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ABSTRACT Space robots have a broad application prospect in the aerospace industry. It is difficult for
space robots to keep running for a long time due to limited fuel. In addition, it is impossible to replenish the
fuel for space robots at any time due to the unique working environment. Therefore, a proper path is crucial
for the effective operation of the space robot. In this paper, we investigate the allocation of exploration tasks
and the path planning of space robots jointly. The goal is to minimize the completion latency of exploration
tasks. We propose two algorithms named subbranch insertion task allocation (SI-TA) and parallel search task
allocation (PS-TA) to solve the problem. We also customize an algorithm named random path planning task
allocation (RTA) as the baseline. At last, we implement extensive experiments to demonstrate that proposed
algorithms can obtain lower completion latency than RTA. Compared with RTA, the proposed algorithms
SI-TA and PS-TA can reduce completion latency by at least 20% and 40%, respectively. Moreover, both
algorithms work more stably than RTA.

INDEX TERMS Space robot, path planning, combination algorithm, completion latency.

I. INTRODUCTION
Space robot technology is emerging in the sustainably devel-
oped space industry [1]. The space robot can perform various
space tasks such as area exploration and sample collection
without astronauts [2], [3]. Generally, space robots can be
categorized into on-orbit robots and exploration robots. The
on-orbit robots mainly provide various on-orbit services. The
exploration robots usually undertake extravehicular explo-
ration and base construction, etc.

Path planning is one of the critical techniques for space
robots [4], [5]. Path planning has always been a research
hotspot in many fields. As early as 1994, some scholars have
already systematically studied the classical path planning
problem [6]. According to the availability of information of
the global environment, path planning can be simply divided
into global path planning, and local path planning [7], [8].
Global path planning is usually implemented on the premise
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that the information of the global environment has been
known. At present, the three most established global path
planning algorithms can be divided into intelligent bionic
algorithm, graph search algorithm, and random sampling
algorithm [9]. Global path planning can provide the optimal
path for space robots in most cases [10]. Local path planning,
also known as online path planning, performswell in dynamic
environments [11]. Local path planning can adaptively gen-
erate the real-time optimal trajectory when obstacles occur
between the source and destination [12].

It is a challenge to develop the strategies of path planning
for space robots due to the limited fuel and the special work-
ing environment [13]. The path planning problem is a typical
complex nonlinear optimization problem. Therefore, there
are many heuristic algorithms, such as simulated annealing
algorithm [14], fuzzy logic algorithm [15], etc., which are
widely used for path planning. Besides, the bionic algorithms
have been widely adopted to solve complex optimization
problems since their appearance [16]. Researchers have
proposed different biological-based algorithms to tackle path
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planning for space robots, such as the genetic algorithm [17].
In recent years, with the widespread application of artificial
intelligence, many machine learning algorithms and deep
learning algorithms have emerged in the research on path
planning [18], [19]. Furthermore, some existing works have
designed new algorithms to solve the path planning problem
for space robots by integrating biological-based algorithms
with other algorithms [20]. However, these works mainly
focus on the path planning problem for a single space robot
instead of multi-space robots.

In this paper, we mainly investigate joint task allocation
and path planning for multiple space robots. In order to save
fuel for space robots, we assume that each area only needs
to be explored once, which can also reduce the overall task
completion latency. Multiple space robots set out simultane-
ously from their respective starting areas to perform explo-
ration tasks. These space robots assemble at a pre-defined
destination area after all areas are explored. The most similar
problem to this paper is the Multi-Depots Vehicle Routing
Problem (MD-VRP) [21]. InMD-VRP,multiple vehicles start
from different depots, serve a set of customers, and terminate
their tours at the destination depots. The time spent by a
vehicle moving between two customers is much longer than
the time spent serving customers. However, in this paper, the
moving time of a space robot is much less than the exploration
time. Therefore, the algorithms used for MD-VRP can not
be directly applied to our problem. Note that an area may
appear on the paths of multiple space robots, but only one
space robot undertakes the exploration task of this area. This
makes us aware of the importance of a proper task allocation
strategy. Furthermore, it is difficult to predict in advance the
time spent by a space robot moving between two areas and the
time spent by a space robot exploring an area. In this case,
only one subsequent area that space robots move to can be
determined after each action of space robots including mov-
ing and exploring. It is vital to allocate the exploration tasks
considerably while optimizing path planning to minimize the
exploration latency [22].

To the best of our knowledge, few existing works focus
on joint optimization of path planning and task allocation
for multi-space robots. We construct a joint optimization
problem of path planning and allocation of exploration tasks
for multi-space robots. The main contributions are as follows.

• The path planning problem is of NP-hardness. The goal
of this paper is to minimize the completion latency of
exploration tasks.

• We propose an algorithm for path planning, which can
cover all nodes by adjusting the shortest paths of space
robots from respective staring areas to the destination
area. Then, an allocation algorithm based on the greedy
idea is proposed to allocate the exploration tasks to space
robots according to the generated paths.

• We also propose an algorithm for path planning based on
the parallel search. It simultaneously searches the next
areas for all space robots to move to. The proposed task

allocation algorithm is utilized to allocate exploration
tasks based on the generated paths.

• We customize an algorithm based on the random
algorithm and the proposed allocation algorithm as the
baseline. Experimental results show that our proposed
algorithms outperform the baseline algorithm in terms
of completion latency.

The remainder is organized as follows. We summarize
the related work in Section II. We then describe the studied
problem and model the problem in Section III. In Section IV,
we propose two algorithms named PS-TA and ST-TA, respec-
tively. Extensive experiments and analyses are presented in
Section V. Finally, the conclusion of this paper is presented
in Section VI.

II. RELATED WORKS
Path planning is one of the essential issues of the robots
industry [23]. Since the path planning problem is of
NP-hardness [24], it is hard for an exponentially compli-
cated traverse algorithm to satisfy the time-limited practi-
cal applications. Path planning is also a fundamental prob-
lem in mobile robots. It is significant to generate an opti-
mal or sub-optimal paths to enable the efficient operation
of robots [25]. Path planning can be roughly divided into
real-time path planning [26] and non-real-time path plan-
ning [27]. In general, path planning algorithms may be
divided into three categories: biologically inspired, combina-
torial, and sampling-based [28]. The biological-based algo-
rithms for path planning is a type of intelligent algorithms that
simulate the evolutionary behaviors of biology. Combinato-
rial algorithms for path planning usually integrate the graph
search algorithms and workspace representation methods to
solve the path planning problem [29]. The sampling-based
algorithms are usually utilized to find a path quickly [30].

There are a large number of works on path planning for
mobile robots. The authors in [31] and [32] propose efficient
algorithms for path planning based on the artificial potential
field, membrane computing, and genetic algorithm. These
proposed algorithms can quickly generate a safe path for
each mobile robot. The authors in [33] propose the algo-
rithm ParaPA based on traditional particle swarm optimiza-
tion algorithm and the ant colony algorithm to speed up the
search speed through three-stage evolution and two fitness
functions. Then, ParaPA selects the optimal path with the
consideration of security and loss issues. In [34], the authors
propose a algorithm based on simulated annealing for path
planning of mobile robots. This algorithm adopts the ini-
tial path selection method and deletion operation to reduce
computational effort. With the development of artificial intel-
ligence, machine learning algorithms and deep learning algo-
rithms are also widely used in path planning for mobile
robots. The authors in [35] propose a Q-learning algorithm
based on partial guidance of the artificial potential field,
which can converge fast and performs well in path planning,
both in known environment and unknown environment.
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Path planning are always a hot topic in the researches of
space robots. The authors in [36] propose a memetic algo-
rithm to generate the optimal path with obstacle avoidance.
The memetic algorithm mainly utilizes the genetic algorithm
and the simulated annealing algorithm to perform the global
search and local search, respectively. In [37], the authors
propose an improved artificial bee colony algorithm to gen-
erate paths with obstacle avoidance for space robots. The
authors in [38] propose a self-adaptive ant colony algorithm.
It adopts adaptive selection, adaptive adjustment, and mea-
sures of keeping optimization. The algorithm can converge
faster than the traditional ant colony algorithm. Except for the
biology-based algorithms, an algorithm is proposed in [39]
for path planning on the basis of enhanced fuzzy control
to generate paths with obstacle avoidance. The algorithm
can obtain higher obstacle avoidance performance through
speed feedback when obstacles appear continuously. The
authors of [40] design a deep deterministic policy gradient
method with multi-constrained reward to find the best path
while keeping path length, coupling disturbance, and safety
in mind. The existing works mentioned above can solve the
path planning problem for single space robots using different
methods. However, to the best of our knowledge, the cooper-
ation of multiple space robots is less considered.

III. SCENARIO DESCRIPTION AND PROBLEM DEFINITION
In our studied scenario, multiple space robots are required
to collaboratively perform an exploration task with multiple
discrete areas to explore. We assume that each area must
be explored only once to avoid additional fuel consumption.
Before starting the exploration, all space robots are at their
respective starting nodes. Then, all the space robots set off
simultaneously to perform the exploration task. Finally, after
exploring all areas, all space robots gather at the pre-specified
destination node. Without loss of generality, the destination
node is set to the node with the highest serial number. We will
describe the serial number later. We jointly study the execu-
tion decisions of exploration tasks and the path planning of
multi-space robots to minimize total exploration task com-
pletion latency. When a space robot first arrives at a certain
unexplored area, the space robot must undertake the task of
exploring the area. Furthermore, a space robot does not take
time to explore the areas other space robots have explored.
If some space robots arrive simultaneously in a previously
unexplored area, the lower serial number space robot explores
this area.

Next, we will introduce the studied scenario and the pro-
posed problem, and then formulate this problem. We define
an undirected graph G = (V,E) to abstractly represent the
entire exploration area. We denote E = {1, 2, · · · , e} to rep-
resent the paths between areas. Besides, letV = {1, 2, · · · , v}
be the area set. For descriptive convenience, node and area are
used interchangeably to indicate the same meaning. We can
obtain the corresponding graph G = (V,E) in advance for
an exploration task. Then, we number the nodes in a graph.
We set the serial number of the starting node to start at 0,

that is 0, 1, · · · , s− 1. For example, assuming there are three
starting nodes, we set the serial numbers of these nodes to 0,
1, and 2, respectively. The serial number of a space robot is set
to the serial number of the corresponding starting node. Note
that the destination is the node with the largest serial number.
Let λ

i,j
b indicate whether the space robot b moves between

area i and j.

λ
i,j
b =

{
1 The space robot b moves between area i and j
0 otherwise.

(1)

When i = j, let λ
i,j
b = 0. We can use an order sequence ⟨·⟩

to represent the path for space robots. For example, if a space
robot is initially located in area 1, then, it goes through area
2 and returns to area 1, then the path of this space robot can
be represented as ⟨1, 2, 1⟩. Next, a discriminant operation ⊖

is defined as follows. If λ
i,j
b = 0, let λ

i,j
b ⊖ j = {∅}. When

λ
i,j
b = 1, let λ

i,j
b ⊖ j = {j}. Then, a splicing operation ⊗

between sets is also defined. The rule for ⊗ is as follows.

{f } ⊗ {g} = ⟨f , g⟩. (2)

Finally, let
⊔

be the operation of set accumulation.
v⊔
a

{φa} = {φa} ⊗ {φa+1} ⊗ · · · ⊗ {φv}. (3)

Then, let Pb be the path of space robot b, which can be
obtained by the following formula.

Pb = {b} ⊗ (
v−1⊔
i=b

v−1⊔
j=0

λ
i,j
b ⊖ j), (4)

Our goal is to achieve minimum completion latency of the
exploration task. The time spent by space robot b exploring
area i is denoted as τ ib. If the multiple paths contain the same
area, the allocation of exploration task for this area should
be determined carefully. Let γ ib indicate whether the space
robot b performs the exploration tasks of area i, where b ∈

{0, 1, · · · , s− 1}, i ∈ {0, 1, · · · , v− 1}.

γ ib =

{
1 The space robot b explore area i
0 otherwise.

(5)

Let T exeb denote the time spent by space robot b completing
the exploration task.

T exeb =

v−1∑
i=0

γ ib · τ ib. (6)

Let κ
i,j
b indicate the time for space robot b moving between

area i and area j. Then, let θ indicate the position of a node
in Pb, where 1 ≤ θ < |Pb|. As an illustration, the θ -th node
on path Pb can be represented as Pb[θ ]. Let T rb be the overall
moving time of space robot b.

T rb =

|Pb|−1∑
θ=1

κ
Pb[θ ],Pb[θ+1]
b . (7)
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Algorithm 1 Find Shortest Path
Input: s, v,G
Output: l
1: Initial l
2: Append s to l // Append start node to path l
3: while l does not end with v do
4: Get the last node e of l
5: Obtain the neighbor node set C of e according to G
6: Calculate the distance d between first node in set C

and v
7: de,v = Caldis(e, v) // Calculate the distance

between two nodes
8: for each c in C do

dc,v = Caldis(c, v)
9: if dc,v < de,v and dc,v < d then
10: d = dc,v
11: end if
12: end for
13: Obtain the node c∗ corresponding to d
14: Append c∗ to l
15: end while
16: return l

Let T represent the overall task completion latency.

T = max
0⩽b⩽s−1

{T exeb + T rb }. (8)

We can formalize the latency minimization problem as
follows.

min T (9)

s.t.
s−1∑
b=0

v−1∑
i=0

γ ib = v. (10)

Formula (10) ensures that each area must be explored.

IV. SOLUTIONS
The joint optimization problem can be decomposed into two
subproblems, path planning and task allocation. Before solv-
ing the task allocation problem, we must find the working
path for all space robots. The path of each space robot records
the movement sequence from a starting area to the destina-
tion. The generated paths must cover all nodes in the given
graph. Then, we solve the task allocation problem to mini-
mize the overall completion latency. In particular, we propose
two path planning algorithms, Sequential Search Subbranch
Insertion (SSSI) and Forward Parallel Search (FPS). After
that, a task allocation algorithm named Greedy-based Task
Assignment (GRTA) is proposed to generate the execution
decision for each exploration area. Finally, we combine SSSI
with GRTA to obtain SI-TA and combine FPS with GRTA to
obtain PS-TA.

A. SOLUTIONS FOR PATH PLANNING
We next introduce the SSSI and FPS, respectively. Before
introducing these two algorithms, we first introduce

Algorithm 2 Sequential Search Subbranch Insertion
Input: G, lb, b ∈ {1, 2, · · · , s} // lb is initial path of

space robots b
Output: lb
1: w = 0
2: Initialize Fb
3: Denote z to indicate state of nodes // explored or

unexplored
4: while There exists paths b where lb[w] is not destination

do
5: Φ = {∅}

6: Record serial number of all space robots that meet the
conditions in Φ.

7: for each ϕ in Φ do
8: Construct hϕ // neighbor nodes set of lϕ[w]
9: if There exits nodes that not explored then
10: Insert the node lϕ[w] into the last position of Fϕ

11: Choose an unexplored node h′ in hϕ

12: Insert h′ into position lϕ[w+ 1]
13: Update z
14: end if
15: if The successor node g of lϕ[w] are contained by hϕ

then
16: if The last node of Fϕ is in g then
17: Insert g into position lϕ[w+ 1]
18: Remove g from Fϕ

19: end if
20: end if
21: end for
22: w = w+ 1
23: end while
24: return lb

Algorithm 1. The Algorithm 1 is used to generate the short-
est path between two nodes on a graph and usually used
to generate the shortest path in many existing works. The
algorithm takes the graphG, start node s and destination node
v as inputs. Then, we initialize a list l and add s to l. Next,
we judge the last node in l and repeat the following operations
when the last node e in l is not the destination node. First,
the neighbor set C is obtained according to graph G. The
distance d between node v and the first node in neighbor set
C is calculated. Second, for each node c in C , the distance
dc,v between node c and destination node v is calculated. If
dc,v < de,v and dc,v < d , we update d by dc,v. Last, the
node c∗ is selected according to the distance d . Node c∗ is
appended to the l.

However, the paths generated by Algorithm 1 can not cover
all nodes. Next, the SSSI algorithm inserts nodes not covered
into the shortest paths obtained by Algorithm 1. The details
of SSSI are described as follows.

First, Algorithm 2 takes the graph G and the path lb gener-
ated by Algorithm 1 as inputs, where b is the serial number of
space robots. The path that does not contain the destination
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Algorithm 3 Distance Calculation
Input: G = {N ,E}

Output: D // distance information
1: µ = 1
2: Initial E // indicator vector
3: Initialize η

4: while Sum(E) < |N | do
5: Initialize ς

6: for α = 0 to |η| − 1 do
7: for β = 0 to |N | − 1 do
8: if η[α] is a neighbor of β then
9: if E[β] == 0 then
10: D[β] = µ // record distance
11: E[β] = 1
12: append the node β to ς

13: end if
14: end if
15: end for
16: end for
17: µ = µ + 1
18: η = ς

19: end while
20: return D

node at the current search positionw is recorded. LetΦ record
the serial numbers of space robots corresponding to these
paths. Then, let set hϕ record serial numbers of neighbor
nodes of node lϕ[w] according to the graph G, where lϕ
represents the path of robot ϕ.
Next, we judge the type of nodes in Φ according to indi-

cator z, where z indicates whether nodes have been explored.
If the node lϕ[w] is an unexplored node, we append node lϕ[w]
into the last position of Fϕ , where Fϕ is the set of bifurcation
nodes. We denote a node as a bifurcation node if some nodes
in its neighbors are the unexplored nodes. Then, we select
an unexplored node h′ in hϕ and insert h′ into the position
lϕ[w + 1]. We next update the indicator z. If all nodes in hϕ

are explored, we insert node g into position lϕ[w+ 1], where
node g is contained by hϕ . Node g is also the successor node
of node lϕ[w] and the last node in Fϕ . Next, we remove node
g from Fϕ . Finally, the positionw is updated by adding 1. The
pseudocode of SI-TA is described in Algorithm 2.

Next, we introduce FPS. The main idea of FPS is to syn-
chronously search the next node to go for each space robot
that has not reached the destination. The successful execution
of FPS requires preliminary knowledge of the distance from
all nodes to the destination.We adapt Algorithm 3 to calculate
the distance from each node to the destination node. The
distance between two adjacent nodes is set to 1. First, µ

represents the distance. The initial value ofµ is set to 1. Then,
let E be a list [E [0] , E[1], · · · , E[t]] to indicate whether the
distances between a node to the destination node has been
calculated. The value of each element in E is set to 1 or 0,
where 1 (0) indicates the distance of node to destination node

Algorithm 4 Forward Parallel Search
Input: G = {N , E},D
Output: li
1: Initialize ρ

2: Initialize li to record path for i
3: while There are robot r ∈ S that has not reached destina-

tion node do
4: for each r in S do
5: Get neighbor nodes set Cr of last node pr of path lr

according to the G
6: Get unexplored nodes set Wr of i according to Cr

and ρ

7: Calculate the number ηr of nodes inWr
8: if ηr == 1 then
9: Append this node to path lr
10: Update ρ

11: end if
12: if ηr > 1 then
13: Construct set Drmax of nodes that are farthest to

destination node according to D, Wr
14: if Drmax only contains one node then
15: Append this node to path lr
16: else
17: Select a node from Drmax randomly to append

to lr
18: Append the penultimate node on lr to lr again
19: end if
20: Update ρ

21: end if
22: if ηr ≤ 0 then
23: while true do
24: Find node with minimal distance to destination

node in Cr
25: Append this node to lr
26: if r has reached the destination node then
27: break
28: end if
29: Repeat line 5 to 20
30: break;
31: end while
32: end if
33: end for
34: end while
35: return li

has (not) been calculated. Initially, E[t] is set to 1. Then, the
list η is initialized, and the destination node is first put into η.

If the sum of elements in E is less than the number of
nodes, it means that there exist some nodes, their distances to
destination node have not been calculated yet. Next, the list ς
is initialized to record the nodes whose distance information
will be calculated in the next round. For node α in η, we select
neighbor node β whose distance to destination node has not
been calculated. Then, the distance between these neighbor
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FIGURE 1. Topological graphs for experiment.

nodes to the destination node is set to µ. The corresponding
value in the list E is set to 1 for these neighbors. These neigh-
bors are next added to ς . After that, η is updated by ς and µ

is updated by µ + 1 for the next round of calculation. Next,
we obtain the path of each space robot by using Algorithm 4.
The primary process is summarized as follows.

Step 1: Find all space robots that have not reached the des-
tination node. Then, a set S is constructed to record
the serial number of these space robots.

Step 2: Construct a neighbor node set Cr of the last node pr
for each space robot r according to the givenG. Each
node in Cr may be an explored or unexplored node.
We denoted Wr to represent the set of unexplored
nodes.

Step 3: Calculate the number ηr of nodes inWr .
Step 4: Append the only node in Wr to lr when the value of

ηr is 1, where lr is the path of space robot r .
Step 5: Find all nodes inWr farthest to the destination node

according to distanceD. A setDrmax is constructed to
record the corresponding serial numbers of nodes.

Step 6: Choose a node from Drmax to add to the last position
of lr . After that, we append the penultimate node on
lr to lr again.

Step 7: Find out the node in Cr with minimal distance to
the destination node and append this node to lr . If r
reaches the destination, we terminate the algorithm.
Otherwise, repeat Step4 - Step6.

For the pseudocode of FPS, see Algorithm 4

B. GREEDY-BASED TASK ASSIGNMENT
In this subsection, we propose GRTA based on greedy policy
to generate the execution decisions of exploration tasks. The
details of GRTA are described in Algorithm 5.

Algorithm 5 Greedy-Based Task Allocation
Input: pb
Output: T
1: w = 1, γ = pb[0]
2: T = τ

γ
b

3: Let vector z indicate whether nodes are explored
4: Let mb represent the length of pb
5: while There exists w ≤ mb do
6: U = {∅}

7: for b = 0 to s− 1 do
8: if w ≤ mb then
9: U = U ∪ b

10: end if
11: end for
12: for each u in U do
13: if Node pu[w] is an explored node then
14: Tu = Tu + κ

pu[w−1],pu[w]
u

15: else
16: Construct set � to record paths whose last node

is pu[w]
17: Select space robot a whose Ta is minimum.
18: Ta = Ta + τ

pa[w]
a + κ

pa[w−1],pa[w]
a

19: for Robot α in � − {a} do
20: Tα = Tα + κ

pα[w−1],pα[w]
α

21: end for
22: end if
23: Update z
24: end for
25: w = w+ 1
26: end while
27: Calculate T utilizing formula (8)
28: return T

First, let mb be the length of path pb and w be the index
to indicate the current search position of all paths, where b is
the serial number of the space robot. We define U to record
the serial numbers of space robots. If w ≤ mb, we append
b to U . Then, we judge whether the node pu[w] has been
explored for each space robot u in U . If node pu[w] has been
explored, we just compute the moving delay for u arriving
at this node. The current working time Tu of space robot
u is updated by adding the time κ

pu[w−1],pu[w]
u spent by u

moving from node pu[w− 1] to node pu[w]. If node pu[w] is
unexplored, we record the path whose node locate in position
w is this node. Then, we construct� to record the robot serial
number corresponding to these paths. We next choose a space
robot a from � with a minimum time Ta and compute the
exploring time and moving time of a. Then, the working time
Ta is updated by adding the time τ

pa[w]
a spent by a exploring

pa[w] and the time κ
pa[w−1],pa[w]
a spent by a moving from

node pa[w− 1] to node pa[w]. After that, we remove a from
�. For other space robot α in �, we update the working
time Tα by adding the time κ

pα[w−1],pα[w]
α spent by α moving

from node pα[w − 1] to node pα[w]. Finally, we update the
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FIGURE 2. Completion latency.

state of nodes in z. We calculate the T utilizing formula (8)
when h > max(Si). GRTA can be formally described by
Algorithm 5.

C. COMBINATION ALGORITHM
We combineAlgorithm 2 andAlgorithm 5 to obtain the SI-TA
algorithm. Besides, we also obtain a combination algorithm
named PS-TA by combining Algorithm 4 and Algorithm 5.
The proposed algorithms SI-TA and PS-TA solve the path
planning problem through Algorithm 2 and Algorithm 4,
respectively. After that, SI-TA and PS-TA obtain the exe-
cution decision of the exploration task by using the GRTA
algorithm.

V. SIMULATION RESULTS AND ANALYSIS
A series of experiments are implemented in this section to
demonstrate the performance of SI-TA and PS-TA. Further-
more, the algorithm RTA is customized for comparison. The
RTA selects nodes randomly for each space robot and uses
GRTA to allocate tasks.

A. SIMULATION SETUP
As shown in FIGURE 1, we conduct a series of experiments
on four areas with different graph structures to verify the
performance of our proposed algorithms. The space robots
are homogeneous, i.e. they have the same configuration.
It takes the same time for different robots to explore the
same area and the same time to move the same distance.
The structures of graph G1 [41], G2, and G3 are relatively
simple, while the structure of G4 [42] is relatively com-
plex. Besides, the area corresponding to the node with the
largest serial number is selected as the destination area. The
time consumed by space robots moving between two areas
is uniformly distributed in [10] and [20]s. The time con-
sumed by a space robot exploring an area is distributed in
[200, 500]s.

FIGURE 3. The moving time of space robots.

B. EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS
FIGURE 2 shows the completion latency of exploration task
generated by algorithms on different experimental graphs.
The default number of space robots is set to 3. Initially,
the space robots locate in the areas corresponding to nodes
number 0,1 and 2. In order to facilitate observation, we nor-
malize the latency. From FIGURE 2, it is clearly observed
that the completion latency generated by proposed algorithm
PS-TA is always minimum. The main reason is that PS-TA
can balance the load among space robots. We also observe
that the task completion latency generated by proposed SI-TA
is always lower than that of RTA onG1,G3 andG4. However,
the task completion latency generated by baseline algorithm
RTA is less than that of SI-TA on G3. The main reason is that
the high randomness of RS-TA in path planning may generate
relatively short task completion latency in some cases.

FIGURE 3 shows the moving time of space robots by uti-
lizing different algorithms. Because the fuel of space robot is
limited and refueling for space robots is difficult, it is signifi-
cant to consider the energy consumption of space robots. Due
to the homogeneity of space robots, the exploration time spent
by each space robot to explore the same area is the same. The
differences in the completion latency generated by different
algorithms are dominated by themoving time of space robots.
Therefore, we can compare the performances of algorithms
in terms of energy efficient according to the moving time of
space robots. For the sake of simplicity, we normalize the
moving time. From FIGURE 3, it is observed that the moving
time of space robots by utilizing RTA is the largest in most
cases. Due to the high randomness, RTA works better than
SI-TA in terms of the performance of moving time on G1 in
some cases. Besides, when the experiments are carried out
onG1 andG2, SI-TA works better than PS-TA in terms of the
performance of moving time. However, on G3 and G4, PS-
TA works better than SI-TA. The main reason is that SSSI in
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FIGURE 4. The latency vs. the number of space robots for different
algorithms.

FIGURE 5. The moving time vs. the number of space robots.

SI-TAmay generate more repeated paths among space robots
when the initial position of space robots is relatively close.

FIGURE 4 shows the variation of task completion
latency generated by different algorithms as the number of
space robots increases. The number of space robots is set
from 1 to 5. From FIGURE 4, we can clearly observe that
the task completion latencies generated by SI-TA and PS-TA
decrease as the number of space robots increases. The main
reason is that as the number of space robots participating in
the exploration task, the burden a single space robot under-
takes is reduced. Finally, the overall task completion latency
is reduced. Furthermore, the completion latency generated by
PS-TA is always less than that generated by SI-TA as the
number of space robots increases. Besides, due to the high
randomness of RTA, the performance of RTA in terms of
completion latency fluctuates greatly.

FIGURE 5 shows the moving time of space robots by
utilizing different algorithms with the increasing number of

FIGURE 6. The value of standard deviation on different graphs.

FIGURE 7. The latency vs. serial numbers of destination nodes.

space robots. From FIGURE 5, it is obviously observed that
the moving time of space robots by utilizing SI-TA and
PS-TA decreases with the increase in the number of space
robots. This is because the number of areas a space robot
explores decreases as the number of space robots increases,
the length of the path of each space robot is reduced. Fur-
thermore, when experiments are carried out in G1 and G2,
the moving time of space robots by utilizing SI-TA is always
smaller than that by utilizing PS-TA as the number of space
robots increases. The performances of SI-TA and PS-TA in
terms of moving time are reversed when the experiments
are performed on G3 and G4. Besides, the performance of
RTA in terms of moving time fluctuates greatly due to high
randomness.

We evaluate the performance in terms of load balancing
for algorithms on different graphs by calculating the standard
deviation of task completion latency. The default number of
space robots is set to 3. The node with the maximum serial
number in a graph is set as the destination node. The results
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FIGURE 8. The running time of SI-TA and PS-TA on different graphs.

are shown in FIGURE 6. PS-TA consistently outperforms
SI-TA and RTA in terms of load balancing. The performance
of RTA is better than that of SI-TA when the experimental
graph is G2. The primary factor is that the reduced number
of neighbors for each node in G2 mitigates the impact of the
high level of randomness of RTA.

FIGURE 7 shows the variation in completion latency of
tasks as the position of the destination node changes. We set
the start nodes to 0, 1, and 2, respectively. The serial num-
bers of destination node are set from 4 to 10. We carry out
experiments on G1 with proposed algorithms SI-TA and PS-
TA. FIGURE 7 shows that PS-TA always works better than
SI-TA in terms of latency. Last, FIGURE 8 shows the running
time of proposed algorithms PS-TA and SI-TA on different
graphs. From FIGURE 8, we can see that the running time of
SI-TA is always larger than that of PS-TA on different graphs.
We can also conclude that the running time of algorithms will
increase as the number of nodes in a graph increases.

VI. CONCLUSION
In this paper, we have investigated the joint path planning and
task allocation problem for space robots and formalized the
problem to minimize the completion latency of exploration
task. In this problem, multiple space robots set out simulta-
neously from different starting areas to perform exploration
tasks and assemble at a single destination after exploring all
areas. We have proposed algorithms SI-TA and PS-TA by
integrating a task allocation algorithm and a path planning
algorithm to solve the completion latency minimization prob-
lem. In particular, we have proposed two algorithms for path
planning named SSSI and FPS, which can generate paths
for all space robots moving from their respective starting
nodes to the destination node. In addition, each node in the
given graph must be contained by at least one path. Fur-
thermore, we have proposed GRTA as the task allocation
algorithm based on the generated paths with the greedy idea
to obtain minimum completion latency. To further prove the

performance of the proposed algorithms, the RTA algorithm
has been customized as a baseline, which generates paths
for space robots by randomly selecting nodes. Then, RTA
allocates tasks with GRTA. We have implemented extensive
experiments to demonstrate the performance of the proposed
algorithms. Experimental results demonstrate the effective-
ness of the proposed algorithm. Compared with RTA, the
proposed algorithms SI-TA and PS-TA reduce completion
latency at least by 20% and 40%, respectively. Regarding
energy efficiency, SI-TA and PS-TA outperform RTA in the
most cases. Furthermore, SI-TA and PS-TA can obtain more
stable performance than RTA in the most cases. On the other
hand, PS-TA runs faster than SI-TA,while SI-TA can generate
better paths than PS-TA when the distance between starting
nodes is large.

Our future work will consider the heterogeneity of space
robots and real-time exploration task, as the heterogeneity
produces new challenges for static path planning, while the
real-time exploration task leads us to deal with dynamic path
planning.
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