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ABSTRACT Tuberculosis (TB) is a highly contagious and life-threatening infectious disease that affects
millions of people worldwide. Early diagnosis of TB is essential for prompt treatment and control of the
spread of the disease. In this paper, a new deep learning model called CBAMWDnet is proposed for the
detection of TB in chest X-ray (CXR) images. The model is based on the Convolutional Block Attention
Module (CBAM) and the Wide Dense Net (WDnet) architecture, which has been designed to effectively
capture spatial and contextual information in the images. The performance of the proposedmodel is evaluated
based on a large dataset of chest X-ray images and it is compared to several state-of-the-art models.
The results show that the proposed model outperforms the other models in terms of accuracy (98.80%),
sensitivity (94.28%), precision (98.50%), specificity (95.7%) and F1 score (96.35%). Additionally, our
model demonstrates excellent generalization ability, with consistent performance on different datasets. In
conclusion, the proposed CBAMWDnetmodel is a promising tool for the early diagnosis of TB, with superior
performance compared to other state-of-the-art models, as evidenced by the evaluation metrics of accuracy,
sensitivity, and specificity.

INDEX TERMS Chest X-ray, convolutional neural network, deep learning, disease diagnosis, tuberculosis.

I. INTRODUCTION
Infectious tuberculosis (TB) is a disease caused by the
Mycobacterium tuberculosis, a bacterium which causes
tuberculosis in the body. It is no doubt that tuberculosis is
a major health problem throughout the world, particularly
in developing countries where it is prevalent. In accordance
with statistics provided by theWorld Health Organization [1],
in 2020 worldwide TB deaths are predicted to increase
from approximately 1.2 million to nearly 1.4 million in
HIV-negative individuals and from 209,000 to 214,000 in
individuals with HIV. Tuberculosis cases had been clinically
diagnosed based on symptoms, abnormalities on the CXR and
medical records in order to determine the diagnosis. Based
on the projected TB incidence and mortality for 16 countries
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that have been modeled up to 2025, there is a strong like-
lihood that these impacts will be much greater in 2021 and
beyond, especially on the mortality and incidence of TB
in 2021 and 2022. Under these circumstances, a quick and
accurate diagnosis would be of great importance when it
comes to the treatment and control of the disease. Currently,
the most reliable method for identifying tuberculosis cases is
isolating the bacteria that cause the disease. However, it is
important to keep in mind that while this method may have
a high specificity and a relatively low sensitivity. This means
that it may take a long time to obtain test results, potentially
up to three weeks. Other techniques, such as immunologi-
cal tests and molecular biology tests, also have their own
advantages and disadvantages. For example, immunological
tests are simple and quick to perform, but they have low
sensitivity and specificity, making them less commonly used
for chronic tuberculosis infections. On the other hand, the

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 42839

https://orcid.org/0000-0003-2107-5012
https://orcid.org/0000-0001-7351-0982


V. T. Q. Huy, C.-M. Lin: Improved Densenet Deep Neural Network Model for TB Detection

polymerase chain reaction (PCR) is a widely used nucleic
acid amplification test that can detect tuberculosis in clinical
specimens such as sputum, blood, bone marrow, and biopsy
samples. However, PCR techniques are expensive and may
not be available at all medical institutions. It is important to
consider the benefits and limitations of different techniques
when determining the most appropriate method for identify-
ing tuberculosis cases.

Although Convolutional Neural Networks (CNNs) were
originally introduced more than 25 years [2], [3], improve-
ments in computer hardware and network structure, which
enabled the training of truly deep CNNs, make them become
the dominant machine learning approach for visual object
recognition recently. The increasing number of both the lay-
ers and the size of each layer in modern networks ampli-
fies the differences between architectures and motivates the
exploration of different connectivity patterns and the revisit-
ing of old research ideas. From LeNet [4] with only 5 layers,
Resnet [5] with more than 100 layers, even the deep networks
with stochastic depth that contain more than 1200 layers [6].

Deep learning techniques are currently being employed
to address numerous critical problems. Speech emotion
recognition (SER) has received a lot of attention in recent
years [7], [8], and researchers have achieved excellent results
thanks to the use of CNNs [9], [10], [11]. Another challenge
is the analysis of non-stationary signals, which are charac-
terized by a time-varying frequency spectrum, particularly
in noisy environments. Machine learning-based techniques
have been utilized for a range of tasks, including denois-
ing of gravitational-wave data, estimation of parameters,
classification of detector glitches, detection of gravitational
waves [12], [13], [14].

Deep convolutional networks have also shown outstand-
ing performance in tuberculosis diagnosis, surpassing other
competing approaches. Pasa et al. [15] developed a special-
ized neural network architecture that significantly reduced
computational, memory, and power requirements. Melen-
dez et al. [16] demonstrated that Computer-Aided Detection
(CAD) techniques can be enhanced with clinical informa-
tion to improve accuracy and specificity. Vajda et al. [17]
developed an automatic system that detects abnormal lungs
with multiple tuberculosis manifestations by selecting fea-
tures based on wrappers in order to minimize classification
error. Lopes and João [18] investigated the use of pre-trained
CNNs for tuberculosis detection and proposed three different
CNN architectures for training an SVM classifier. Rahman
et al. [19] and Rajaraman and Sameer [20] have proposed a
reliable deep learning-based method for detecting tuberculo-
sis from chest X-ray images, and it can achieve high accuracy
and outperforming traditional methods. They also suggested
that large datasets are necessary to train profound neural net-
works, although this is a costly and time-consuming process.

There are several ways to improve the performance of
deep neural networks, but one of the most straightforward
is by increasing their size. This can be done by increasing
both the depth (e.g., using more layers) and the width of the

network [21]. This method is easy and relatively safe, espe-
cially when there is a large amount of labeled training data
available. However, it has two main drawbacks: the increased
number of parameters may make the network more prone to
overfitting, particularly when the training set is small, and the
increased size also requires more computational resources.
Another method, which is becoming increasingly popular,
is to scale up the model by increasing the resolution of the
images [22]. In the past, it was common to only scale one
dimension (depth, width, or image size), but scaling all three
can be more effective, though it requires manual tuning and
may not always achieve optimal accuracy and efficiency. For
example, if you want to use 2N times more computational
resources, you can increase the network depth by αN, the
width by βN, and the image size by γN, where α, β, γ are
constants determined by a small grid search on the original,
smaller model.

Despite the potential benefits of utilizing deep learning
for tuberculosis detection, there are significant challenges to
its implementation. One major obstacle is the need for large
datasets of labeled medical images to train the models effec-
tively, which can be difficult to obtain due to privacy con-
cerns. Additionally, not all deep learning models are designed
specifically for tuberculosis detection, which can result in
suboptimal performance. There is also a risk of bias in the
data, which may lead to inaccurate predictions or unfairly
discriminate against certain populations.

The purpose of this study is to give physicians a tool
to help them diagnose tuberculosis by developing a deep
learning architecture that is tailored to tuberculosis diagnosis.
This architecture will assist them in the diagnosis process.
Our paper aims to contribute some of the most significant
things about deep learning in this regard, in order to make
a significant contribution:

• Data: No matter how effective algorithms for machine
learning models are, it must keep in mind that the quality
of data is just as critical as the quantity. In this research,
we spend a great deal of time looking for open datasets
that provide both the quality and quantity of informa-
tion that we are seeking. The provided dataset helps
deep learning models achieve high recognizing without
requiring much adjustment.

• Deep learning model: This paper presents a new
deep-learning architecture named as CBAMWDNet that
can be tailored to the diagnosis of tuberculosis. It is
observed that the CBAMWDNet, by increasing the com-
putational and memory requirements just a bit, can sig-
nificantly increase classification performance.

• Comparison: Since applying deep learning to medicine
isn’t a revolutionary concept nowadays, there are quite a
number of researchers working on this particular topic,
and many of them have already made considerable
progress. In order to show the superiority of the proposed
model, it needs to compare and evaluate this model with
other deep learning models to show the superior of the
proposed model to other models.
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FIGURE 1. Sample of Tuberculosis CXR and Normal CXR.

TABLE 1. Details of total dataset, training set and validation set for classification problem.

This paper contributes significantly to deep learning in med-
ical image analysis. Using its novel approach, it uses more
comprehensive X-ray images for detecting tuberculosis than
previous methods. Moreover, the proposed CBAMWDNet
outperformed other state-of-the-art algorithms in terms of
classification accuracy, sensitivity, and specificity in this
study. The model also achieved satisfactory performance
with fewer training epochs, resulting in significant savings
in training time. Through these findings, it may be possible
to improve tuberculosis detection and other medical image
analysis tasks.

The paper is organized as follows: Section II provides
details on the experimental setup employed in this study,
including an introduction to the image dataset, the proposed
CNN, and the validation methods used for the deep learning
classification algorithms. Section III presents the experimen-
tal results, which are elaborated upon in detail. Finally, Sec-
tion IV summarizes the concluding remarks.

II. METHODS AND MATERIALS
A. IMAGE DATASET
We populated a dataset from different publicly available data
repositories as follows:

• Montgomery Dataset: CXR datasets from Montgomery
County (MC) contain 138 frontal chest X-rays which are
part of Montgomery County’s Tuberculosis screening
program. 80 of the images can be classified as ‘‘normal’’
and 58 of the images can be classified as ‘‘TB manifes-
tations’’ [23].

• The Shenzhen dataset: In the Shenzhen dataset, there
are 662 frontal CXR images that have been exam-
ined. Of these, 326 have been classified as normal
and 336 have been classified as manifestations of
tuberculosis [23].

• Tuberculosis (TB) chest X-ray dataset: This dataset was
compiled by Qatar University, Doha, Qatar, as well as
the University of Dhaka, Bangladesh, as well as their
Malaysian collaborators, along with medical doctors
fromHamadMedical Corporation and Bangladesh. This
dataset consists of 700 images of CXRs that have been
diagnosed with tuberculosis, and 3500 images of CXRs
that are normal [19].

As a result, we merged and removed any corrupted images
from these repositories in order to populate a dataset contain-
ing 5000 images, based on a combination of the repositories.
An overview of the dataset resulting from this analysis is
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FIGURE 2. Architecture of the CBAMWDNet.

presented in Table 1. Particularly, there are 5000 CXR images
in total, all of which are of high quality. In total, 3906 images
are included in the Normal category and 1094 images have
been included in the Tuberculosis category. In Figure 1, some
examples of CXR images that have been extracted from the
dataset for different categories can be seen. Afterward, the
dataset was randomly divided into 80% training samples,
and 20% validation samples under the 80%-20% ratio by a
random number generator. More detail can be seen in Table 1.

B. THE PROPOSED CBAMWDNet
The proposed CBAMWDNet network architecture can be
seen in Figure 2, which shows a schematic representation
of the scheme. In this model, a feature map is constructed
using a 7 × 7 kernel size and a stride of 2. This kernel
size is large enough to capture more complex features in the
input data, but not so large to be computationally expensive.
By using a large kernel size, it allows the model to learn
more abstract features from the input data. This will be useful
for tasks such as image classification where the input data
may contain a wide range of visual patterns. The stride of
2 helps to reduce the spatial resolution of the output tensor
by a factor of 2, which can reduce the number of parameters
in the model and improve its ability to generalize to new
data. Additionally, it includes a pooling layer to reduce the
number of computations required andmake the networkmore
efficient. After the initial feature map construction, we use
4 Denseblocks, each containing 2 CBAM (Convolutional
Block Attention Module) layers and a 1 × 1 convolutional
layer. These focus on the most relevant features in the input
data, which can improve its performance on tasks such as
image classification. Finally, the output of the Denseblocks
is passed through a 7 × 7 convolutional layer and a fully
connected layer before making predictions.

1) CBAM
Convolutional block attention module (CBAM) [24] is a type
of attention mechanism that can be used in a convolutional
neural network (CNN) to improve its performance. Attention
mechanisms are used to allow the network to focus on certain

FIGURE 3. Channel Attention in CBAM.

FIGURE 4. Spatial Attention in CBAM.

parts of the input data and ignore the others, based on certain
criteria. The basic structure of a CBAM consists of two paral-
lel branches: a channel attention branch and a spatial attention
branch. For Channel Attention in CBAM, it is similar to what
has been done with the SEModule in Squeeze and Excitation
Network [25], the winners of ILSVRC 2017 classification
competition. But in the Squeeze section of CBAM, both GAP
(Global Pooling) and GMP (Global Maximum Pooling) are
applied simultaneously. In their article, the CBAM authors
stated that GMP also collects relevant information about an
object, but from a different perspective. Afterward, the two
features that have been obtained, GMP and GAP, are all
passed through the same excitation part, not two separate
excitation parts. This leads to the creation of two vectors.
Then, add them together, and take the sigmoid as in the SE
module in order to calculate the result. Figure 3 shows the
detail of the Channel Attention in CBAM. The implementa-
tion of Spatial Attention in CBAM is quite simple and it’s
not all that different from the implementation of Channel
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Attention. Instead of using GAP and GMP in the channel
dimension of feature maps, GAP and GMP are processed in
the spatial dimension of feature maps. Figure 4 shows the
detail of the Spatial Attention in CBAM.

There are several reasons why convolutional block atten-
tion module (CBAM) can be useful in a convolutional neural
network (CNN):

Improve model performance: By allowing the network to
focus on certain parts of the input data and ignore others,
CBAM can help improve the performance of the CNN on
tasks such as image classification and object detection.

• Reduce overfitting: Attention mechanisms can help
reduce overfitting by allowing the network to focus on
the most relevant parts of the input data and ignore noise
or other irrelevant information.

• Reduce the number of parameters: CBAM has a rela-
tively simple structure and requires fewer parameters
than some other attention mechanisms, which can make
it easier to train and less prone to overfitting.

• Improve the interpretability of the model: By visualizing
the attention map produced by CBAM, it is possible to
understand which parts of the input data the network is
focusing on and why. This can be useful for understand-
ing the model’s decision-making process and improving
its transparency.

Wide: Wide ResNets are a type of deep learning neural
network that have been shown to be more effective than
traditional ResNets in some tasks, particularly in image clas-
sification. This is because Wide ResNets are able to capture
more detailed features from the input data, resulting in better
performance on the target task. One of the key differences
betweenWide ResNets and traditional ResNets is the number
of filters used in the convolutional layers. Wide ResNets use
a larger number of filters, which allows them to learn more
detailed features from the input data. Additionally, Wide
ResNets typically use skip connections, which help improve
the flow of information through the network and make it
easier for the network to learn complex patterns in the data.
Our model also applies this by double the growth rate and half
the number of layers.

Dense blocks: Dense block is a type of layer in a CNN that
consists of multiple convolutional layers with dense connec-
tions between them. Dense connections refer to the fact that
each layer in the block receives input from all of the previous
layers in the block, rather than just the directly preceding
layer. This allows the dense block to propagate information
throughout the entire block and helps the network learn more
abstract features. Some other models (like Resnet, Wide
Resnet, . . . ) use residual block, which is also a type of layer
in a CNN that consists of two or more convolutional layers
with a skip connection between them (A skip connection is a
shortcut that allows the output of a layer to be added directly
to the output of a preceding layer, bypassing any intermediate
layers). Both dense blocks and residual blocks can be used
to improve the performance of CNNs, but they are used in

TABLE 2. Parameter details for cbamwdnet.
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TABLE 2. (Continued.) Parameter details for cbamwdnet.

different ways. Dense blocks are typically used to allow the
network to learn more abstract features, while residual blocks
are used to allow the network to learn residuals and improve
the flow of information through the network.

CBAMWDNet is a convolutional neural network specially
created for the purpose of tuberculosis classification. Due
to its deep architecture, the model comprises of a large
number of parameters, which amounts to 8,159,134. This
extensive parameter count reflects the model’s capability of
effectively extracting intricate features and patterns from the
input images. A detailed distribution of the parameter count
across different layers of the network is presented in Table 2.

C. EVALUATION
The performance of different CNNs for the testing dataset is
evaluated after the completion of the training and validation
phases. This evaluation is conducted to assess the effective-
ness of different CNNs in predicting the outcome or class
of the samples in the testing dataset. The performance of
different CNNs is compared using six performance metrics:
accuracy, sensitivity, specificity, precision, negative predic-
tive value, and F1 score. These metrics are chosen because
they are widely used to evaluate the performance of classifi-
cation models, and each of them captures a different aspect of
the model’s performance. The results of this evaluation allow
researchers to compare the performance of different CNNs
and determine which one is the most effective in predicting
the outcome or class of the samples in the testing dataset.

Hyperparameters play a crucial role in the performance
of deep learning models. However, selecting the appropriate
values for these parameters can be challenging for different
tasks. In this study, we have used default values for some of
the most common hyperparameters in deep learning models
since our focus is on the deep learning process itself. The
batch size is set to 16, and we use the Stochastic Gradient
Descent (SGD) optimizer with a learning rate of 0.001 and a
momentum of 0.9. Additionally, we employ a decay learning

rate with a step size of 7 and a gamma value of 0.1. Other
hyperparameters, such as input size and dropout rate, are
selected based on the specific model used for detection.

In this study, true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) are used to evaluate
the performance of different CNNs in detecting tuberculo-
sis. TP refers to the number of tuberculosis images that are
correctly identified as tuberculosis, TN refers to the number
of normal images that are correctly identified as normal,
FP refers to the number of normal images that are incor-
rectly identified as tuberculosis images, and FN refers to the
number of tuberculosis images that are incorrectly identified
as normal. These performance metrics are commonly used
in the evaluation of classification models, and they allow
researchers to understand the model’s ability to correctly
classify samples as either positive or negative for the outcome
or class being predicted.

1) ACCURACY
Accuracy is a commonly used measure to evaluate the per-
formance of a deep learning model in detecting tuberculosis.
It is the proportion of correctly classified samples out of all
samples, and can be calculated as the number of true positive
and true negative predictions divided by the total number
of predictions made. For example, if a deep learning model
correctly classifies 95 out of 100 samples as either positive or
negative for tuberculosis, its accuracy is 95%.

Accuracy =
(TP+ TN )

TP+ FN + FP+ TN
(1)

2) SENSITIVITY OR RECALL OR TRUE POSITIVE RATE (TPR)
TPR is another important measure to consider when evaluat-
ing the performance of a deep learning model in detecting
tuberculosis. It is the proportion of positive samples that
are correctly classified as positive, and can be calculated as
the number of true positive predictions divided by the total
number of actual positive samples. For example, if a deep
learning model correctly classifies 90 out of 100 samples as
positive for tuberculosis, its sensitivity is 90%.

Sensitive (TPR) =
TP

TP+ FN
(2)

3) SPECIFICITY OR SELECTIVITY OR TRUE NEGATIVE
RATE(TNR)
TNR is a measure that is important to consider when evaluat-
ing the performance of a deep learning model in detecting
tuberculosis. It is the proportion of negative samples that
are correctly classified as negative, and can be calculated as
the number of true negative predictions divided by the total
number of actual negative samples. For example, if a deep
learning model correctly classifies 95 out of 100 samples as
negative for tuberculosis, its specificity is 95%.

specificity(TNR) =
TN

TN + FP
(3)

42844 VOLUME 11, 2023



V. T. Q. Huy, C.-M. Lin: Improved Densenet Deep Neural Network Model for TB Detection

4) PRECISION OR POSITIVE PREDICTIVE VALUE (PPV)
Precision is a measure of the proportion of positive predic-
tions that are actually correct. It can be calculated as the num-
ber of true positive predictions divided by the total number
of positive predictions made. For example, if a deep learning
model makes 100 positive predictions for tuberculosis and
90 of them are correct, its precision is 90%.

precision(PPV ) =
TP

TP+ FP
(4)

5) NEGATIVE PREDICTIVE VALUE (NPV)
NPV is a measure of the proportion of negative predictions
that are actually correct. It can be calculated as the number
of true negative predictions divided by the total number of
negative predictions made. For example, if a deep learning
model makes 100 negative predictions for tuberculosis and
90 of them are correct, its negative predictive value is 90%.

NPV =
TN

TN + FN
(5)

6) F1 SCORE
F1 score is a measure that combines both precision and
recall, or sensitivity. It is calculated as the harmonic mean
of precision and recall, and is a useful metric when there is
a need to balance both false positives and false negatives.
A high F1 score indicates a good balance between precision
and recall.

F1_score =
(2 ∗ TP)

(2 ∗ TP+ FN + FP)
(6)

In addition to evaluating the performance of different CNNs
using these metrics, the researchers also compared the net-
works in terms of the processing time required for training per
50 epochs (δe50). This processing time is the amount of time it
takes for a network to complete one epoch of training, and it is
measured in seconds. The networks are compared for the time
between the start and end times of the training epochs, where
t1 and t2 represent the start and end times, respectively. This
allows researchers to understand the efficiency of different
CNNs in terms of the time required to train the model.

δe50 = t2 − t1 (7)

III. EXPERIMENTAL RESULTS
In Figure 5 and Figure 6, the training process of our model is
presented using 50 epochs for the Tuberculosis (TB) Chest
X-ray Dataset and the Total dataset, which combines data
from three different datasets, respectively. These figures pro-
vide a visual representation of the model’s performance dur-
ing training, enabling us to understand how well the model is
learning and adapting to the data.

Tables 3 and 4 present the training times for 7 models using
50 epochs for the Tuberculosis (TB) Chest X-ray dataset
and the Total dataset, respectively. These tables provide a
summary of the training times for each model and allow us
to compare the performance of different models on these

datasets. The results indicate that our model may take longer
to train compared to other deep learning models. This is
because we have employed the use of CBAM (Convolutional
Block Attention Module), a more complex architecture that
has been demonstrated to enhance model performance in cer-
tain tasks. While CBAM does improve model performance,
it also requires more computational resources and a longer
training time due to its increased complexity.

The performance evaluations are presented in Table 5 and
Table 6. Table 5 shows the overall performance of our model
on the validation dataset, including metrics such as accuracy,

true positive rate, and false positive rate, positive predictive
value, negative predictive value and F1 score for only Tuber-
culosis (TB) Chest X-ray Dataset. Table 6 shows the overall
performance of our model on the validation dataset, including
metrics such as accuracy, true positive rate, and false positive
rate, positive predictive value, negative predictive value and
F1 score for total dataset which combine from Shenzhen
dataset, Montgomery dataset and Tuberculosis (TB) Chest X-
ray Dataset. Both tables provide a clear and comprehensive
view of the performance of our model and demonstrate its
ability to effectively learn and generalize from the training
data. It is believed that these results are highly encouraging
the superiority of our model and the effectiveness of our
training process.

The following are some important values from the
experiments:

A. ACCURACY
The accuracy of our model has achieved an satisfactory
accuracy of 98.80% for TB dataset and 97.00% for total
dataset, which is significantly higher than the accuracy of
other deep learning models. This means that our model is
able to correctly classify a larger proportion of the input data,
which is a key indicator of its effectiveness.

B. TRUE POSITIVE RATE
The true positive rate of our model is also significantly higher
than that of other deep learning models. Our model archives
94.28% for TB dataset and 95.43% for total dataset. This
means that our model is able to accurately identify a larger
proportion of positive cases, which is important for tasks such
as this tuberculosis diagnosis.

C. TRUE NEGATIVE RATE
In contrast to other deep learning models, our model has
highest True negative rate. It got 99.71% for TB dataset
and 97.43% for total dataset This means that it is able to
accurately identify a large proportion of negative cases, which
is important for avoiding false alarms and unnecessary inter-
ventions.

D. POSITIVE PREDICTIVE VALUE
The positive predictive value of our model is also higher than
other deep learning models. Our model got 98.50% for TB
dataset and 91.26% for total dataset. This means that our

VOLUME 11, 2023 42845



V. T. Q. Huy, C.-M. Lin: Improved Densenet Deep Neural Network Model for TB Detection

FIGURE 5. Accuracy for 50 epochs Training from Tuberculosis (TB) Chest X-ray Dataset.

FIGURE 6. Accuracy for 50 epochs Training from total Dataset.

model is able to accurately predict a larger proportion of
positive cases, which is important for tasks such as disease
diagnosis like tuberculosis.

E. NEGATIVE PREDICTIVE VALUE
Our model has a very high negative predictive value,
which is significantly higher than that of other deep learn-
ing models. It got 98.86% for TB dataset and 98.70%

for total dataset. This means that it is able to accu-
rately predict a large proportion of negative cases, which
is important for avoiding false alarms and unnecessary
interventions.

F. F1 SCORE
The F1 score of our model is also significantly higher than
that of other deep learning models. It got 96.35% for TB
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TABLE 3. Training time for each model in tuberculosis (TB) chest X-RAY dataset.

TABLE 4. Training time for each model in total dataset.

TABLE 5. Performance of evaluated screening strategies for tb dataset.

TABLE 6. Performance of evaluated screening strategies for total dataset.
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FIGURE 7. ROC curve for Total Dataset.

FIGURE 8. ROC curve for TB Dataset.

dataset and 93.30% for total dataset. This is a measure of the
model’s ability to balance precision and recall, and a high F1
score indicates that our model is able to accurately identify
a large proportion of positive cases while also avoiding false
alarms.

G. ROC
Figures 7 and 8 demonstrate that our model achieved the
highest AUC (Area Under the Curve) compared to the other
6 deep learning models. This result shows the effectiveness
of our model in accurately predicting the outcome of a
binary classification task. The AUC is a widely used metric
in machine learning, and a high AUC value indicates that
the model can effectively distinguish between positive and
negative classes.

Overall, our model has consistently outperformed other
deep learning models in a wide range of metrics, including
accuracy, true positive rate, false positive rate, positive pre-
dictive value, negative predictive value, F1 score and AUC.

This shows the superiority of our model and the effectiveness
of our training process.

IV. CONCLUSION
As a result of our study, it is found that the diagnosis perfor-
mance of a supervised machine learning model depends on
the dataset. This is because of the varying technical specifi-
cations of CXR images, as well as the distribution of disease
severity in different populations. Not only CBAMWDNet
but also other competing models maintain high diagnostic
accuracy for the training, validation, and test images using
the total dataset and Tuberculosis (TB) chest X-ray dataset.
There is no doubt that the quality of data is as significant as
the quantity of data. This is regardless of the fact that you
have implemented a highly advanced algorithm. Moreover,
ourmodel has achieved satisfactory level of accuracywith our
model. What makes this achievement particularly noteworthy
is that we are able to achieve this level of accuracy without
using any pre-trained processes and with only 50 epochs of
training. This is worth mention, as it typically takes many
more epochs to achieve such high levels of accuracy for other
models. The fact that our model is able to learn and generalize
so effectively from the training data in such a short amount
of time is a testament to its efficiency and the effectiveness of
our training process.With such high levels of accuracy, we are
confident that the model will perform well on unseen data,
and we look forward to analyzing how this model performs
in real-world situations.

There are a few limitations to this study that need to be
considered. The first difficulty is that CBAMWDNet is com-
putationally intensive because of its large number of param-
eters, which can pose a challenge for researchers who do not
have access to high-performance computing resources. Fur-
thermore, the lack of labeled data may also pose a limitation.
Limited availability of validated open-source data may hinder
the performance of themodel, resulting in lower accuracy and
reliability. It may be possible to resolve this issue in the future
when more valid open-source data is available.

For future study, the proposed CBAMWDNet can be also
applied to other disease classification tasks. Alternatively,
incremental learning can enable continuous training with
new data while retaining knowledge from previous sessions,
resulting in improved accuracy. Additionally, an enhanced
weighted model ensemble strategy may be considered for
further optimizing the performance of the model. Lastly,
multi-objective optimization techniques may be utilized in
order to determine the optimal model weights and possibly
enhance the overall performance of CBAMWDNet.
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