in the state-based
technique. The performance of the whole method depends on
correct state detection.

The discrete state-decoder was designed based on common
spatial pattern (CSP) feature extraction and SVM classifier.
As stated earlier, the feasibility of decoding direction from
EEG data before movement onset/go cue has been confirmed
in the literature [25], [27]. We considered a 500ms time
window before the go cue for training the state decoder. In our
analysis, this interval led to the best results. The CSP algo-
rithm seeks to find a linear transformation that maximizes the
variance of EEG signals from one class while minimizing the
variance of signals of the other class at the same time. Let
X∈RT×C denote a recorded trial of multi-channel EEG data
where T is the length of the trial and C is the number of chan-
nels. The CSP transformation matrix W csp∈RC×2m can be
considered as a spatial filter combining the recorded channels
to construct a new data space Z = XW csp offering optimal
discrimination between power features of two classes. The
columns ofW csp are denoted by wj∈RC . The CSP algorithm
extremizes the following cost function:

J (w) =
wT61w
wT62w

(1)

where 6i ∈ RC×C represents the average covariance matrix
of trials belonging to class i ∈ {1, 2}. The covariance matrix
estimator for each trial is:

S =
XTX

trace(XTX)
(2)

where trace(.) is the trace operator which sums diagonal
elements of a square matrix. For each class, the average
covariance matrix will be calculated based on the correspond-
ing training data:

6i =
1

|φi|

∑
j∈φi

Sj (3)

φi represents the set of trials belonging to class i and |φi|

is its cardinality. The CSP optimization problem represented
in equation (1) can be solved by addressing the following
generalized eigenvalue problem [35], [36]:

6−1
2 61w = λw (4)

where the generalized eigenvalue and eigenvector are repre-
sented by λ andw. The spatial filterW csp consist of eigenvec-
tors corresponding tommaximum andminimum eigenvalues.
The CSP features used for training the classifier are the
logarithm of the variance of projected signals. In this study,
we assumed m = 3, so there were six CSP features for
training the classifier.

To build and evaluate our algorithm, a 10-fold cross-
validation scheme was employed. The training data folds
were used to build the model including discrete state-decoder
and continuous decoder. The test data fold was used for eval-
uating the performance of the trained model. In Section III,
the reported results were computed based on the average of
ten repetitions of 10-fold cross-validation with shuffling the
order of trials.

E. CONTINUOUS-DECODER DESIGN
The continuous decoder was designed based on the Gaussian
process regression (GPR) which is a nonparametric, kernel-
based, probabilistic model. GPR provides the possibility of
flexible models which are practical to work by using the
Gaussian process (GP) framework. GP extends the concept of
multivariate Gaussian distribution into infinite-dimensional
space. In fact, the GP model defines a probability distribution
over possible functions that fit a set of given observations,
whereas multivariate Gaussian distributions are only defined
over vectors. Formally, ‘‘A Gaussian Process is a collection
of random variables, any finite number of which have joint
Gaussian distributions’’ [37]. A GP is fully characterized
by its mean function m(x) and kernel (covariance) function
k(x, x′):

g ∼ GP
(
m (x) , k

(
x, x′

))
(5)

correspondingly, it defines function g as a gaussian pro-
cess with specific mean and covariance functions. Gener-
ally, a regression problem can be considered as a model
y = f (x) with a set of n training observations: y =

[y1, y2, . . . , yn]∈ Rn and X = [x1, x2, . . . , xn] ∈ Rd×n.
The dimension of feature space is denoted by d . To fit a GP
model to unknown function f , the kernel function should be
calculated among all possible combinations of training data
resulting in the kernel matrix K defined as:

K = K (X,X) =

 k (x1, x1) · · · k (x1, xn)
...

. . .
...

k (xn, x1) · · · k (xn, xn)

 (6)

For the given training data and known mean and kernel
function, the GP specifies a regular multivariate Gaussian
distribution as f ∼ N (m,K). It is common to normalize data
before the processing, so the mean function is a constant zero
vector. The choice of kernel determines the smoothness of the
function. Theoretically, any positive definite function can be
employed as a kernel function [37]. It defines the relationship
between observations.

Given the training dataset, the GP method can make infer-
ences about the function f governing the relation between
input xi and output yi. This GP process can be used as a
prior for Bayesian inference. It is necessary to compute the
posterior distribution for a specific set of test cases given the
training dataset to predict unseen test data. Assume that X∗
is the set of test samples. The objective is to find the posterior
distribution for test data which is denoted by f∗ given the
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FIGURE 2. Schematic of the proposed state-based decoding pipeline. The solid grey lines show the flow of data.
The dashed blue lines represent the flow of trained models.

training data (i.e. f∗|f). The derivation of the posterior is
rather straightforward based on the properties of Gaussian
distributions and can be found in [38].

f ∗ |f ∼ N
(
K∗K−1y,K∗∗K−1KT

∗

)
(7)

where K∗ = K (X,X∗) and K∗∗ = K (X∗,X∗) represent
kernel matrix for the training-test set and test set respectively.
Matrix transposition operation is denoted by superscript T .
The best estimate for regression results is the mean of the
distribution presented in equation (7):

f̂ = K∗K−1y (8)

The above formulation is derived for a noise-free situation.
In real-world applications, observations are contaminated
with noise. The most common assumption is to consider
independent additive white Gaussian noise in the outputs i.e.
y = f (x) + ϵ, where ϵ ∼ N (0, σ 2

ϵ ). This assumption can be
easily incorporated into the GPR formulation. The covariance
function of noisy observations is the sum of signal covariance
and noise covariance. Considering the noise in the equation
prevents the GP model from overfitting on training data.
The formulation for regression in presence of noisy observa-
tion is [38]:

f̂ = K∗(K + σ 2
ϵ I)

−1
y (9)

In this study, the squared exponential (SE) kernel was used
for modeling the hand movements from EEG features. This
kernel is infinitely differentiable and smooth which makes it
a sensible choice for a broad range of applications. SE kernel

is define as [38]:

k
(
x, x

′)
= σ 2

f exp

(
−

∥∥x− x′
∥∥2

2l2

)
(10)

where length-scale l and signal variance σ 2
f are two hyperpa-

rameters of the kernel.
The common practice for estimating kernel hyperparame-

ters is to optimize the marginal loglikelihood function based
on its partial derivatives. The mathematical formulation for
the loglikelihood function and hyperparameters optimization
problem can be represented as [38]:

θ̂ = argmax
θ

(log p(y|X, θ )) (11)

log p (y |X, θ) = −
1
2
yTK−1y−

1
2
log |K |

−
n
2
log (2π) (12)

the kernel hyperparameters are denoted by vector θ = [l, σf ].
In this study, the quasi-newton optimizer was used for kernel
hyperparameters optimization. The additive noise variance
σ 2

ϵ was optimized via grid search on the training dataset.
To evaluate the performance of the continuous decoding
method, the Pearson correlation coefficient between recon-
structed trajectory and actual movement has been calculated:

r =

∑T
t=1(f (t) − f̄ )(f̂ (t) − f̄ )√∑T

t=1(f (t) − f̄ )2
√∑T

t=1(f̂ (t) − f̄ )2
(13)

where f (t) and f̂ (t) denote the actual and reconstructed tra-
jectories at time t , respectively. The signals are T samples
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long. f̄ and ¯̂f indicate the sample mean of actual movement
and reconstructed movement respectively.

F. FEATURES EXTRACTION AND FEATURES SELECTION
Numerous studies have reported successful decoding of
upper-limb movement based on amplitude features extracted
from EEG recordings. Early works by Waldert [22] and
Bradbery [16] mainly indicated that features extracted from
low-delta activities convey discriminative information about
hand kinematics. The role of band-power features from mu,
beta, and gamma frequency bands was later on confirmed in
motion trajectory perdition by Korik et al. [18]. In this work,
the amplitude features were extracted from 53 EEG chan-
nels in movement intervals for constructing the continuous-
decoder model. The EEG data of movement interval were
first filtered into six frequency bands: δ(0.2-4 Hz), θ(4-8 Hz),
α(8-14 Hz), β1(14-20 Hz), β2 (20-30 Hz), and γ (30-45 Hz)
via zeros phase, fourth order Butterworth filter. Then, the
signals were rectified and smoothed using a low-pass, fourth
order Butterworth filter with cutoff frequency at 1 Hz. This
operation extracted the envelope of signals at six aforemen-
tioned frequency bands. The features were then normalized
and downsampled to 8 Hz. Envelope features only include
low-frequency content due to smoothing process. Hence, the
process of downsampling the features helps reduce computa-
tional burden and processing time. The movement data were
also downsampled to 8 Hz accordingly. In addition to the
features corresponding to the present time sample, four time
lags of the features were added to the feature vector (i.e. lag 0,
−125ms, −250ms, −375ms and −500ms). In other words,
to estimate the movement at a specific time t , we employed
the features extracted at time sample t and four previous
time samples. Since the signals were downsampled to 8 Hz,
each time lag is equal to 125ms. In summary, the feature
space includes 53∗6∗5=1590 features. In order to find the
most relevant features to the hand motion, the mutual infor-
mation (MI) measure has been employed. MI quantifies the
amount of information obtained about one random variable
by observing the other random variable [39]. For two random
variables X and Y , MI is formulated as:

I (X ,Y )

=

∑
i,j
P(X = xi,Y = yj)log(

P(X = xi,Y = yj)
P(X = xi)P(Y = yj)

) (14)

MI quantity between extracted features and hand move-
ment signals along each axis was calculated. The features
were then ranked based on the highest MI and used for
regressor training. The number of regression features was
optimized separately for each subject. The optimum number
of regression features was in the range of 50-200 features
for each subject. In a nutshell, the whole methodology of
target detection and trajectory reconstruction for the standard
center-out task with four orthogonal directions can be sum-
marized as follows: first, the discrete state-detector based on
CSP feature extraction and SVM classifier is built using pre-
movement data of training dataset. Additionally, two GPR

models, one for decoding movement along the x-axis and
another for decoding movement along the y-axis, are trained
based on the most relevant envelope features extracted from
movement interval data. For each test trial, the state-detector
first decides whether the trial belongs to class 1 or class 2 by
analyzing its pre-movement interval. Then, the corresponding
GPR model is employed to reconstruct the motion trajectory
from movement phase data. The proposed methodology is
summarized in Fig. 2. The results of applying the proposed
method to the four-target task are reported in the first part of
Section III.

G. GENERALIZATION OF BINARY CLASSIFICATION FOR
RANDOM TARGET DETECTION
The center-out task has been generalized with additional ran-
dom targets to assess the competence of the proposed state-
basedmethod. As stated earlier, the number of random targets
was limited, so the model was not trained on them. They
were just used for testing the generalizability. To incorporate
the random targets into the methodology, the algorithm first
requires to identify whether the test trial at hand belongs
to class 1, class 2, or random targets which are labeled as
class 3. Consequently, the binary state-detector described in
Section II-D should be generalized to identify three classes.
This issue can be addressed by applying new boundaries on
the score space of the trained binary classifier.

FIGURE 3. The score space of binary SVM classifier with RBF kernel
trained on subject 6 data. The blue and red circles denote the class 1 and
class 2 training trials. The score values of random targets trials -projected
with Wcsp and classified with trained binary classifier- are depicted by
green stars. The original boundary of the binary classifier is illustrated by
the dashed black line. Two new boundaries for three-class discrimination
are denoted by the dashed magenta line. The one-dimensional score
space is illustrated diagonally for better visual presentation.

The score space of the binary SVM classifier which has
been trained on a training dataset of the binary problem
(class 1 vs. class 2 data) is illustrated in Fig. 3 (a repre-
sentative example from the subject 6 dataset). The classi-
fier projects the input features into a score space where the
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samples show themost discrimination. Actually, the classifier
makes decisions based on the value of scores. The binary
classification is performed based on the boundary denoted by
the dashed black line in Fig 3 which is orthogonal to the score
space line. The feature extraction for class 1 and class 2 data
is based on the CSP technique which maximizes the variance
of one class while minimizing the variance of the other class.
The class 3 data belong to none of class 1 or class 2 data.
When the class 3 data are transformed usingW csp trained on
class 1 and class 2 data, the results differ from class 1 and
class 2 projected data. Hence, in the score space of the trained
binary classifier, the random target trials happen between the
score values of the two classes. They are distributed near the
binary classifier boundary. The trials belonging to random
targets are depicted with green stars in Fig 3.

To infer three-class discrimination from this problem, two
boundaries are required to be determined based on training
data samples of class 1 and class 2. Two new boundaries
are defined based on the score values of class 1 and class 2
training samples which are nearest to the binary discrim-
ination boundary (dashed black line in Fig. 3). The new
boundaries are depicted in magenta in Fig 3. If the score
value of a test trial occurs between these two lines, the trial
belongs to class 3. The classification performance of the
three-class scenario is reported based on the 10 × 10-fold
cross-validation scheme in Section III-B. The nine training
folds of class 1 and class 2 data have been used for calculating
CSP transformation (W csp) and training the SVM model.
Then, the two boundaries for three-class discrimination were
computed. Next, the test fold data of class 1, class 2, and the
whole random target trials were classified using the three-
class state-based decoder. Therefore, the whole 24 random
trials were classified 100 times during cross-validation, and
the detection accuracy rates were reported for each subject.
In this study, the SVM classifier with RBF kernel achieved
the best true positive rate for detecting random targets and
also, the best accuracy in three-class discrimination scenario
compared to linear SVM, linear discriminant analysis (LDA),
and quadratic discriminant analysis (QDA) (see Figure S1
in supplementary materials). Hence, only the SVM classifier
with RBF kernel was used for the discrete-state detection
throughout the paper. It should be noted that the source code
of the proposed method written in MATLAB is available at
GitHub.1

III. RESULTS
The results of the study are divided into four parts. The
first part is dedicated to applying the proposed method to
a standard center-out task with four orthogonal targets. The
results of the generalization of the task with random targets
are summarized in the second part. The third part includes
surrogate data analysis and investigations on EEG sub-band
performance. The comparison between the state-based and
the conventional approach is offered in the fourth part.

1(https://github.com/moosahosseini/EEG_state_based).

FIGURE 4. (A) The accuracy of binary classification (mean±SE) for each
subject based on 10×10-fold cross-validation results. (B) The confusion
matrix which was calculated based on the results from all subjects.

A. CENTER-OUT TASK WITH FOUR
ORTHOGONAL TARGETS
The state-based scheme consists of two parts. The first is
the state detector which determines the axis on which the
movement happens. The second part is continuous trajectory
decoding along the axis of movement. As we stated earlier
in part II-D, the state detector is based on CSP features
extracted from pre-movement SCP signals and binary SVM
classification. In the standard center-out task with four prin-
cipal targets, the state-detector discriminates between class 1
(T1 or T3) and class 2 (T2 or T4). The binary classification
accuracy results for nine subjects are presented in Fig 4.
The classification accuracy (mean±SE) is reported based
on a 10 × 10-fold cross-validation scheme for each subject
(Fig. 4(A)). The total performance of the binary decoder
is also assessed through the calculation of the confusion
matrix over all subjects depicted in Fig. 4(B). The proposed
method has obtained an average accuracy of 97.1% over all
participants.
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FIGURE 5. The contribution of recording channels in CSP feature
extraction. The Topoplot graphs display the average of absolute CSP
weight vectors over all subjects.

The weight vectors (i.e. wj (j = 1, 2, . . . , 6)) of CSP algo-
rithm can be considered as spatial filters combining recording
channels to build a new channel space with maximum dis-
crimination between variance features of two classes. Fig. 5
displays the contribution of each recording channel in binary
discrimination by calculating the average of absolute values
of six CSP weight vectors over all subjects. The results show
that frontoparietal and central areas are mostly involved in
extracting features for classification.

After determining the label of the test trials, the corre-
sponding continuous decoder is employed to reconstruct the
movement trajectory. Two GPR models have been built on
training data for decoding movement along the x-axis and y-
axis separately. In other words, the GPR1 and GPR2 models
were trained on trials belonging to class 1 and class 2 for
decoding movement along the x-axis and y-axis respectively
(pipeline presented in Fig. 2). Fig. 6 summarizes regression
results of the proposed state-based algorithm on principal
targets for each subject. The performance of each model is
reported separately in terms of the Pearson correlation coef-
ficient. The average correlation coefficient of both models
over all subjects is 0.54±0.12. A representative example of
reconstructed trajectory with the proposed method along the
x-axis and y-axis is provided in Fig. 7.

B. GENERALIZED CENTER-OUT TASK WITH
RANDOM TARGETS
Here we presented the results of detecting and continuously
decoding the trajectories of random targets in the general-
ized center-out task. In Section II-G, we described the tech-
nique for detecting the random targets based on the classifier
trained on two classes of principal targets. The performance
of detecting random target trials is reported based on the
true positive rate which is defined as the percentage of truly
detected random targets to all random targets. Fig. 8(A) sum-
marizes the true positive rate (sensitivity) of detecting random

FIGURE 6. Regression results of the proposed method on principal
targets trajectories for each subject in terms of correlation coefficient
(mean±SD).

FIGURE 7. A representative example of reconstructed trajectory with
proposed method on data from subject 6. (A) Reconstruction along x-axis.
(B) Reconstruction along y-axis. The dashed lines represent the beginning
of test trials. The classifier switches between classes and select proper
regression model based on pre-movement data.

targets for each subject. The confusion matrix calculated for
three-class discrimination of test trials in the generalized task
is presented in Fig. 8(B). The total accuracy of classification
reached 87.3% in the generalized task with three classes
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FIGURE 8. (A) True positive rate (sensitivity) of detecting random targets
for all subjects (mean±SE). (B) The confusion matrix for three-class
discrimination was calculated.

of test trials. The objective of this section is to assess the
generalizability of the center-out task trained on orthogonal
directions for identifying trials featuring out-of-axis move-
ments. Hence, the results are focused on detecting random
targets and estimating corresponding trajectories.

After identifying the random target trials, both trained
GPRmodels have been exploited for trajectory reconstruction
along the x-axis and y-axis simultaneously. The results of
random target trajectory reconstruction along the x-axis and
y-axis are depicted in Fig. 9.

C. INSPECTING STATISTICAL SIGNIFICANCE AND THE
PERFORMANCE OF EEG SUB-BANDS
In order to investigate the statistical significance of the pro-
posed method, surrogate datasets were generated by ran-
domly shuffling the order of brain features [17], [40]. Then,
the proposed method was employed to estimate hand kine-
matics from the surrogate datasets of each subject. Our
findings suggest that the hand trajectories based on original
datasets were decoded significantly above chance level for

FIGURE 9. Regression results of the proposed method on random targets
for each subject in terms of correlation coefficient (mean±SD).

FIGURE 10. Investigating the statistical significance of the continuous
decoding method. The chance level was calculated based on a shuffled
surrogate data model. Each bar represents the Pearson correlation
coefficient (mean ± SD) which is calculated based on 10×10-fold
crossvalidation and then averaged over all nine subjects(***:
p-value<0.001, Wilcoxon rank-sum test).

both principal target and random targets along the x-axis and
y-axis (Wilcoxon rank-sum test, p<0.001). The results of the
statistical test are portrayed in Fig. 10.

The capability of individual EEG sub-bands was examined
in continuous trajectory decoding using the proposedmethod.
For this sake, the EEG activity of six sub-bands defined
in Section II was separately fed into the proposed contin-
uous decoder. The feature extraction and feature selection
were done on each sub-band accordingly and the results of
the regression were summarized in Table 1. The features
extracted from alpha and delta bands achieved better results
compared to other sub-band. Table 1 confirms that using
single-band features would lead to inferior results, especially
for random target reconstruction.

D. STATE-BASED VERSUS CONVENTIONAL APPROACH
We claimed that exploiting the state-based approach would
lead to a better continuous decoder model compared to the
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TABLE 1. The trajectory reconstruction performance of individual EEG
sub-bands and the proposed approach based on extracting features from
all six sub-bands. The correlation coefficients of decoding principal
targets and random targets trajectories-averaged over all subjects- are
reported separately based on 10 × 10-fold CV.

conventional approach. The conventional approach is to build
the model on all training data without separating trials based
on the type of movement. Hence, the regressor of the x-axis,
for instance, is trained on all training trials where the subject
performed movement towards all four orthogonal targets.
Two of the targets do not require movement along the x-axis
(T2 and T4). Using these trials for training the x-axis regres-
sor would weaken the continuous decoding model because
the regressors are not capable of modeling stillness. The story
is the same for calculating the y-axis regressor in the conven-
tional approach. In the state-based approach, the regressor of
each axis is only trained on the trials featuring hand move-
ment along that axis. This method requires state detection
which has been explained throughout the study. In this sec-
tion, the results of the proposed state-based method are com-
pared to the conventional method. For implementing the con-
ventional approach, we eliminated the state-detection block
from our methodology and built the GPR models on all train-
ing data without separating them based on movement along
the x-axis or y-axis. The preprocessing, feature extraction
and feature selection remained the same. Fig 11 compares
the average correlation coefficient results of reconstructing
principal targets and random targets using state-based and
conventional methods. The state-based approach achieved
superior performance for both estimating principal targets
and random targets trajectories along each axis. To validate
the statistical significance of the state-based method against
the conventional approach, a Wilcoxon matched-pairs signed
rank test was applied to the data presented in Fig. 11. The
statistical test outcome confirms that the continuous decoding
models based on the state-based approach provide superior
results compared to the conventional method (p<0.05).

The conventional approachwas also implemented based on
MLR [16], ridge [41], Kalman [42], SVR [43], and PLS [44]
decoders. The proposed method outperformed all these

FIGURE 11. Comparing the continuous decoding performance of the
proposed state-based method to the conventional approach. Each bar
represents the correlation coefficient (mean±SD) averaged over all
subjects. The dots correspond to the average results for each subject.
(A) Comparing reconstruction performance of principal targets over the
x-axis. (B) Comparing reconstruction performance of principal targets
over the y-axis. (C) Comparing reconstruction performance of random
targets over the x-axis. (D) Comparing reconstruction performance of
random targets over the y-axis. (*: p-value<0.05, **: p-value<0.01,
Wilcoxon matched-pairs signed-rank test).

conventional implementations. The detailed subject to
subject results are presented in supplementary materials
(Tables S1 and S2).

IV. DISCUSSION
Although the EEG-based BCI systems aiming for hand
motion trajectory reconstruction have gained considerable
attention due to their budget-friendly implementation and
minimal health issues, the inferior performance compared to
invasive BCIs confines their real-world applications. In this
work, a state-based approach has been proposed to enhance
the prediction of hand movements based on EEG recordings.
The state-based decoding paradigm has been considered in
several invasive studies. Aggarwal et al. [28] implemented
a state-based model with a linear discriminant classifier and
Kalman filter for distinguishing periods of posture and hand
movements based on neural ensemble and LFP activities
recorded from the primary motor and pre-motor cortex of two
rhesus monkeys. Bundy et al. [29] designed a hierarchical
partial least square (PLS) method with logistic regression
as a discrete decoder for enhancing continuous estimation
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FIGURE 12. Comparing results of proposed GPR with ridge, Kalman, and SVR methods on principal target and random target trajectory
reconstruction. The bars represent the correlation coefficient (mean±SD) of each method averaged over all subjects. (A) Results for
principal target decoding. (B) Results for random target decoding. (ns: not significant, ***: p-value<0.001, ****: p-value<0.0001, Friedman
test with FDR correction for multiple comparisons).

of reaching movement in a center-out task using electrocor-
ticographic signals in human subjects. Ahmadi et al. [45]
proposed a method combining filter-bank CSP and PLS
regression for improving continuous force decoding from
LFP signals acquired from rats performing a key-pressing
task.

As far as we know, this is the first study proposing a
state-based decoding paradigm for hand motion trajectory
prediction from an EEG center-out-reaching task generalized
with random targets. In order to distinguish between states
which have been defined as movements along the x-axis
and y-axis, the CSP features extracted from pre-movement
data have been used. Identifying the movement intention
from pre-movement brain activities increases the practical
applicability of BCI systems [27]. The continuous decoding
of hand motions based on features extracted from movement
interval was done using the GPR framework which is a non-
parametric flexible kernel method [46]. The augmentation
of the task with random targets allows for evaluating the
performance of the proposed method on a new type of data
on which the model has never been trained.

The proposed discrete decoder based on the CSP method
combines EEG channels to build a new signal space with
maximum discrimination between variance features of two
classes. Fig. 5 demonstrates the contribution of channels by
depicting the average absolute value of CSP weight vec-
tors wj over all subjects. The channels overlay central, cen-
troparietal, and frontocentral regions such as C1, C2, CP3,
CP2, P2, P3, FCz, and FC1 represent the most contribu-
tion, especially in the first three weight vectors. Inspecting
topoplots fromw4,w5 andw6 emphasizes the apparent role of

frontocentral and frontoparietal channels in state classifica-
tion as well. The results are in agreement with a study by
Lew et al. [26] which found discriminative patterns involving
central and frontoparietal areas during reaching tasks for
both able-bodied and stroke patients. A study by Contreras-
Vidal et al. [47] on visuomotor adaptation in an EEG center-
out task has also shown the involvement of frontoparietal
regions in healthy participants. The association of parietal
EEG components with intendedmovement direction was also
investigated in [48].

One of the key aspects of the proposed method is the use of
GPR for continuous decoding. This method is capable of alle-
viating the effect of noise in the data bymodeling it as an addi-
tive white Gaussian element. To evaluate the effectiveness of
the proposed continuous decoder in the context of regression
analysis, we substituted the GPRmodel with three other well-
known regression methods in the proposed methodology.
Fig. 12 compares the performance of the proposed method
based on GPR decoding to ridge regression [41], Kalman
filter [42], and support vector regression (SVR) [43] with
RBF kernel on both principal and random targets. The ridge
regression and Kalman filter are two linear methods that
are very popular in movement decoding [19], [49], [50].
The SVR method is a nonparametric, kernel-based technique
based on the idea of support vector machine (SVM) analysis.
The performance of the proposed method against the other
three methods has been assessed from the statistical point
of view by applying a one-way repeated, non-parametric
Friedman test followed by FDR correction for multiple com-
parisons [54]. The statistical test was applied to the results of
a 10 × 10-fold cross-validation data of all subjects (Fig. 12).
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TABLE 2. Comparison to some relevant trajectory decoding studies of hand kinematics based on EEG recordings.

The proposed method outperformed the other methods both
in decoding principal targets and random targets trajectories
with statistical significance (p<0.0001).

It is necessary to compare our results to some related
works. Bradberry et al. first verified that the information
content of EEG recordings is sufficient for decoding hand tra-
jectories during the center-out reaching task [16]. Numerous
studies have been conducted to improve the results of hand
movement trajectory prediction based on EEG data since
the work by Bradberry. Table 2 summarizes some related
works to EEG-based upper-limb motion decoding. The most
common experimental paradigms were 2D and 3D center-
out tasks. The pursuit tracking task was also considered in
some studies [19], [52]. Although early studies employed lin-
ear decoding models, non-linear methods such as unscented
Kalman filter (UKF) and neural networks have attracted con-
siderable attention recently. [21], [52]. Decoding upper limb
movement based on non-invasive recordings has progressed
noticeably during the last decade. However, the results have
to be improved further for rehabilitation purposes. Inva-
sive studies appear to still have the edge over non-invasive
research in terms of motion reconstruction accuracy [8], [50].

Despite significant improvement upon the conventional
approach and some well-known regression algorithms, the
conducted study is not without caveats. First, the center-
out task used in this work was limited to four orthogonal
directions. It is worthwhile to study the trajectory recon-
struction performance when the number of training direc-
tions increases. Second, the number of random targets was
limited in the study. Hence, they were only used for testing
the generalizability of the proposed method. A study with
a large number of random targets is required to investigate
whether using random targets in training the model enhances
the overall decoding capabilities. Third, our participants were
limited to male subjects at young adulthood age. It is neces-
sary to conduct the experiment with larger number of subjects

including both male and female participants at different ages.
Moreover, the whole analysis of this work was done offline.
An online extension of the study would be beneficial since
the real-world applications of BCIs require real-time data
processing.

V. CONCLUSION
In this study, the capability of discrete state decoding based
on pre-movement data was employed to enhance the per-
formance of reconstructing hand movement trajectories in
an EEG center-out task. Our proposed method combines
a discrete state decoder based on the CSP algorithm with
GPR continuous decoders. To evaluate the generalizability of
the decoding model, the standard four-target center-out task
was augmented with random targets. Our findings revealed
that the random target trajectories can be decoded based
on the training dataset including four orthogonal directions.
Comparing the results of the proposed state-based method
with the conventional method showed that the proposed
method improves the trajectory prediction performance on
both principal targets and random targets. The proposed
methodology could be employed for developing new genera-
tions of BCIs with generalization capability which is key for
real-world applications.
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