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ABSTRACT One of the primary challenges in solving the State Estimation (SE) problem in low voltage
networks is the presence of Gross Errors (GE). If the SE model fails to accurately estimate state variables
in the presence of GE, the system operator may receive a distorted image of the power network, potentially
leading to unforeseen disruptions, blackouts, and significant economic losses. The classical weighted least
squares method, which is commonly used in such problems, exhibits low accuracy when simultaneous GE
occurs. This paper provides a comprehensive analysis comparing robust M-estimators designed to handle
GE, such as Hachtel and the largest normalized residual test, and presents a novel SE method called
the Adaptive Maximum Correntropy Criterion (AMCC). The AMCC employs the maximum correntropy
criterion for the loss function and an interior point methodology. Additionally, an adaptive scheme is
employed to automatically adjust a high parameter associated with the shape of the related gamma function.
We show that, in a real low voltage network, the AMCC exhibits superior accuracy with smaller root-mean-
square errors compared to the other estimators studied.

INDEX TERMS Cauchy, Hachtel, interior point method, largest normalized residual test, least square,
least absolute value, low voltage, maximum correntropy criterion, M-estimator, non-Gaussian noises, state
estimation.

I. INTRODUCTION

The State Estimation (SE) is a process in power systems
networks that aims to provide accurate system states, such
as the voltage angle 6 and amplitude V [1]. SE uses mea-
surements acquired from the network through various mech-
anisms, including Phasor Measurement Unit (PMU) devices,
being one of the most accurate sources of measurements, fol-
lowed by intelligent electronic devices, supervisory control
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and data acquisition systems, and pseudo-measurements gen-
erated from historical data being this one the least accu-
rate [2]. Recently, distribution networks have been bolstered
by the installation of smart meter infrastructure, resulting in
increased network observability and more reliable measure-
ments [5]. Smart meters can store data for a specific time
period [6], and provide superior observability in comparison
to pseudo measurements. They also improve the accuracy
of network modeling and measurements, as well as times-
tamp synchronization and data acquisition through modern,
fast communication networks. Smart meters typically have
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an accuracy of 10%, whereas PMUs have an accuracy of
1% [7]. In certain distribution networks, the accuracy of
state estimation is influenced by the network topology; for
instance, radial distribution networks face a greater observ-
ability burden than mesh networks [8]. However, these mea-
surements are subject to various factors that can contaminate
or invalidate their accuracy, such as temperature changes,
sensor anomalies, and sudden system modifications. These
factors introduce Gaussian and/or non-Gaussian noise in the
collected data [3], [4].

The classical Weighted Least Squares (WLS) method is
widely used in power systems due to its reliability, partic-
ularly when the network is fully observable [9]. However,
the WLS method is sensitive to the presence of Gross Errors
(GE). When GE contaminates the data, two approaches can be
applied: posterior and prior. The posterior approach [14], also
known as Largest Normalized Residual Test (LNRT) [13],is a
classical GE detection tool associated with the WLS method.
It diagnoses the residual (the difference between estimated
and true values) to identify contaminated measurements with
GE, eliminating or correcting them while maintaining net-
work observability. The LNRT approach requires a re-run
of the SE with the updated measurement set. In some cases,
pseudo-measurements from historical data are used to substi-
tute the eliminated measurements and maintain observability.
The prior approach [15] involves applying SE directly to the
contaminated data, thereby correcting it without requiring
further iterations as in the previous approach.

In [16], a method is proposed that considers a reduced
number of measurements and low-accuracy pseudo-
measurements to increase system observability. In smart
grids, a data-driven power flow method is proposed based on a
learning model that utilizes historical or simulated data, con-
structed to remove the effect of data collinearity [17]. Another
data-driven robust state estimation method is proposed in [ 18]
to address the shortcomings of model-driven approaches.

A variety of SE methods have been proposed to address
outliers. For example, [19] uses a linearized error analysis to
identify GE, while [2], [20] propose innovative approaches
for GE detection, identification, and correction. A new
method based on a generalized pattern search algorithm for
data correction in harmonic SE is presented in [21]. In the
SE field, M-estimators have also been proposed in the lit-
erature, such as L1 loss (often cited as Charbonnier loss
in [22]), pseudo-Huber loss [23], L1-L2 loss [24], German-
McClure [25], Cauchy method [26], and Welsch loss [27].

In [28], a maximum exponential absolute value SE model
is proposed that uses Laplace kernel and the Maximum
Correntropy Criterion (MCC) in the objective function to
improve robustness. A Primal-Dual Interior Point Methodol-
ogy (IPM) is employed to enhance accuracy. Recent works
such as [29] and [30] also use a Generalized Correntropy
Criteria (GCC) to improve robustness and control the induced
metric’s behavior. These approaches offer flexible parame-
ters, unlike traditional M-estimators such as L1 and L2 loss
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functions. In [31], a MCC SE model is proposed that is based
on the GCC and does not require explicit GE detection. The
GCC-based methods are further improved in [32], [33], and
[34] using a Generalized Correntropy Interior Point (GCIP)
method. However, manually setting the kernel shape and
standard deviation parameters is not practical in real-world
applications.

A. CONTRIBUTION

Overall, when there are enough measurements, the WLS
method offers precise estimations, producing results that
closely align with the true values. However, it can be highly
sensitive to GE, which can cause the state estimate to exceed
reasonable boundaries.

This paper proposes a new robust state estimation (SE)
method called the Adaptive Maximum Correntropy Crite-
rion (AMCC), which is an improvement over the GCIP
method [34]. The proposed AMCC utilizes a flexible Gen-
eralized Correntropy Induced Metric (GCIM) together with
an effective scheme that provides the ability to adapt to
various datasets in successive iterations. Unlike the GCIP,
which requires manual setting of the shape parameter ““c”
for each static snapshot, the AMCC introduces an adaptive
scheme to automatically adjust the parameter associated with
the shape of the related gamma function. This allows for
successive application to static snapshots, making it more
practical for use. A comparative study of performance is con-
ducted between various M-estimators that address outliers,
including Cauchy, Weighted Least Absolute Value (WLAV),
Hachtel, WLS with LNRT, and GCIP. In this work, the LNRT
has been fine-tuned to reduce the occurrence of GEs in the
data. This was achieved by selectively removing suspected
measurements, while retaining others, resulting in high accu-
racy with minimal processing time. However, it is important
to note that implementing the LNRT involves using multiple
auto-encoders that need to be well-tuned and retrained if there
are any changes in the network topology [32]. Moreover, the
LNRT method may not be effective in cases where successive
GEs are deleted since this can result in a loss of network
observability [43], the issue described does not occur when
applying the GCIP and AMCC methods.

To compare the estimation performance, a real Low Volt-
age (LV) load data profile in Kent, England [36] is utilized.
The true measurements of this network are obtained from
power flow calculations using actual load profiles. The mea-
surement sets for the case studies are generated by corrupting
the true measurements with Gaussian noise and GE. Three
data scenarios with different percentages of GE in the total
measurement data set are examined: 4%, 8%, and 16%. The
mean residuals for each of the studied SE methods are then
calculated. To address the economic aspect of SE (by using
fewer meters), the simulation uses a minimum number of
measurements. The results demonstrate that the AMCC out-
performs other SE methods in terms of estimation accuracy,
exhibiting smaller Root-Mean-Square Errors (RMSE).
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The paper is structured as follows: Section II sets out
the problem and presents the studied M-estimators, includ-
ing the WLS, LNRT, Cauchy, WLAV, and Hachtel methods
constrained by the zero-injection function. In Section III,
correntropy-based SE methods are presented, with subsec-
tions A and B sequentially discussing the GCIP method and
the AMCC model. Section IV is devoted to the case study,
where the network description, load profile data, study data
cases, and simulation results are presented and discussed.

Il. ROBUST M-ESTIMATORS

The Maximum Likelihood (ML) formulation was one of the
first models for data regression in SE, introduced by Fisher
between 1912 and 1922 [37]. It was based on ideas discussed
by Daniel Bernoulli [38] and Gauss [39]. By applying a
logarithm operator, the maximization problem of the ML
formulation can be expressed in various M-estimator forms,
as presented below.

The observed measurements consist of an m-dimensional
vector z = [z21 22 ... Zm], which includes the line power
flows, bus power injections, bus voltage magnitudes, and
line current flow magnitudes. The residual is therefore an m-
dimensional measurement error vector, as defined in [40],

r(x) =h(x) —z (D

with x € R’, where s is the number of state variables, namely
0 and V, for all buses. The measuring functions constituting
h(x) are constructed using active/reactive power injection
and flow, current flow, and voltage magnitude, as described
in [41].

A. WLS METHOD WITH LNRT

1) THE WLS METHOD

In this classical optimization problem, the objective is to find
a solution that minimizes the sum of the weighted squares
of the residuals. Here, a residual is defined as the difference
between the predicted value provided by the model and the
observed measurement. Assuming that the error has a zero
mean and covariance R, the classical WLS SE method is
solved by minimizing the weighted least squares criterion,
with W = R~1, as described in [1],

minJj (x) = % r()! Wr(x) 2

In [42], the zero-injection constraint g(x) € R", where n
is the number of equality constraints, is associated with the
WLS objective function to address the issue of outliers. In this
scenario, we have (for diagonal R):

min J (x) = 3 gi Wii ri(x)? 3)
s.t. gx)=0

2) THE LNRT
This is a conventional method for bad data detection that is
combined with the WLS method to check for the presence of
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TABLE 1. LNRT method.

Step 1: The presence of gross errors in the data can be verified using the
Chi-square test X2’ as described in [12];

Step 2: The LNRT parameter (&) can be calculated for all measure-
ments using the following procedure:

m
GE | 7 |
= 4
P R @
where

—1 m .
S:Ri(H(HTR—IH) HT>7 5 N Ohi(@) )

ox

=1

Step 3: For a certain threshold (¢) usually between 1.5 and 4 (3 in
our simulation case) that depends on the sensibility of the network, the
suspected measurements are deleted from the data, where rGE > t, as
long as the network observability is guaranteed [43];

Step 4: Restart the process from the WLS algorithm with updated
measurements;

gross errors in the WLS outputs. This method eliminates or
corrects a single gross error at each iteration and is typically
accurate when there are minimal gross errors in the data.
However, it may lead to a loss of observability due to the
removal of measurements. The steps involved in the LNRT
procedure are presented in Table 1.

B. OBJECTIVE FUNCTIONS

1) CAUCHY METHOD

The following estimator is derived from the Cauchy distribu-
tion, as described in [44]

min J(x) = ; In(1 + ri(x)?) ©

s.it. gx)=0

2) WLAV METHOD
The L1 or double exponential estimator, which is based on
the Laplacian distribution, is also known as described in [45]

minJ3(x) = % Wi ri(x)]
x i=1

s.t. r(x) = h(x)—z

gx)=0

(N

3) HACHTEL METHOD
The optimization problem of Hachtel can be expressed as
given in [46]

m
minJ4(x) = 3> Wi rix)?

i=1

s.t. r(x) = h(x)—z
gx)=0

®)

C. FORMULATION OF THE M-ESTIMATORS

1) NEWTON METHOD

A Newton iterative procedure can be developed for the related
Lagrangian function to solve the WLS and Cauchy objective
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functions. In this case,
m n
Lx)= D> Jix) = D> B gix) ©)
i=1 Jj=1

where B € R” is a Lagrange multiplier. After computing
the gradient (VL) and Hessian (VZL) of the Lagrangian,
the following equation is computed to determine the steps
dx e R°*and dp € R" [47]

V2L V%L -
] o
V3L ViL||dB —VsL
where the new iteration k£ + 1 is deduced,
Xk+1 Xf; dx
= + 11
[ﬁkﬂ} [ﬁk} [dﬂ} (b

In Hachtel method case, the adopted Lagrangian function
is written as

L= Ju) = D Bigix)
i=1 j=1

— D ai(ri = hi(x) + 20) (12)
i=1

where o € R,

As described in [48], once the gradients of the Lagrangian
with respect to x, 8, o, and r are computed, the following can
be deduced:

-G 0 0 dx g(x)
0 -G HT dg|=| GTB—-—H"«u (13)
H 0 -w]|da Wla+z—h
where do € R" and G = Z}Ll % The new iteration is
computed following Newton method as

Xk+1 X dx
Ber1 | = | B |+ | dB (14)
41 o do

2) INTERIOR POINT METHOD
The presence of absolute values in residuals complicates stan-
dard optimization procedures such as the Newton method,
which necessitates the use of Linear Programming (LP) meth-
ods. Two typical LP strategies, namely simplex and IPM,
have been applied to solve optimization problems so far.
The difference between the two strategies lies in the way of
reaching the solution: in the simplex strategy, the extreme
point is traced along the exterior of the feasible region, while
in the IPM, it is traced through an interior path [1]. In both
strategies, slack variables could be used to reformulate the
optimization problem and eliminate the absolute value.

Let Y be defined such that: |r| < T, it could be replaced
by two equalities when introducing two non-negative slack
variables [, k € R™ [1]:

ri— = (15)
ri+ki="1; (16)
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FIGURE 1. GGD with different values of c and ¢ = 1.

then, one can deduce the following equations:

ri = uj — vj an
Y =u; +v; (18)

where u; = % andv; = 17‘ Hence, the following modification
will be taken the optimization problem of WLAV method

m
I{tliVan(u, V) = Z Wii (u; +v;)

i=1
st. r(x)—u+v=20 (19)

gx)=0

The adopted formulation of this objective function has
been presented and discussed in [1].

Ill. THE ADAPTIVE MAXIMUM CORRENTROPY
CRETERION
A. GENERALIZED CORRENTROPY
The correntropy can be defined as a generalized measure of
similarity between two Probability Density Functions (PDF),
as noted in [30]. It has a strong relationship with entropy,
as described in [49] and [50].

Consider two scalar random variables X and Y, the corren-
tropy equation can be expressed by

Vo(X. ¥) = Elko(X — ¥)]
_ / / X — ) ple.y) dxdy  (20)
xy

where k,, is a kernel operator with parameter (width) .

The correntropy is based on the Gaussian Kernel, symmet-
ric, bounded and positive. In case it is based on the General-
ized Gaussian Distribution (GGD), is called the GCC [29].
The distribution of the GGD is writen as

.
Ge.o(r) = exp (= — ) 21)

c
20T1/0)
where I'(.) is the gamma function, ¢ > 0 is the shape

parameter, r is the error between X and Y (the residual),
is the scale parameter (bandwidth), and it can be expressed

by
~[raegy
= TG0 @2
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FIGURE 2. GCIM surface in 3D space whenc =3 and w = 1.

where ¢ is a standard deviation of the kernel. The GGD curve
is presented in Fig. 1 for different values of ¢ while ¢ = 1.
Note that when ¢ = 1 we have a Laplace density function,
with ¢ = 2 a Gaussian function, and when ¢ — +o00 the
uniform distribution over (—w, w).

Given a finite number of samples S, the GCC can be
estimated using the sample estimator

S

R 1

UewX,Y) = E E Ge,w(xi — yi) (23)
i=1

The GCIM, which is related to the GCC, exhibits various
L metrics for measuring distance in space, depending on the
chosen parameters and the analysis region. This flexibility
is utilized to distinguish outliers. Figure 2 demonstrates the
varying shapes of the metric in different regions by plotting
the distance from the origin using the GCIM measure in
a 2D space, where ¢ = 3 and w = 1. Note that these
parameter values are provided solely for illustrative purposes,
and during the auto-tuning process, GCIM can take on other
forms to ensure flexibility and accuracy.

1) OBJECTIVE FUNCTION
We now formulate the SE method by casted as the following
optimization problem

C

) (24)

In order to deal with the absolute value, we introduce
positive slack variables p and g along with a pair of inequality

ri(x)

Wi

m C
max Fo) = 13"~ _ex (—
: Ezw,- L/ F

s.it.gx)y=0
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constraints. This yields the following expression:
S pi+4ai\
maxF(p,q):l —exp(—( : 1) )
p.q n gl: 2 w; F(l/c) wj
st.f.p.g=rx)—p+4q=0
gx)=0
p,q>0

(25)

where x is a feasible point if it satisfies all the constraints in
(25). The feasible region is the set built from all the feasible
points.

2) GENERAL FORMULATION OF GCC

The following Lagrangian function can be deduced from
the (25)

L= F@p.9+ ) Bgix)

J=1

m
+ D @fie.p.g) + Aipi+yiq)  (26)
i=1
where B € R” and «, A, v € R™, denote the Lagrange
multipliers, where the values of all variables will be discussed
in the following formulation (overall algorithm). Additional
terms are associated to the problem, taken from the Karush-
Kuhn-Tucker (KKT) optimality conditions [50]

,C)\[ = )\ip,' =0 (27)
Ly =7%q=0 (28)
To incorporate relaxation, we introduce a perturbation

parameter u > 0, where u is defined as u = %. Here,

A is the duality gap, which is given by A = "¢ + AT p, and
p € (0, 1) is the centering parameter as proposed by [51]

LY =Xipi—pu=0 (29)
LY =7iqi—n=0 (30)

The gradients deduced from the Lagrangian function can
be written as

V.L=GB+Hua 3D
Vo: £ = ri(x) — pi + qi (32)
Vg L = gj(x) (33)
—c(pi + qi)° ! i+ai\°
e oo (05 oo (222))
m ; w;
—ai+XA=0 (34)
_ . Ne—1 X A\ €
VL= F(p’q)( C(p,+tczl) )exp (_ (pﬂrq,) )
m o w;
+ao+7=0 (35)

By combining the Newton method with the KKT condi-
tions obtained, we arrive at the following result:

—L = Aidp; +pidXi (36)
—L5 = vidgi + qidvi (37
42407



IEEE Access

Y. Boukili et al.: Robust SE Model for Low Voltage Distribution Networks

The hessian in Newton method yields

=V, L = e;dp; + e;dg; — do; + dA; (33)
-V, L = ejdp; + e;dg; + do; 4 dy; (39)
—Vg L = Gjdy; (40)
—Vu, L = H; dx; — dp; + dg; (41)
—ViL =Gjdpj+ H;ida; (42)

where the hessian matrices of h(x) and g(x) (Vzh(x) and
V2g(x)) are neglected in the (42) and
F(p,q) [—c(c — D(pi+g)°* ( (Pi +qi )C)
e = exp{—|—
m w® w

2(n. N2c—2 . A\ €
+ c“(pi +25]Cz) exp (_ (pz + %) ) :| (43)
w w

Substituting (38) and (39) into (36) and (37), the following
is deduced

—piejdgi + (—pi e; + \;) dp;

= —p;da; + p; Vp[[, - ﬁl;i (44)
(—qi ei + i) dg; — qi e; dp;
=gq;do; + q; ti[, — E% 45)

Let a, b, c and d € R™, be selected such that

-1
a; b; —piei —piei+ A
= 46
|:Ci di:| |:_5]i e+ —qgie :| (46)
Then from (44) and (45) we obtain

dqi _a b;| | —pidai + pi Vplﬁ [:M @7
dpi|  |cidi|| qidei+qi Vg, L — E%

It follows that

dg; = ny; do + 11 (48)
dp; = np; do; + 1o (49)
where
ny; = —a; pi + b q; (50)
nyi = —¢; pi +d; q; (5D

hi=a;(pi Vp,L = L)+ bi(qi Vg L = £5)  (52)
b = ¢ (pi Vp, L — ﬁl)fi) +di(qi Vg £ — L) (53)

By substituting (48) and (49) into (41), one can obtain
Hdx+Cda=v 54)
where C € R™ is a diagonal matrix and

Ci = —nyi +ny; (55)
v=z—hx)+p—qg+ti—1, t,nelR" (56)
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TABLE 2. AMCC algorithm.

GGD parameters initialization c;n; = 1, ¢ = 0.995 and flag = 0O;
Admittance vector construction: Y (Tab. 3);

while flag =0

Bandwidth parameters calculation: w (Equ. 22);

Lagrangian multiplier vectors initialization: « = v = A = 1,, and
B =1p;

Non-negative slack variables initialization: p = q¢ = 1,,;

Gap initialization: A = >°7 | v; g; + X; pss

while A > 1078

Initialization of the state variables;

Perturbation factor calculation: p =

Jacobian calculation: H(z) = [‘%(z)/@@ o) /oy ]

Calculation of: G(z) = [29(%) /54,99(%) /51,1, where g(x) is the
zero-injection function;

Generalized correntropy parameters calculation: e; (43); a4, b;, ¢; and
d; (46); n1; (50) and no; (51); in (29) and LY, (30); Vp, L (34);
Vg, £ (35); t1; (52) and t2; (53);

Calculation of dz, df3 and da vectors (57);

Calculation of dg; (48) and dp; (49); dv; (39) and d)\; (38);

Primal and dual step-length calculation: Ap and Ag;

Updating the values of p;, q;, o, Bi, vi> Ai (58) and A.
end while
Substituting v (56) into the residual r(x) (59). For multiple ¢ values,
Cnew is deduced when aF/acz 0;

pA

if cini = cnew
flag =1;
else
Cini = Cnew:
end if
end while
return x

If we use equations (33) and (40), along with (31)
and (42), and also (54), we can figure out the following
linear equation:

GO0 O dx —VgL
0GTHT | |dB | = | -V.L (57)
H 0 C ||da v

The updated values of x, p, ¢, B, «, 7y, and \ are computed
using the primal and dual step method proposed by [52]. This
method is utilized in the new iterations and thus, determines
the values of the aforementioned variables as

¢ + Apldx, dp, dg]”

[x(k)
L g0 A®) N r o (%)
L B0 AR AT LA prda, dB, d, doy]

where

Ap = 0.9995 min

(min( 1gqi < 0; — p,<0) )
dpl

Ap = 0.9995 min
. i Ai
—— <0 —— A <0),1
(mm( v SR T 2’<) )

B. ADAPTIVE GCC

To automatically utilize the nature of the data and the defined
GCC criterion, we introduce a new optimization layer in this
section. This layer computes the optimal value of ¢ for each
static snapshot, taking into account the GGD curve which can
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range from a Laplace to a uniform distribution, as shown in
Fig. 1. The GCC will adapt to the most suitable distribution
at any given time.

Consider F'(x), as defined in equation (24). We compute the
derivative of F'(x) with respect to ¢, while fixing ¢, to obtain:
aF(x) F() (A 0B 0A )

— B
ac m dac + dac

(59)

NI O IR 6
r(5) )
N
7
= —B(log(ol)df
el (1) (¢ s (1 (%)))

3
22odelr (3

o ()1t e ()] (2) e (%)))

ol

ol r(i)
NG r@)|

Therefore, the residual r(x), which appears in the deriva-
tive of the objective function with respect to c in (59), is sub-
stituted by the new residual v, computed in (56). For multiple
values of ¢, ¢pe is determined when %7 /5. = 0, and checked
to confirm if it matches the old value of c. If they do not
match, the AMCC algorithm updates ¢ for a new iteration.
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FIGURE 3. Map diagram of the European LV feeder.

The overall algorithm for the proposed method is presented
in Table 2.

IV. CASE STUDY

In this section, we present a case study that highlights a
real low voltage network and its associated data. Using Mat-
lab software, we carry out state estimation (SE) simulations
employing different algorithms and assess the accuracy and
time efficiency of each method. We then provide a compre-
hensive discussion of the simulation outcomes.

A. NETWORK DESCRIPTION

Real data from a network located in Kent, England, is utilized
to validate the SE methods presented in this study [35].
In addition to the GE challenge, this network is a radial distri-
bution grid, which poses a greater challenge for the SE algo-
rithms. The low voltage radial distribution map diagram of the
LV feeder is shown in Fig. 3, and it consists of 55 household
customers, a distribution substation, 905 buses, a frequency
of 50Hz, and a 3-phase A/Y-grounded transformer (11kV to
0.416kV phase to phase). During simulation, 11kV is equal
to 1.05p.u. The customer load profile data is collected at a
1-minute resolution over one day and is obtained from [54].
For simplicity, the number of nodes is reduced to 22 buses by
lumping many customer loads in the edited network presented
in Fig. 4.

B. LOAD PROFILE DATA
In this scenario, Bus 1 serves as the feeder bus (slack bus
type), while buses 5 through 13 are considered zero-injection
buses. All other buses are categorized as load buses (PQ buses
type). In this setup, the real power (MW) and reactive power
(MVAr) demands were measured over a 24-hour period.
An example of the load profile data for bus 2 is presented
in Fig. 5, with data points recorded at one-minute intervals.
To illustrate the behavior of proposed SE algorithm, the
following general methodology is followed:

1) Collect load profile data over a 24-hour period and use
the Matpower tool [53] to solve the steady-state power
flow problem. This will generate a set of measurement
vectors comprised of various parameters, including the
voltage amplitude of the first bus, as well as the active
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FIGURE 4. One-line diagram of the LV network [41].
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FIGURE 5. Load profile data consumption in the bus 2.

and reactive power demands of 22 buses (44 measure-
ments), and the active and reactive power flow between
buses 1-2 and 2-3 (4 measurements). In this study,
a measurement vector comprising 49 elements is used,
which are known as true measurements (z;,,.) and were
recorded at a resolution of 1 minute.

2) Add 10% Gaussian noise (V) to the true measurements,
except for the feeder bus voltage, to generate contami-
nated measurement signals denoted as z,oisy = Ztrue +
N [56].

3) To account for the presence of GE in z;4i5y, a randomly
(see next subsection) value in the order of -1 is added.
Monte Carlo simulations are employed to simulate
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TABLE 3. Branches data.

Frombus Tobus R (pu) X (pu)
1 2 0.0016  0.0012
2 3 0.0090  0.0068
3 4 0.0025  0.0019
4 5 0.0026  0.0020
5 6 0.0010  0.0007
5 14 0.0063  0.0047
6 22 0.0095  0.0072
6 7 0.0092  0.0070
6 13 0.0053  0.0040
7 15 0.0024  0.0018
7 8 0.0060  0.0046
8 16 0.0043  0.0033
8 9 0.0058  0.0044
9 17 0.0048  0.0036
9 10 0.0057  0.0043
10 18 0.0039  0.0029
13 21 0.0058  0.0044
13 12 0.0032  0.0024
12 20 0.0038  0.0029
12 11 0.0157 0.0119
11 19 0.0071  0.0054

96 snapshots, each spanning 15 minutes over a 24-hour
period. This process is repeated 10 times, resulting in a
total of 960 iterations, in order to obtain accurate time
processing and RMSE mean values for each method.

Table 3 presents the branch data for the low-voltage net-
work used in the “Matpower” tool. The values of impedance
(R) and inductance (X) were calculated using the aggregation
method.

C. STUDY DATA CASES

The mean RMSE of the state variables (voltage angle 8 and
amplitude V) were computed for 22 buses over a period of
24 hours and compared for each SE method under various
data scenarios. The performance of the SE methods was
evaluated based on the one-day RMSE, as shown below:

1 u
RMSE = | - > (& —x)? (60)
u
=1

where X is the estimated value, x is the true value, and u is the
number of static snapshots per day [9].

A comparison was also made between the WLS and the
studied SE methods. The same weighted covariance R;; was
used in all the WLS, Cauchy, WLAV, and Hachtel methods.

This section presents the measurement data used in the
study. Aleatory GE was injected into the noisy measurements
(Znoisy), and the percentage of the GE case study was cal-
culated from the number of GEs in the total measurements
data vector length (49). Three measurement scenarios were
studied and tested:

1) SCENARIO OF 4% GE

Two GEs are added aleatory to zpisy. Fig. 6 displays the
voltage amplitude and angle estimates for bus 6 obtained
using the proposed SE methods over a 24-hour period and
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FIGURE 6. Estimation of the voltage amplitude and angle during 24h in
the bus 6, for the case of 4% GE.
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FIGURE 7. Voltage amplitude and angle RMSE in each bus, for the case of
4% GE.

compares them with the true measurements. Fig. 7 displays
the obtained RMSE of each SE methods for each bus.

Table 4 displays the RMSE values for all buses and static
snapshots during a 244 period. The accuracy of the estimates
for each algorithm is listed in ascending order. In the case
of 4% GE, the AMCC method exhibits better accuracy com-
pared to other studied SE methods. Table 5 shows the mean
RMSE difference between the WLS method and the studied
SE methods. In the case of WLS-Cauchy, the mean RMSE
difference for V is in order of —10 (digit) for V and —9 for 6.
For WLAV and Hachtel methods, the mean RMSE difference
is in order of —6 and —35, respectively, for V, and —4 for 6.

The shape parameter of the kernel function in the GCIP
method is chosen as ¢ 13.4 for optimal performance,
as reported in [34]. However, the AMCC approach optimizes
the suitable value of ¢ for each set of measurement data, mak-
ing it an effective algorithm for static snapshots. In reality,
the optimal value of ¢ varies for each data scenario to achieve
the highest accuracy.

In this case study, the AMCC, GCIP, and LNRT meth-
ods were found to be the most accurate SE methods, with
mean RMSE differences of approximately —4 for V (exclud-
ing LNRT, which had a difference of —5) and —3 for 6.
Notably, the accuracy difference between the AMCC and
LNRT methods was significant at around -5. Furthermore, the
AMCC method outperformed even the GCIP model in terms
of accuracy, likely due to its adaptive ¢ parameter, which is
approximately —8.
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TABLE 4. Mean RMSE of the residuals for all buses of the SE methods in

4% GE case.

Method RMSE of V' (pu) RMSE of 6 (°)

WLS 0.4862794x10—4 0.1283484x 102
Cauchy 0.4862793x 107 0.1283483x 102
WLAV 0.4777431x10~% 0.1158973x10~2
Hachtel 0.4402787x10—4 0.1270748x 102
WLS+LNRT 0.3960839x 10— % 0.1122920x 102
GCIP 0.3778188x10~% 0.0989366x10~2
AMCC 0.3775196x10—4 0.0989182x102

TABLE 5. Difference of the Mean RMSE between studied SE methods and

the WLS in 4% GE case.

Method RMSE of V' (pu) RMSE of 6 (°)

WLS-Cauchy 0.1531856x 1010 | 0.7240420x 107
WLS-WLAV 0.8536380x10~% 0.1245103x10~%
WLS-Hachtel 0.4600076x10—° 0.1273554x10— 4
WLS-LNRT 0.9019553x10—° 0.1605633x10—3
WLS-GCIP 0.1084606x10~% 0.2941181x10~3
WLS-AMCC 0.1085598x 104 0.2943014x103
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FIGURE 8. Estimation of the voltage amplitude and angle during 24h in
bus 6, for the case of 8% GE.
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FIGURE 9. Voltage amplitude and angle RMSE in each bus, for the case of

8% GE.

2) SCENARIO OF 8% GE

The data was contaminated with 4 GE, and the estimation of
state variables at bus 6 using the SE methods studied were
displayed in Fig. 8 for the duration of 24 hours. The voltage
amplitude and angle RMSE of each method for every bus
during this period are also shown in Fig. 9.

The mean RMSE residuals for all buses are presented in
Table 6, showing good accuracy for the AMCC in this case
study as well. The studied methods are classified in order of
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TABLE 6. Mean RMSE of the residuals for all buses of the SE methods in
8% GE case.

Method RMSE of V' (pu) RMSE of 6 (°)

WLS 0.5372829x 10~ % 0.1399925x10~2
Cauchy 0.5372828x10—4 0.1399925x 102
WLAV 0.5480072x 10~ % 0.1323070x10~2
Hachtel 0.4830854x10~ 4 0.1316924x 102
WLS+LNRT 0.4359939x 104 0.1316737x10~2
GCIP 0.4272107x10~% 0.1247206x10~2
AMCC 0.4271045x10— 4 0.1246534x102

TABLE 7. Difference of the mean RMSE between studied SE methods and
the WLS in 8% GE case.

Method RMSE of V (pu) RMSE of 6 (°)

WLS-Cauchy 0.7836902x 10~ | 0.6759557x10—9
WLS-WLAV 0.1072433x10° 0.7685513x 104
WLS-Hachtel 0.5419754x10~° 0.1699908x 10— 4%
WLS-LNRT 0.1012890x10~% 0.1681129x10~%
WLS-GCIP 0.1100721x10—4 0.1527192x10~3
WLS-AMCC 0.1101783x10~4 0.1533916x103
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FIGURE 10. Estimation of the voltage amplitude and angle during 24h in
the bus 6, for the case of 16% GE.
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FIGURE 11. Voltage amplitude and angle RMSE in each bus, for the case
of 16% GE.
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accuracy, as shown in Table 7. The same comments made
in the previous data case study are applicable, where the
proposed AMCC method outperforms other SE models in
terms of accuracy, at the same levels. Some slight differences
have occurred in the mean RMSE difference, such as with the
WLS-LNRT methods, which decreased to an order of —4 for
V and increased to an order of —4 for 6.

3) SCENARIO OF 16% GE

An extreme case is examined, where 8 GEs are included in the
noisy measurements. The estimation of state variables at bus 6
for each of the studied methods is presented in comparison
with the true measurements in Fig. 10. Furthermore, the
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TABLE 8. Mean RMSE of the residuals for all buses of the SE methods in
16% GE case.

Method RMSE of V' (pu) RMSE of 6 (°)

WLS 0.5399577x10—4 0.1794899x 102
Cauchy 0.5399576x10~% 0.1794898x 102
WLAV 0.5328211x10~% 0.1681156x10~2
Hachtel 0.5013030x10—4 0.1880456x 102
WLS+LNRT 0.4363538x10~ 4 0.1726677x102
GCIP 0.4205326x10~% 0.1617211x10~2
AMCC 0.4203076x10—4 0.1616537x102

TABLE 9. Difference of the mean RMSE between studied SE methods and
the WLS in 16% GE case.

Method RMSE of V (pu) RMSE of 6 (°)

WLS-Cauchy 0.1185017x10~ 19 | 0.6196838x 109
WLS-WLAV 0.7136529x10~° 0.1137431x10~3
WLS-Hachtel 0.3865471x10~5 0.8555761x 104
WLS-LNRT 0.1036038x 104 0.6822131x10~ %
WLS-GCIP 0.1194250x10—% 0.1776876x10~—3
WLS-AMCC 0.1196500x 104 0.1783613x10~3

computed RMSE for each bus over a period of 24 hours is
shown in Fig. 11.

Table 8 presents the mean RMSE residuals for all buses
over a period of 24 hours, arranged in decreasing order of
mean RMSE. Similarly, Table 9 shows the difference in mean
RMSE between the WLS method and other SE methods.
While slight differences are noticed, the proposed AMCC
method has demonstrated its superiority with a difference
in order of —4 compared to the WLS, —5 compared to the
LNRT, and —7 compared to the GCIP.

4) TIME PERFORMANCE

The simulation was run on a machine equipped with an
Intel(R) Core(TM) 17-8750H processor, with a clock speed
of 2.20-2.21GHz, and 16GB of RAM installed. No other
tasks were running in parallel during the simulation. Table 10
displays the average time required for each algorithm to
complete one iteration per static snapshot for the three mea-
surement data scenarios. The algorithms are ranked by speed,
with the Hachtel method taking the longest time to process,
while the GCIP is the fastest.

Our results indicate that all three methods, namely AMCC,
GCIP, and LNRT, exhibit good accuracy. However, it is worth
noting that the AMCC method has a longer processing time
compared to the GCIP method, which is understandable since
it involves repeating the GCIP process to find the optimal ¢
for each data set scenario.

Furthermore, the AMCC method requires more time for
iteration compared to the LNRT method. This is reasonable
as the LNRT method simplifies calculations by deleting a
certain number of suspected measurements, allowing it to
achieve the required tolerance in a shorter processing time.
However, as we mentioned earlier, the LNRT method presents
achallenge in terms of network observability, which demands
a well-tuned threshold depending on the network’s sensitivity.
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TABLE 10. Mean iteration time needed during all static snapshots for
each algorithm method in ms.

SE methods 4% GE 8% GE 16% GE
Hachtel 28.336 24.573 27.814
WLAV 11.754 11.622 11.821
AMCC 9.249 9.635 9.671
WLS 5.375 5.299 5.718
Cauchy 5.443 5.216 5.517
LNRT 4.001 3.978 4.536
GCIP 3.284 3.332 3.340

Additionally, the LNRT method sets a limit on the suspected
measurements to be deleted, and hence, the remaining GEs
are used as data set elements. Without proper tuning, the
LNRT method may not provide good accuracy as per our case
study.

The WLAV method necessitates more processing time
because its state estimation formulation is based on the [PM.
This entails computing more parameters in the form of slack
variables. On the other hand, the Hachtel method involves
computing other parameters such as Lagrange multipliers,
which also adds to its processing time requirements.

V. CONCLUSION

The presence of multiple GE can cause inaccurate estimation
of system states and mislead system operators. To tackle this
challenge, several robust SE methods have been proposed and
presented.

In this study, we discuss the importance of robust SE
and error elimination. Additionally, we present a comparison
between several algorithms, including least squares asso-
ciated with the LNRT, Cauchy, least absolute value, and
Hachtel SE methods.

Another SE method, named GCIP, is also presented in
this work. GCIP uses a cost function based on generalized
correntropy, with a high shape parameter ¢, and an interior
point solving approach. However, to address the drawbacks
of GCIP, we propose an accurate and robust SE algorithm
for static snapshots, called AMCC. In this algorithm, c is
iteratively estimated for each data scenario.

For real case data scenario, the robustness of the SE meth-
ods towards multiple GE in aleatory points of the network is
addressed. Specifically, three data scenarios were adopted in
the test-bed simulation, where the measurements data set was
corrupted with 4%, 8%, and 16% of GE, respectively. Monte
Carlo simulations are utilized to accurately compute the mean
values of RMSE and processing time for each method.

The SE methods studied in this research were validated
using real low-voltage network data from Kent, UK. The
results indicate that the proposed AMCC method is robust
against GE in the addressed data scenarios and performs
better than the WLS, Cauchy, WLAV, Hachtel, WLS+LNRT,
and GCIP methods.

The proposed method has demonstrated its superiority in
terms of accuracy and flexibility for successive static snap-
shots. However, we must also acknowledge its drawback
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concerning time processing (for our case in the order of 9ms)
and address it in future work.
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