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ABSTRACT With the development of 3D sensors, 3D point cloud data can now be obtained conveniently.
Therefore, it is crucial to process point cloud data automatically. Region growing is a commonly used
algorithm to segment point clouds, which greatly depends on the accuracy of points’ normals and requires
tuning two thresholds; i.e., the increment of curvature (σth) and normal angles (θth). In this paper, we improve
the region growing algorithm in two ways: Accurate normal estimation and strengthening the region growing
criteria. For the first aspect, principal component analysis (PCA) is utilized to estimate the initial normals
of the point cloud. Then, the points are divided into regular points (RP) and sharp feature points (SFP),
according to their initial normals. A robust estimator-based PCA is then applied to refine the SFP normals.
For the latter aspect, non-connected and non-coplanar points are detected and ignored when region grows.
Finally, the segmentation performance of the proposed method is evaluated using internal and external
indices. The results indicate that the proposed method can accurately estimate the point normals within
an acceptable time, and obtain a better result than the classic PCA-based region growing algorithm and
advanced DetMM-based methods.

INDEX TERMS Normal estimation, region growing, PCA, robust estimator, point cloud segmentation.

I. INTRODUCTION
The amount of point cloud data has been growing rapidly
as 3D sensors (such as stereo cameras, laser scanning, and
so on) have become more advanced. These data can be used
for robot navigation (unmanned vehicles) [1], 3D geometry
modeling [2], and default detection, among other things.
While low-precision sensors can only collect tens of thou-
sands of points, high-precision ones can collect millions.
It takes a lot of computation to manage this enormous amount
of data. In general, 2D LiDAR and RGB-D cameras may
provide indoor mobile robots with 2D and 3D environ-
mental information, respectively. Instead of 2D sensors, 3D
sensors are required for the indoor robot to comprehend
its environment at the semantic level. Robots can easily
acquire 3D models or maps of indoor environments using
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3DLiDAR-based techniques like LOAM [3], RTAB-Map [4],
and HDL_GRAPH_SLAM [5], as well as RGB-D camera-
based techniques like KinectFusion [6] and ElasticFusion [7].

This paper mainly aims at point cloud post-processing for
3D models of indoor environments. The primary artificial
geometries that robots see indoors include planes with regular
shapes and curved surfaces. So, plane segmentation plays a
vital role in indoor point cloud processing, which has been
widely used in reverse engineering [8], object recognition [9],
augmented reality [10], heritage preservation [11], and so
on. Therefore, it has become a research hotspot to extract
plane primitives from unorganized point clouds. Themethods
of plane detection can be divided into four categories, i.e.,
(1) edge-based segmentation, (2) region growing
segmentation, (3) model-based segmentation, (4) and unsu-
pervised clustering methods [12]. Analyses of these methods
are provided in the following.
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Edge-based segmentation technology [13] consists of two
steps: edge detection and point clustering. Although these
methods can rappidly segment point clouds, they suffer from
low accuracy due to the existence of noise and the uneven
density of point clouds. Model-fitting based methods are
mainly used to segment particular man-made objects by
fitting geometric primitives such as planes, cylinders, and
spheres. However, it is difficult for these methods to segment
complex shapes or realize fully automated implementations,
as details can not always be modeled by easily recognizable
geometrical shapes. Additionally, RANSAC may fit a plane
that does not actually exist.

Meanwhile, numerous unsupervised machine learning
(ML) algorithms have been designed to segment point clouds,
such as mean-shift [14], dbscan [15], k-means, and hierarchi-
cal clustering [16], homogenization clustering network [17],
graph clustering [18], etc. However, it is crucial to set param-
eters and define features for these machine-learning tech-
niques. Region growing segmentation [19], [20] has been
designed to segment 2D data (images). To segment point
clouds, one popular technique is transforming 3D points into
a 2D domain [21] and using image processing algorithms to
segment images, then project the result onto the point clouds.
Later, it was developed to directly process 3D point clouds.
Starting from one or more seed points, it grows around the
neighboring points, according to pre-defined criteria, which
is commonly used to extract plane primitives.

Region growing algorithms for point clouds typically con-
sist of two steps: the selection of the seed and the grow-
ing. The seed can be selected according to the distance
between points and the fitting plane [22] or the curvature
of the points [23], [24], and the region grows according to
the angle increment of point normals [22]. Moreover, the
distance between the k-NN (k-Nearest Neighbors) and the
fitting plane [24] has been introduced as a criterion of region
growing.

The key contributions of this paper are as follows: (1)More
accurate normals are estimated within a reasonable time-
consumption; (2) Non-coplanar and non-connective points
are detected, the former will be removed from the k-NN and
the latter will not be added to the seed set as the region
expands; (3) The threshold σth is set to the 95th percentile
of the curvature of the k-NN, such that the desired segmen-
tation can be easily obtained by tuning θth. The remainder of
this paper is organized as follows: Section II describes the
proposed method, which consists of normal estimation and
region growing. Section III introduces the evaluation met-
rics. Section IV provides the experimental results. Section V
makes conclusions including limitations of the proposed
method.

II. METHODOLOGY
As mentioned above, the region growing algorithm involves
the selection of seeds and the criteria of region growing. It is
a frequently used algorithm that is included in the point cloud
library (PCL) [26] to select the seeds by curvature increments

and the region grows according to the angles between the
seeds and their neighbors’ normals [25]. However, the seg-
mentation result greatly depends on the collaborative adjust-
ment of two thresholds (σth and θth), and there is no set
rule for adjusting these thresholds. So, it is difficult to set
a pair of appropriate thresholds to achieve better segmenta-
tion. Furthermore, the normals and curvatures play crucial
roles, which are commonly estimated by conducting PCA
(Principal Component Analysis) on the k-NN of a point.
To estimate the normal for n points, k-NN searching needs
to be performed n times, which is time-consuming. Kd-tree
is often used to accelerate k-NN searching, which has a time
complexity of O(log n) [27].

The proposed method consists of two parts: Accurate nor-
mal estimation and modified region growth, as shown in
Figure 1.

FIGURE 1. Framework of the proposed method.

A. NORMAL AND CURVATURE ESTIMATION
Normals (including curvatures) are basic features of a point
cloud that are widely used in many applications. The region
growing algorithm selects a seed according to the curvature,
and the region expanded according to the angle difference
between the normals of the reference point and its neigh-
borhoods. If the normals and curvatures are not accurate, the
segmentation will be rough and, consequently, may even be
false.

1) PRINCIPAL COMPONENT ANALYSIS
PCA [28] is commonly used to estimate point normals. Let a
point cloud be denoted as a set {pi}i=1,2,··· ,n, pi = (xi, yi, zi) is
a point in the point cloud. Then the k-NN of pi can be denoted
as {pj}j=1,2,··· ,k , where n is the number of points and k is the
number of pre-defined neighbors. The covariance matrix Cov
can be calculated by Equation (1):

Cov3×3 =
1
k

k∑
j=1

(pj − p̄)T (pj − p̄), p̄ =
1
k

k∑
j=1

pj, (1)

where p̄ is the centroid (arithmetic mean) of the k-NN.
By performing SVD (singular value decomposition) on Cov,
the eigenvalues λ (λ0 ≤ λ1 ≤ λ2) and the corresponding
eigenvectors v (v0, v1, and v2) can be obtained. Then, the
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FIGURE 2. The weighting function of Geman-McClure estimator.

eigenvector v0 is regarded as the approximate normal of pi.
The span of the eigenvectors v1 and v2, i.e. span(v1, v2),
is the fitted plane. The curvature is defined as the ratio of the
minimum eigenvalue to the sum of three eigenvalues [29],
as shown in Equation (2):

σ (pi) = λ0/(λ0 + λ1 + λ2), λ0 ≤ λ1 ≤ λ2. (2)

Due to the influence of noise or non-coplanar points, the
estimated normals are wildly inaccurate, especially when the
points are close to the edge or corner areas. Many optimiza-
tion methods have been proposed to obtain more accurate
normals.

2) ITERATION-WEIGHTED PCA
Weighted PCA is an alternative PCAmethod, the key point of
which is the calculation of weights, as shown in Equation (3).
Iteration-weighted PCA [30] utilizes M-estimator to obtain
weights.

n⃗i = argmin
∥n⃗i∥=1

k∑
j=1

mj
(
n⃗ ·
(
pj − pi

))
, (3)

M-estimator is a general class of estimators where we can
hope to find estimators with good robustness properties by
choosing an appropriate function ρ. It is defined implicitly as
the solution of the equation [31]

n∑
i=1

ρ

(
xi − θ̂

σ̂

)
= 0. (4)

Some commonly used M-estimators and their corresponding
weighting functions are summarized in [32]. A scaled version
of the Geman-McClure estimator parameterized by a scalar
µ, as shown in Figure 2, is applied to calculate the weights as
shown in Equation (5):

mj = (µ/
(
µ+ γj

)
)2 , (5)

where γj =
−→pipj · n⃗ and µ is the scale factor.

Figure 2 shows that the weight function decays more
quickly the smaller the value of µ. So, iteration-weighted

PCA decreases the value of µ by µ = µ/1.01 to refine
the point normals. Despite not being able to estimate point
curvature, it can produce precise normals. It is solely used
in this article to compare the accuracy of normal estimation
since it can not be directly used for region growing algorithm.

3) ROBUST ESTIMATOR-BASED PCA
Robust estimators, such as MVE/MCD [33], FastMCD [34],
DetMCD [36], and DetMM [37], can be used to estimate the
location (µ) and scatter (6) of data. Then, outliers can be
detected by comparing the Mahalanobis Distance (MD) to
the 97.50th percentile of the chi-square (χ2) distribution with
three degrees of freedom (i.e., χ2

3,0.975 = 3.075), as shown in
Equation (6):

pj is

 inlier if MD2
j ≤ χ2

3,0.975

outlier otherwise
, (6)

where MD =

√
(X − µ) 6−1 (X − µ)T and X =

{p1, p2, · · · , pk}T . After detecting outliers, PCA is only per-
formed on inliers to estimate the normal of the pi.
Khaloo et al. have used DetMM to estimate point nor-

mals [38]; however, DetMM and DetMCD do not always
work well, as a result of the so-called process of scaling the
variables, as shown in Equation (7):

Zj =
(
Xj −med

(
Xj
))
/Qn

(
Xj
)
, (7)

where Xj is the column vector of X , med(Xj) is the median
value of Xj, andQn(Xj) is the scale estimator of Xj byQn(x) =
2.2219{|xi − xj; i < j|}(κ), where κ =

(h
2

)
and h = ⌊ n2⌋ +

1 [39], which means the first quartile of inter-point distances.
Obviously, it can not be guaranteed that the denominator,
Qn(Xj), is not equal to zero. In addition, estimating the normal
of each point requires running DetMM n (number of points)
times, which takes a lot of time.

In summary, PCA can quickly but inaccurately obtain
points’ normals; Iteration-weighted PCA may obtain accu-
rate normals but does not estimate curvatures; DetMM-based
PCA can reliably estimate point normals but has a high time
cost and occasionally fails. So, this paper comprehensively
weighs both accuracy and time consumption and proposed a
new normal estimation approach.

4) PROPOSED NORMAL ESTIMATION METHOD
This paper aims to segment indoor point clouds using a region
growing algorithm. Although the accuracy of the point’s
normal has a significant impact on the segmentation, it is
not worthwhile to take dozens of minutes to obtain better
points’ normals. By comprehensively weighing both accu-
racy and time consumption, a normal estimation method has
been proposed to obtain normals more precisely compared
to PCA and faster compared to DetMM-based PCA. First,
PCA is used to get the initial points’ normals. Then, the
points are divided into SFP (sharp feature points) and RP
(regular points). Finally, robust estimator-based PCA is used
to estimate the normals of SFP.
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Let the initial normals be denoted as n⃗init =

(n⃗1, n⃗2, · · · , n⃗n)T . Then the angle, θij, between the normals
n⃗i and n⃗j can be calculated by Equation (8):

θij =
∥∥arccos(n⃗i · n⃗j)∥∥ , (8)

where n⃗ is a unit normal.
Assume a point is pi, its normal is n⃗i, and its k-NN are

p1, p2, · · · , pk , the normals of which are n⃗1, n⃗2, · · · , n⃗k . The
angles between the normal of pi and its k-NN are denoted as
θi = (θi1, θi2, · · · , θik ); then, whether a point is an SFP or RP
is determined by Equation (9):

pi is
{
RP if Qn (θi) ≤ θth
SFP otherwise

, (9)

where θth is consistent with the threshold θth of the region
growing algorithm (i.e., θth = 5◦).
Based on this criterion, point clouds sampled from

CAD-like mesh models were utilized to test and visualize the
RP and SFP, as shown in Figure 3.
Actually, the normals of RP are relatively accurate, only

those of SFP need to be refined. Thus, robust estimator-based
PCA is used to refine the SFP normals. Although Khaloo
et al. has adopted DetMM-based PCA to estimate point nor-
mals [38], they did not consider the applicability of DetMM.
As discussed above, DetMM is not suitable for data whose
scaling variables are equal to zero. To overcome this disad-
vantage of DetMM, DetMCD is used to refine the normals of
SFP.

MCD (minimum covariance determinant) estimator is a
very robust estimator of multivariate location and scatter
with the maximum breakdown value of 50%. As previously
defined, p1, p2, · · · , pk are k-NN of pi. The goal of MCD is
to choose h points from k-NN so that the determinant of its
covariance matrix is minimized, where ⌊ (k + p+ 1)/2⌋ ≤ h ≤
k . However, the computation is rather large due to the vast
number of possible combinations

(h
k

)
. FastMCD significantly

accelerated the computation of MCD and made it widely
applied in various fields. DetMCD is a deterministic version
ofMCD and runs even faster than FastMCD. So, theDetMCD
estimator is used to find inliers, and PCA is applied to the
inliers to refine the normals of SFP. The algorithm for normal
estimation is provided in Algorithm 1.
This paper compares the proposed method to other

commonly used normal estimation algorithms in terms of
MSAE [40] and time consumption, namely PCA, 2-jets [35],
iteration-weighted PCA, and DetMM-based PCA. Figure 4
shows the MSAE on cuboid and dodecahedron meshes (the
other models are similar), where noise level implies the
standard deviation proportional to the diagonal length of
the bounding box. The average time consumption on point
clouds sampled from cube meshes with varied noise lev-
els is recorded in table 1. PCA and 2-jets were evalu-
ated with the Computational Geometry Algorithms Library
(CGAL), and iteration-weighted PCA was evaluated using
MPI-accelerated online code. As a result, they were mostly
utilized in accuracy comparison (i.e., MSAE). All of the

Algorithm 1 Normal Estimation

Input: Point cloud: {P};
the number of neighbors: k;
Threshold: θth;

Build a k − d tree: tree = KDTreeSearch(P);
Find the k-NN of each point:

knn_idx = knnsearch(tree, P, k);
Calculating the initial normals:

[n⃗, σ ] = NormEstim_PCA(P, knn_idx);
Calculating the normal angle difference between pi and
its k-NN:;

AnglDiffer = CompAnglDiffer(n⃗, knn_idx);
Find SFP:

θ ← 25th percentile of AnglDiffer;
idx_sharp← find(θ > θth);

for i = 1 to size(idx_sharp) do
idx← idx_sharpi;
knn← knn_idxidx;
pknn← Pknn;
[n⃗idx, σidx] = NormEstim_DetMCD_PCA(pknn);

Output: n⃗, σ .

TABLE 1. Time consumption (in seconds) of various methods.

methods were run on a laptop with an AMD R7-4800U
4.2 GHz processor. The parameter k was set to 50.
In Figure 4, it can be seen that the proposed method

obtained the second-lowest MSAE in terms of accuracy. And
in Table 1, the proposed method was an order of magnitude
faster than DetMM [38], and could generally estimate point
normals within one minute in terms of time consumption.
PCA [28] and 2-jets [35] are fast but inaccurate. DetMM [38]
is robust to noise, but it takes the most time. Iteration-
weighted PCA [30] was fast and accurate, however, it dose
not estimate curvature, as previously stated.

B. REGION GROWING ALGORITHM
As proposed in the literature [25], the classical region grow-
ing algorithm involves the expansion of two point sets:
Region R and Seed S. First, the point with the minimum
curvature value among the unexpanded points is selected as
a seed and added to S. Then, the set S will expand according
to the curvature constraint (i.e., 1σ ≤ σth). Meanwhile, the
region R will grow around the k-NN of the seed according
to the angle constraint (i.e., 1θ ≤ θth). Obviously, it is
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FIGURE 3. First row: CAD-like mesh models and the normal ground truth. Second row: Points sampled from mesh (SFP, red; RP, dark green).

FIGURE 4. MSAE (normal errors) of points sampled from cuboid and
dodecahedron meshes; noise level denotes the factor of the diagonal
distance of the bounding box. [25] represents PCA; [35] represents
2-jets; [32] represents DetMM-based PCA; [27] represents
iteration-weighted PCA.

necessary to set θth and σth, but there is no rule indicating how
to set these values appropriately. Thus, it is both theoretically
and empirically difficult to find a perfect pair of parameters.

It is preferable to set fewer parameters manually while
upgrading the algorithm. As has been mentioned in the lit-
erature [41], σth should to be set as the 98th percentile of
σ , while θth should be set to 15◦. This setting, however,
is not universally applicable. The values of σth and θth vary
with different applications. Anyway, there is something to
be learned from this strategy, which is to fix one parameter
before adjusting the other. In any case, it is possible to learn
from this strategy, which involves setting one parameter and
then modifying the other.

In combination with this method, two sets of test experi-
ments were designed on the dataset region_growing_tutorial,
in which σth was set to the 95th and 98th percentiles of the
curvatures of k-NN, respectively, and θth was tuned in the
range of [2◦, 10◦]. When the curvature is set to the 95th or
98th percentile, the segmentation is nearly identical; however,
θth = 2◦ leads to under-segmentation and θth = 8◦ leads to
over-segmentation. As a result, σth is set to the 95th percentile
of the curvatures of k-NN, then the desired segmentation can
be achieved by tuning θth around 5◦.

The classical region growth algorithm takes all k-NNs as
candidate points when the sets R and S expand, regardless of
whether they are connective or coplanar. Actually, if a neigh-
boring point is far from pi (i.e., non-connective), it should not
be added to the seed S, and if a neighboring point is far away
from the plane fitted by the pi’s k-NN (i.e., non-coplanar),
it should not be added into the region R. Thus, criteria are
proposed to judge whether neighbor points are coplanar or
connective, as follows:
(1) Connective points: Not all k-NN are considered con-

nected; only points that share 75% of their k-NN are
considered connected. Let knni and knnj be the indices
of the k-NN of pi and pj, respectively. Then, the connec-
tivity of pi and pj is defined by Equation (10):

pj is
{

connective if knni ∩ knnj ≥ knnth
non-connective otherwise

, (10)

where knnth = 75% · k . Connectivity constraints can be
changed by tuning the number of shared neighbors.

(2) Coplanar points: Upon the assumption that the noise
obeys a Gaussian distribution, it is easy to understand
that most k-NN are located nearby the plane fitted by
them. As above, the k-NN of pi is {pj}j=1,2,··· ,k . Then,
the residuals of the pi’s k-NN to the fitted plane are γi =

{γij}j=1,2,··· ,k , where γij = ∥
−→pipj ·n⃗i∥. A robust metric γth

is introduced to detect non-coplanar points, as defined in
Equation (11):

pj is
{

coplanar if γij ≤ γth
non-coplanar otherwise

, (11)

where γth = median (γi)+ 2 ·Qn (γi), and Qn (γi) is the
same as in Equation (7).

Figure 5 illustrates the detected connective and coplanar
points. The non-connective and non-planar points will not be
added to corresponding sets S and R. As a result, the criteria
for region growing are enhanced in this way.

Overall, the improved region growing algorithm was
implemented as follows: After getting the initial normals
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FIGURE 5. Detection of coplanar and connective points.

by PCA, points are classified as SFP or RP, and a robust
estimator based PCA is used to refine the SFP’s normals and
curvatures. The σth is fixed as 95th percentile of curvatures.
Then, by detecting connective and coplanar points, the crite-
ria of region growing are enhanced. The pseudo-code of the
improved algorithm as shown in Algorithm 2.

III. PERFORMANCE METRICS
To validate the segmentation performance, internal and exter-
nal indices were utilized. compactness (CP), separation (SP),
theDavies–Bouldin index (DBI), and theDunn validity index
(DVI) were among the internal indices, while precision,
recall, and F1-score were among the exterior indices.

A. INTERNAL VALIDATION
Identical notations are used in the following equations, where
k denotes the number of clusters,�i represents the point set of
the ith cluster, ∥�i∥ is the number of points in the ith cluster,
xi represents a point, and wi denotes the centroid of the ith

cluster. It is worth noting that the k used in this section is
different from the number of neighbors k used above.

• CP measures the average distance between data in the
same cluster, and a lower value is preferred. The calcu-
lation of CP is shown in Equation (12):

CP =
1
k

k∑
i=1

CPi, CPi =
1
∥�i∥

∑
xi∈�i

∥xi − wi∥2 .

(12)

• SP measures the degree of separation between clusters,
and a larger value is preferred. The calculation of SP is
shown in Equation (13):

SP =
2

k2 − k

k∑
i=1

k∑
j=i+1

∥∥wi − wj∥∥2 . (13)

• DBI evaluates the clusters according to the ratio of
within-cluster scatters to between-cluster separations.
Good clusters are compact and separative, which means
a lower value of DBI. The calculation of DBI is shown

Algorithm 2 Improved Region Growing Algorithm

Input: Point cloud: {P};
Point normals: {N };
Index of neighbor: knn_idx;
Angle threshold: θth;

Initialization: Region list: R← ∅;
Available points list: {A} ← {1, · · · , ∥P∥};

while {A} is not empty do
Current region {Rc} ← ∅;
Current seeds {Sc} ← ∅;
Set σth as the 95th percentile of point curvatures:
σth← σ95th;
The point with minimum curvature in {A} → Pmin;
{Sc} ← {Sc} ∪ Pmin;
{Rc} ← {Rc} ∪ Pmin;
{A} ← {A} \ Pmin;
for i=1 to size {Sc} do

Find the k-NN of the current seed point: {Bc} ←
knn_idx(Sc(i));
for j=1 to size {Bc} do

knn_share =
intersect(knn_idx(Bc(j)),knn_idx(Sc(i)));
if length(knn_share)< 75% · k then
{Bc} ← {Bc} \ Bc(j);

1θi=ComputAngDiff(n⃗(Sc(i)), n⃗(Bc));
γi=ComputResidual(n⃗(Sc(i)), {Bc});
γth = median(γi)+ 2 · Qn(γi);
for j=1 to size {Bc} do

The current neighbor point Pj← Bc{j};
if {A} contains Pj and γij ≤ γth and
1θij < θth then
{Rc} ← {Rc} ∪ Pj;
{A} ← {A} \ Pj;
if 1σij < σth then
{Sc} ← {Sc} ∪ Pj;

Add the current region to the global segment list:
{R} ← {R} ∪ {Rc};

Sort {R} in decsending order;
Output: {R}.

in Equation (14):

DBI =
1
k

k∑
i=1

max
j̸=i

(
�i +�j∥∥wi − wj∥∥2

)
,

�i =
2

∥�i∥(∥�i∥ − 1)

∥�i∥∑
i=1

∥�i∥∑
j=i+1

∥∥xi − xj∥∥2 . (14)

• DVI quantifies both the degree of compactness and sepa-
ration of clusters. Contrary to DBI, a larger value of DVI
indicates that the cluster is more compact and separated.
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FIGURE 6. Projecting a point cloud onto a Gaussian sphere and the
definition of center and distance.

The calculation of DVI is shown in Equation (15):

DVI =

min
0<m̸=n<k

 min
xi∈�m
xj∈�n

(∥∥xi − xj∥∥)


max
0<m<k

{
max

xi,xj∈�m

(∥∥xi − xj∥∥)} (15)

To effectively evaluate clusters using the aforementioned
internal indices, the point clouds were projected onto a Gaus-
sian sphere [42], which clusters points with similar normals.
Let the point cloud be {P} = {pi}i=1,2,··· ,n and normals be
{ni}i=1,2,··· ,n; then, the projection point of {P} on theGaussian
sphere can be defined asG(P) = {ni}i=1,2,··· ,n. Points with the
same or similar normals will be projected to the same or near
neighboring points on the Gaussian sphere, whereas points
with significant variances in normals will be projected far-
ther away. Meanwhile, the centroid and distance calculations
should be suitable for the Gaussian sphere. Figure 6 illustrate
the point projection and the definition of center and distance:
Figure 6a shows the point cloud sampled from a box model,
Figure 6b is the projection of point cloud on the Gaussian
Sphere, Figure 6c illustrates the definition of center of two
points and the distance between them.

The center points and distance can be calculated by Equa-
tions (16) and (17), respectively. And the centroid and dis-
tance in Equations (12)–(15) will be replaced by (16) and
(17).

ci =
wi
∥wi∥

, wi =
1
k

k∑
j=1

nj, (16)

dij =
∥∥pi − pj∥∥2 = arccos

(∥∥ni · nj∥∥) . (17)

B. EXTERNAL VALIDATION
To calculate the external indices, it needs to get the true
positives (TP), false positives (FP), true negatives (TN ),
and false negatives (FN ). However, region growing only
aggregates points with similar attributes into the same cluster
and without being able to assign a unique label to each
cluster, so the confusion matrix cannot be easily calculated
as classification does. An object-based method proposed in
the literature [43] was used to compute TP, FP, and FN ,
which finds a one-to-one correspondence using the maxi-
mum or second maximum overlap between extracted clusters

FIGURE 7. Segmentation results with different methods on the data set
region_growing_tutorial. Parameter setting: Classic RG (classic region
growing): σth=95th, θth = 5◦; DetMM-based method: σth=95th, θth = 5◦;
proposed: θth = 5◦.

and the ground truth. Let the extracted clusters be denoted
as C = {C1, C2, · · · , Ci}, and ground truth of clusters
be denoted as G =

{
G1, G2, · · · , Gj

}
. If Cj shares the

maximum overlap with Gj and vice versa, then
(
Ci, Gj

)
is

considered as a correspondence. After finding the one-to-one
correspondences, TP, FP, and TN were calculated as follows:
TP = Ci ∩ Gj, FP = Ci \ Gj, and FN = Gj \ Ci.
Assume κ pairs of one-to-one correspondences have been

found. Then, the external indices (precision, recall, and
F1-score) can be defined as:
• Precision is calculated by 1

κ

∑κ
i=1 Pi, where Pi = 100×

TPi
(TPi+FPi)

.
• Recall is calculated by Recall = 1

κ

∑κ
i=1 Ri, where Ri =

100× TPi
(TPi+FNi)

;
• F1-score is defined as F1− score = 2 · Precision·Recall

(Precision+Recall) .

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Two data sets with external labels were used to visualize the
segmentation results and analyze the performance of the algo-
rithms: region_growing_tutorial, as shown in Figure 7, and
hallway_2, selected from Stanford_3d_Dataset_v1.2 [44],
as shown in Figure 8. The performance of the proposed
method was evaluated in internal and exterior indices and
compared with PCA and the DetMM-based method. For all
methods, the number of neighbors is set to 50, i.e. k = 50,
and were run on a laptop with an AMD R7-4800U 4.2 GHz
processor.

For the data set region_growing_tutorial, the segmentation
results of the classic region growing algorithm are shown in
the second of Figures 7, and the segmentation results of the
DetMM-based method and the proposed method are shown
in the third and fourth of Figures 7. Notice that clusters with
less than 50 points are not visualized.

For the data set hallway_2, the segmentation results of the
three methods are shown in Figure 8. It can be seen that
the classic region growing could not completely segment the
plane (i.e. blank area near edge or corner), due to inaccurate
normal estimation in the corner region,as seen in the sec-
ond of Figure 8. The detMM-based and our methods could
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TABLE 2. Internal and external indices calculated by different methods on the data set region_growing_tutorial and hallway_2.

FIGURE 8. Segmentation results with different methods on the data set
region_growing_tutorial. Parameter setting: Classic RG (classic region
growing): σth=95th, θth = 5◦; DetMM-based method: σth=95th, θth = 5◦;
proposed: θth = 5◦.

segment as many plane points as theoretically possible, while
the former resulted in over-segmentation at the same angle
constraint (i.e. θth = 5◦), as seen in the third and fourth of
Figure 8.

Intuitively, it can be seen that the proposed method seg-
mented more points near the edge or corner areas into proper
clusters than the other two methods. Quantitatively, internal
and external indices were calculated for the three methods
on these data sets. Table 2 lists the indices obtained on the
data sets region_growing_tutorial and hallway_2, where ↑
implies that the larger the corresponding index, the better the
clustering result, while ↓ denotes the opposite case.

As shown in Table 2, the proposed method performed the
best in at least three out of four internal indices and F1-score.
However, the external indices for region_growing_tutorial
were lower than those for hallway_2, due to the relatively
smoother edges and corners. Different values of θth will result

FIGURE 9. Segmentation results on a large data set Cory_5th and point
cloud obtained by Kinect V2 with different values of θth.

in the different linkages of clusters and, once two clusters are
merged, the external indices will be greatly reduced. Overall,
the proposed method achieved better performance on the
same data set than the traditional region growing algorithm
and DetMM-based method.

In addition, two point cloud data sets were used to test the
effectiveness and stability of the proposed method: A large
point cloud Cory_5th, which was captured in the hallways
of the 5th floor of Cory Hall on UC Berkeley campus; and an
indoor point cloud, which was captured by an RGB-D camera
(Kinect v2), as shown in the first row of Figure 9. With the
different value of θth, the segmentation results on the two data
sets are shown in the second and third rows of Figure 9. It can
be seen that the desired segmentation results were obtained
when θth = 5◦, the third row of Figure 9, and both plane and
regular curved surfaces were segmented properly in this case.

Finally, the time consumed by the three methods to seg-
ment the four point cloud data sets are listed in Table 3.
It can be seen that the DetMM-based method required a
tremendous amount of time when processing a large-scale
point cloud, while the classic region growing algorithm was
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TABLE 3. Time consumed by three different methods to segment the four
data sets (in minutes).

the least time-consuming but was also inaccurate. The pro-
posed method saved a significant amount of time, compared
with the DetMM-based method, although it took much more
time than the classic region growing algorithm. This can be
considered worthwhile, as we obtained accurate normals and
segmentation within a few minutes, even for a point cloud
with up to a million points (Cory_5th).

V. CONCLUSION
In this paper, we aimed to segment the plane and regular
curved surfaces in an indoor point cloud. For this purpose,
an improved region growing algorithm was proposed, which
consists of two main steps: Accurate normal estimation and
strengthened region growing. First, in order to obtain pre-
cise normals within an acceptable time, PCA and robust
estimator-based PCA were adopted to find the initial normals
and refine the SFP normals. Then, the classical region grow-
ing algorithm was improved, through setting σth as the 95th

percentile of curvature and strengthening the region growing
criteria through connective and coplanar analysis. Based on
this model, the desired segmentation effect can be obtained
by tuning θth. After clustering points into groups, labels can
be added to each group so that the computer can understand
the environment at the semantic level.

The PCA method can calculate point normals rapidly
but provides inaccurate results, thus significantly affecting
the region growing algorithm which greatly depends on the
accuracy of normal estimation. To accurately estimate point
normals and reduce time consumption, the method proposed
in this paper strikes a balance between accuracy and time
consumption. More accurate normals can be obtained with
acceptable time consumption. Due to the curvature constraint
σth being fixed as the 95th percentile, the desired segmen-
tation effect could be obtained by tuning only the threshold
θth. Meanwhile, non-connective and non-coplanar points are
detected and ignored when carrying out region growing.

To evaluate the performance of the proposed method, inter-
nal and external validation indices were calculated, in order to
compare the performances of different methods. On two data
sets with external labels, the proposed method outperformed
a classic region growing method and an advanced DetMM-
based method. Finally, two data sets without labels were
introduced to test the robustness and effectiveness of the
proposed method. In particular, the proposed method could
effectively segment both plane and regular curved surface
primitives.

However, the proposed method was realized by program-
ming with MATLAB, and no acceleration strategies were
adopted. Thus, the time consumption may be further reduced.
In addition, it can not segment sampling points on small
objects. Finally, the proposed method does not take the den-
sity features of the point cloud into account.

In conclusion, the proposed method presented several
advantages for point cloud segmentation, regardless of
whether planar or curved surfaces are considered. The more
accurate normals estimated within an acceptable amount of
time can be used in many other application, not just as a
pre-requisite for the region growing algorithm.
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