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ABSTRACT While significant research advances have beenmade in the field of deep reinforcement learning,
there have been no concrete adversarial attack strategies in literature tailored for studying the vulnerability
of deep reinforcement learning algorithms to membership inference attacks. In such attacking systems, the
adversary targets the set of collected input data on which the deep reinforcement learning algorithm has been
trained. To address this gap, we propose an adversarial attack framework designed for testing the vulnerability
of a state-of-the-art deep reinforcement learning algorithm to a membership inference attack. In particular,
we design a series of experiments to investigate the impact of temporal correlation, which naturally exists
in reinforcement learning training data, on the probability of information leakage. Moreover, we compare
the performance of collective and individual membership attacks against the deep reinforcement learning
algorithm. Experimental results show that the proposed adversarial attack framework is surprisingly effective
at inferring data with an accuracy exceeding 84% in individual and 97% in collective modes in three different
continuous control Mujoco tasks, which raises serious privacy concerns in this regard. Finally, we show
that the learning state of the reinforcement learning algorithm influences the level of privacy breaches
significantly.

INDEX TERMS Adversarial attack, deep reinforcement learning, membership inference attack, privacy.

I. INTRODUCTION
Despite the recent advancements in the design and perfor-
mance of deep reinforcement learning (deep RL) algorithms
in complex domains ([1], [2], [3]), the vulnerability of these
models to privacy breaches has only begun to be explored
in the literature. In particular, while there have been a few
studies on the vulnerability of deep RL models to adversarial
attacks [4], [5], [6], there has been no study on the potential
membership leakage of the data directly employed in training
deep RL models, which is known as membership inference
attacks (MIAs). The potential success of such MIAs can have
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serious security ramifications in the deployment of models
resulting from deep RL.

One of the major challenges in the implementation of
MIAs in deep RL settings is the sequential and correlated
nature of deep RL data points. Unlike in deep supervised
settings, a data point in deep RL algorithms may consist of
hundreds of correlated components in the form of tuples,
all together forming a single trajectory. A successful MIA
algorithm against a deep RL model should be able to learn
not only the relation between the training and output trajec-
tories but also the correlation between the tuples within each
trajectory (data point). Another complication in this regard
concerns the relationship between the training and prediction
data points. In deep RL settings, batches of collected input
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data are used for training the deep RL policy. Thus, each
output data point corresponds to every single data point in the
training batches. This feature is in contrast with, for instance,
that of data points in text generation problems (e.g. machine
translation or dialogue generation systems), where there is a
direct (usually one-to-one) correspondence between the input
and output sequential data points. Finally, RL algorithms are
learning systems where the concept of labels is not defined
as it is in supervised learning methods. Instead, during the
learning phase, the deep RL agent receives reinforcement
(aka rewards) from the environment as the outcome of the
selected action. The deep RL agent uses the obtained rewards
to learn the task and optimize its learning policy. These
factors lead to complications in defining input-output pairs
in training attack classifiers and subsequently establishing a
meaningful relationship between the pair constituents.

Deep RLmethods have a unique structural difference com-
pared to deep supervised or unsupervised methods, i.e. learn-
ing based on temporal correlation between the tuples in each
trajectory and partial reinforcements the model receives upon
interaction with the underlying environment. Even though
deep RL models decorrelate input trajectories through an
intermediate mechanism called replay buffer (for more infor-
mation, refer to the Background section), the inherent corre-
lation between transition tuples still plays a significant role in
the feature representation learned by the deep RL model [7],
hence the behaviour of the output policy. In this regard, two
natural questions arise:

1) How much information (concerning the training data
points) can an adversary extract from the output of a
trained deep RL model?

2) To what extent can an adversary benefit from feature
correlation in the learned policy?

This study presents the first black-box MIA against a deep
RL agent to address these two questions. In our proposed
adversarial attack framework, the target model is considered a
black box; thus, the attacker does not have access to the inter-
nal structure of the deep RL agent. In particular, the attacker
can only access the model output in the form of trajectories
τ out
T resulting from the trained policy πf . We use batch
off-policy reinforcement learning setting, where the common
practice is that an (unknown) exploration policy (behaviour
policy) πb collects private data points in the form of a batch of
trajectories. The batch data is thereafter delivered to the deep
RL algorithm in the form of independent trajectories (Markov
chains) to train the target policy. In this setting, the RL agent
decouples the data collection phase from the policy training
phase (i.e. off-policy). In the off-policy setting, the learning
system is not tied to a particular exploration algorithm and
ensures disjointedness between the training data sets provided
for the RL algorithm in different settings. Off-policy setup is
particularly preferred in designingMIA frameworks in black-
box settings, where neither the internal structure of the target
model nor the exploration policy used to collect the training
trajectories is known to the adversary.

Our proposed attack framework tests the vulnerability of
a state-of-the-art off-policy deep RL model to MIA in two
modes: individual and collective. In the individual mode,
the attacker’s goal is to train a probabilistic model that
infers the membership probability of a single trajectory τ in

T
given the trained policy πf and the initial state s0. In this
case, the goal is to measure the extent to which the adversary
can exploit trajectory-level temporal correlation to reveal the
presence of a trajectory in the training set. In the collective
mode, the attacker’s target is to predict the membership prob-
ability of a collection of data points. In this mode, the goal
is to measure the extent to which the adversary is capable of
exploiting not only the trajectory-level temporal correlation
but also the batch-level correlation to reveal the presence of
a trajectory in the training set. We show that the deep RL
model is more vulnerable to collective MIA as in this mode,
the attack classifier has access to more information.

Moreover, we assess the vulnerability of the RL algorithm
to MIA in terms of the learning state of the algorithm. Our
results show that the cumulative amount of reinforcement
the RL agent obtains in the course of training the policy is
proportional to the level of its vulnerability to MIAs. Finally,
to determine the role of data correlation in the vulnerability of
the deep RL model to MIA, we disturb the correlation within
the data points used to train the attack classifier and subse-
quently compare the impact of training the attacker with the
resulting decorrelated trajectories on the performance of the
attack classifier. We observe that the presence of correlation
within the trajectories helps the adversary discern between the
member and non-member data points with higher probability
compared with the results obtained from the decorrelated
case.

The contributions of this study summarize as follows:
• We present the first black-box membership inference
attack against a deep RL agent.

• The proposed model utilizes batch off-policy reinforce-
ment learning setting for data collection, which ensures
disjointedness between training data sets and is preferred
in black-box MIA frameworks.

• We introduce two modes of membership inference
attack: individual and collective, to measure the extent
of exploiting temporal and batch-level correlation in
revealing training set presence.

• This study demonstrates that the deep RL model is more
vulnerable to collective MIA, as the attack classifier has
access to more information in this mode.

• In this study, we assess the vulnerability of the deep
RL algorithm to MIAs in terms of the learning state,
demonstrating that the cumulative amount of reinforce-
ment obtained during policy training is proportional to
the vulnerability of the deep RL model.

• Finally, this study investigates the impact of data
correlation on vulnerability to MIAs and shows that
the presence of correlation within trajectories helps the
adversary discern between member and non-member
data points with higher probability.
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FIGURE 1. Batch off-policy RL learning architecture. An external behaviour policy generates
a batch of trajectories composed of transition tuples (state, action, reward, new state). The
trajectories are subsequently passed to the deep RL model. The replay buffer mechanism,
as an internal part of the model, decorrelates each trajectory into a collection of i.i.d.
transition tuples and then uses them in the form of mini-batches to train the target policy.

II. BACKGROUND
In this section, we provide the background information in
two parts: i) a general introduction to reinforcement learning
systems, and ii) membership inference attacks.

A. REINFORCEMENT LEARNING
In reinforcement learning (RL) systems, an agent learns
a task through a sequence of trial and error and receives
rewards through environmental interactions. The agent’s task
is formalized as a stochastic process that is described by
a Markov Decision Process (MDP). An MDP is a tuple
⟨S,A,P,R, p0⟩ consisting of a set of states S, a set of
actions A, a transition probability kernel P : S × A →

Pr(S), a reward function R : S × A → R, and an initial
state distribution p0 that characterizes the initial state of each
episode. At each time step t = 0, 1, 2, . . . ,T − 1, the
agent is at the environment state st ∈ S and selects action
at ∈ A according to the policy π (at |st ). The policy π :

S → Pr(A) is the agent’s action-selection strategy, which
maps the current state to a distribution over actions and is
updated throughout the learning process. Upon taking action
at , the environment determines the agent’s next state st+1 via
the transition probability kernelP(st+1|st , at ) and returns the
reward rt computed by the reward functionR(st , at ).
The RL agent’s goal is to maximize the rewards received

in the long run. The cumulative reward that the RL agent
receives after time step t is called return, defined as Gπ

t :=∑
∞

k=0 γ krt+k+1, where the discount factor γ ∈ [0, 1] deter-
mines the weight of the future rewards. The value of each
state at time t under policy π is called the state-value function
V π (st ), and is defined as the expected return when the agent
starts at st and follows the policy π :

V π (st ) = Eπ {Gt |st }. (1)

Similarly, we can determine the value of a state st and action
at taken at time t (on the condition that we follow the pol-
icy π afterwards) using the notion of action-value function
Qπ (st , at ), defined as

Qπ (st , at ) = Eπ {Gt |st , at }. (2)

The ultimate goal of the RL agent is to learn an effective
policy that maximizes the value functions.

In the context of RL, a data point in a batch of data is
a sequence of temporally correlated tuples (st , at , rt , st+1)
that denote the history of the RL agent’s interaction with the
environment. This sequence of tuples is often referred to as
trajectory, and is denoted as

τT = (s0, a0, r1, s1), . . . , (sT−2, aT−2, rT−1, sT−1). (3)

RL agents do not have knowledge of the environment at the
very initial stage of learning and acquire the necessary expe-
rience through continued interactions with the environment.
An RL agent can acquire the necessary information in two
ways: on-policy and off-policy. In the on-policy setting, the
agent uses the target policy that is trained so far to obtain data
through interaction with the environment. In the off-policy
setting, on the other hand, the agent receives an input batch
of data in the form of trajectories provided by an exploratory
agent (i.e. behaviour policy πb), and subsequently uses the
acquired data to train the target policy πf (exploitation). The
output of the trained target policy consists of data points
(trajectories) produced as a result of the interaction between
the target policy and the environment (Figure 1). From the
privacy point of view, since private data is assumed to exist
a priori, off-policy methods are natural choices to be analyzed
in this regard. Figure 1 presents a schematic of off-policy deep
RL architecture.

The fact that the input trajectories in off-policy deep RL
models are temporally correlated necessitates the use of a
mechanism that converts the input data to i.i.d. samples before
passing it to the deep network. Awidespread and fundamental
data management mechanism that has become an inevitable
part of the existing off-policy deep RL models is experience
replay buffer or replay buffer. The main intuition behind
the application of replay buffer in deep RL lies at the heart
of RL theory. It is well-studied that fundamental RL algo-
rithms (e.g. Q-learning) easily diverge in the case of linear
function approximation [8], [9]. The solution that replay
buffer offers to the divergence problem of these algorithms
is to decorrelate the input trajectories and subsequently treat
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each transition tuple as an i.i.d. sample point (Figure 1).
This intermediate decorrelation step significantly improves
data efficiency and helps the deep RL algorithm converge
to the optimal policy according to the law of large num-
bers. Moreover, it allows the deep RL algorithm to benefit
from mini-batch training and shuffling techniques, which are
proven to improve the performance of deep RL algorithms
significantly [10], [11], [3], [12], [13], [14].

B. MEMBERSHIP INFERENCE ATTACK
In machine learning, a membership inference attack (MIA) or
tracing attack [15], [16], [17] is a form of adversarial attack
that is designed to infer the presence of a particular data point
in the training set of a target model. For example, an attacker
can collect a set of emails, some of which are part of the
original training dataset used to train a spam classification
model and use the trained model’s predictions to train a
binary classifier that distinguishes between in-dataset and
out-of-dataset emails. By inputting new emails into the binary
classifier, the attacker can infer if the new email was likely
part of the training dataset or not, raising privacy concerns
about the potential leakage of sensitive data used to train the
model.

The central intuition in the design of MIAs is that publicly
available trained models tend to exhibit higher confidence
in their predictions of the individuals who participated in
the training data. Consequently, the members of training
sets are vulnerable to privacy threats [16], [18]. The main
challenge for the adversary in MIAs is to design a classifier
compatible with the target model domain setting and decide
whether a particular data point was part of the training set
given the training target model’s output. Attackers employ
different MIA design strategies based on: i) the adversary’s
knowledge level of the parameters in the target model (Label-
only strategy) and ii) the adversary’s knowledge level of the
training data (Shadow model technique).

In the Label-only strategy [19], [20], the attacker only relies
on model predictions and discards the model’s confidence
scores. In this technique, the attacker uses the generalization
gap (the difference between the train and test accuracy) in
the attack model as the main driver in inferring the mem-
bership of individuals used in training the target model. The
label-only technique was first introduced by Yeom et al. [19]
and was subsequently extended by Choquette et al. [20] to
show how the label-only technique can improve the existing
attack baselines. As the notion of the label is not defined in the
general RL setting, the label-only technique cannot be applied
here in devising MIAs against RL models.
Shadow model technique [16] is known as an effective

and practical approach for designing MIA models. Shadow
models are parallel local models trained on data sets often
sampled from the same distribution as the underlying distri-
bution of the private data. In this method, the adversary trains
the shadow models with complete knowledge of the training
set. Thus, using the auxiliary membership information and

the trained shadow models, the adversary can build a mem-
bership classifier that identifies whether an individual has
participated in the training of similarly trained models.

In the training phase in both label-only and shadow model
techniques, the adversary should have access to the model
output labels and the training data true labels. However, the
sequential nature of the training and output data points and
the temporal nature of model training make the design of
MIAs for RL models fundamentally different. Moreover, the
presence of a replay buffer as an inevitable part of off-policy
deep RL models adds another level of complexity to the
design of MIAs, as this intermediate transformation phase
adds a new source of noise to the data from the attacker’s
perspective.

III. RELATED WORK
MIAs were used for the first time against machine learning
systems by Shokri et al. [16]. In the following years, extensive
studies were performed on the application of MIAs against
supervised ( [16], [18], [19], [21], [22]) and unsupervised
([23], [24], [25]) machine learning models, surveyed compre-
hensively by Hu et al. [26], and Rigaki and Garcia [27]. This
section reviews the existing attack models against supervised
and unsupervised models trained on sequential data.

MIAs have been executed against aggregate location time-
series [28], [29], [30]. For the first time, Pyrgelis et al. [30]
studied the impact of different spatial-temporal factors that
contribute to the vulnerability of time-series-based algo-
rithms toMIAs.MIAs have also been studied in the context of
text generation problems [31], [32], where the attacker’s goal
is to identify whether or not a specific sequence-to-sequence
or sequence-to-word pair is part of the input training data of
a machine translation engine, a dialogue system or a sen-
timental recommendation system. The structure of machine
learning algorithms with sequential data differs from that of
classic classification tasks in the input and prediction types.
While inputs and outputs in standard classification problems
have fixed sizes, they are chains of correlated elements with
variable lengths in sequence generation tasks. This differ-
ence poses a fundamentally different approach to designing
MIAs against sequence generation tasks. The knowledge of
output space distribution is no longer valid for the attack
classifier since the output length may vary from one model to
another. To tackle this challenge, Song and Shmatikov [31]
assume access to a probability distribution over output-space
vocabularies. They [31] split their proposed attack model
into two phases, shadow model training and audit model
training. In the shadow model training phase, the attacker
trains multiple shadow models assuming that the attacker has
access to a generative model that generates a sequence of
vocabularies. In the audit training phase, the attacker uses
the rank of the words produced by the target model instead
of the output probability distribution. The central assumption
is that the gap observed between the trained model rank
predictions depends on word frequencies in the training and
test sequences. In a similar study, Hisamoto et al. [32] address
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MIA against sequence-to-sequence models in a setting where
the adversary is agnostic to the word sequence distribution.
In their work, the attacker is equippedwith a generativemodel
for different translation subcorpora, an alternative for output
word sequence distribution.

While in models trained on sequential data, the
input-output relation is well defined and deterministic,
in deep RL models, the output data are generated through
the trained policy; thus, each output sequence can be con-
sidered as evidence for the entire input dataset. Therefore,
one requires a fundamentally different approach in designing
MIAs against RL algorithms. To the best of our knowledge,
there is no prior work in the context of deep RL that addresses
the problem of membership inference at a microscopic level,
where the attacker infers the membership of a particular data
point in the training set of deep RL models [26], [27].

IV. METHODS AND EXPERIMENTS
In our proposed adversarial attack framework, we success-
fully conduct MIA against deep RL in a black-box setting,
where only the model output is accessible to external users.
The deep RL model interacts with an environment whose
distribution of initial states, state space S and action space
A are common knowledge, an assumption widely accepted
in the RL community [33], [34], [35]. In this section, we first
explain the general setting of the problem and subsequently
introduce our attack platform and our proposed method of
data formatting for training the attack models. We further
mention the different settings we have considered in our
experimental design. Finally, we provide our choices of per-
formance measures to assess the behaviour of the attack
model.

A. GENERAL SETUP
We propose an adversarial attack method for studying the
vulnerability of the deep RL algorithm to MIA in a black-box
setting, where the attacker’s access to the model is limited to
the output trajectories of the model trained on a private batch
of input trajectories. Figure 2 depicts the general framework
of our proposed black-box attack against deep RL algorithms.

The two important oracles that should accompany the
end-to-end design of a black-box attack model in off-policy
deep RL are i) the data oracle O data, and ii) the model
trainer oracle O train. The data oracle interacts with the
environment and returns a set of independent and identically
distributed (i.i.d.) training trajectories (Markov chains) for
the model trainer oracle O train (see Figures 2 (a, b)). The
data oracle is a black box which is equipped with a set
of unknown exploration policies. To train the target model,
whose training input is of the adversary’s interest, the data
oracle is initialized privately (see Figure 2 (a)), leading to
the generation of a batch of private training data points in
the form of trajectories. The model trainer oracle is agnostic
to the exploration policy used for the data collection. The
training data batch is passed to the deep RL trainer oracle,
and the resulting trained model is made publicly available

for data query. Our experimental framework can adopt any
of the existing off-policy batches deep RL models as the
deep RL trainer oracle. In this study, we choose to work
with the state-of-the-art Batch-Constrained deep Q-learning
(BCQ) [36] model, which is widely used as the basis of
other deep RL algorithms and exhibits remarkable perfor-
mance in complex control tasks. Structurally, BCQ trains a
generative model on the input trajectories such that the model
learns the relationship between the visited states in the input
trajectories and the corresponding actions taken. The BCQ
algorithm subsequently uses the developed generative model
to train a deep Q-network, which ultimately learns to sample
the highest-valued actions similar to the ones in the input
trajectories.

We use the shadow model [16] training technique to
acquire the data needed for training the attack classifier.
In this method, through the data oracle, the attacker provides
the deep RL trainer oracle with a set of non-private training
trajectories (Figure 2 (b)), on which the deep RL model is
trained. The attacker subsequently queries output trajectories
from the trained deep RL model and passes the training and
output trajectories to the data formatter (Figure 2 (c)). In this
step, the training-output trajectories are augmented into pairs
and are subsequently labelled as 1 in positive pairs and 0 in
negative ones depending on whether or not the trajectories
belong to the same trained model. Finally, the attack trainer
trains a probabilistic classifier that takes as input the pairs
of trajectories prepared by the data formatter and returns
a trained probabilistic attack classifier that is subsequently
used to infer the membership of target input trajectories
(Figure 2 (d)).
Since the attack training data collected by the data oracle

O data and prepared by the data formatter is of a sequential
nature, we need to adopt an attack model that is compatible
with time-series data. The classifier should minimize the
expected loss, defined as

ED
[
l(AD,θ (., πf ), g(.))

]
≈

1
|D|

∑
τ∈D

l(Aθ (τ, πf ), g(τ, πf )),

(4)

where g(.) is the function that assigns labels to the formatted
pairs, A(.) is the parameterized classifier, and l(.) is the loss
function adopted by A. The dataset D contains a set of i.i.d.
trajectories drawn from D, and πf denotes the policy trained
on D. The goal of the attacker is to train a classifier that
learns a parameter vector (or network) θ∗ that minimizes the
loss function. The following sections provide more details
regarding the data formatter and attack classifier.

B. EXPERIMENTAL SETUP
In our experimental design, we study the vulnerability of the
deep RL model to MIAs in terms of the following factors:

1) the membership inference mode (collective vs. individ-
ual MIA) - In the individual mode, the adversary’s goal is to
infer the membership of single training data points (trajecto-
ries), while in the collective mode, the adversary’s target is
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FIGURE 2. The proposed black-box MIA architecture. (a) Private deep RL model training: the black-box
exploration engine (data oracle) interacts with the environment and provides private training trajectories for
the black-box deep RL model trainer. The trained deep RL model is subsequently used to output target
trajectories via interaction with the environment. (b) Shadow training: the data oracle is used to produce
non-private training trajectories to be used as input to train the deep RL trainer oracle. The trained deep RL
model subsequently generates the output trajectories. (c) Training the attack classifier: the input and output
trajectories obtained in part (b) are paired together in data formatter to provide positive training pairs.
Another set of trajectories, which has not been used in training the shadow model, is used with the output
trajectories from part (b) to create negative training pairs. The attack model is subsequently trained using
the paired trajectories with the corresponding positive and negative labels. (d) Membership inference
attack: the target output trajectories from part (a) are paired with sample test trajectories in the data
formatter. The trained attack model subsequently uses the pairs to infer the test set trajectories that were
used to train the private deep RL model.
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a batch of trajectories used in the training of the deep RL
model. In this experimental setup, we aim to address two
scenarios in which a participant’s identity is revealed. In the
individual mode, a trajectory reveals a user’s identity, while
in the collective mode, a collection of trajectories represents
the user’s identity.

2) the maximum trajectory length T max within each
episode - The value of T max is determined and fixed by
the environment during data collection and model training.
In particular, the RL agent’s trajectory in each episode ends
when either the agent arrives at an absorbing state at T <

T max or the number of time steps T = T max. Larger T max
corresponds to larger values of return (cumulative reward),
thus an improved deep RL policy.

3) the level of correlation within the input trajectories used
to train the attack classifier - In the case of individual MIA,
we study the performance of our proposed attack classifier
in two modes: 1) correlated mode, where the adversary is
trained on pairs with undisturbed input trajectories, 2) decor-
related mode, where in the attack training phase, the input
trajectory is formed by sampling tuples at random from the
whole batch. This set of experiments provides useful infor-
mation regarding the effect of the correlation level within the
input trajectories on the performance of the attack model.

Below is a detailed description of the environments used in
our experimental design, the data formatting technique, and
the attack architecture.

1) ENVIRONMENTS AND RL SETTING
We assess the algorithm on OpenAI Gym environments [37]
powered by MuJoCo physics engine [38], which are standard
tasks adopted by many recent RL studies [39], [40], [41],
[42], [43]. Gym provides a variety of simulated locomotion
tasks with different action and state space dimensionalities.
Here, we train the deep RL agent on three high-dimensional
continuous control tasks:Hopper-v2 (A ⊂ R3 and S ⊂ R11),
Half Cheetah-v2 (A ⊂ R6 and S ⊂ R17), and Ant-v2 (A ⊂

R8 and S ⊂ R111). Starting from virtually zero knowledge of
how each task works, the deep RL model’s goal is to teach
the Hopper how to hop, the HalfCheetah how to run, and
the Ant how to walk as fast as possible. We use the Deep
Deterministic Policy Gradient (DDPG) algorithm [39] as the
data oracle O data and Batch-Constrained Deep Q-Learning
(BCQ) [36] as the batch off-policy deep RL method used in
the trainer oracle O train.

2) DATA AUGMENTATION
Each trajectory starts with an initial state s0 drawn from
the available distribution of initial states in the environment,
followed by action a0 selected and taken by the RL agent.
The environment subsequently takes the agent to the next
state s1 and returns the reward r1. The agent’s next choice
of action is based on s1, and this cycle continues until the
trajectory ends at sT . In other words, the initial state s0 plays
a significant role in determining the sequence of actions taken

by the RL policy and the consequent states and rewards. Thus,
to prepare training pairs to train the attack classifier, we pair
the training and output trajectories that have the same initial
states, fixing the starting point of the two trajectories in a pair.
Moreover, as the RL agent interacts with MDP, the resulting
trajectory is a Markov chain, i.e. every state and reward in the
trajectory is the direct consequence of the previous state and
action. Therefore, we choose to remove states and rewards
from the trajectories, keep the actions in the trajectory, and
use them in the pairing process.

Each task is equipped with a set of absorbing states B ∈ S.
An absorbing state is a state that leads to the termination of an
agent’s chain of interactions with an environment. Due to the
presence of absorbing states in the environment, the generated
trajectories have different lengths. To pair the training and
output action trajectories obtained from the deep RL model,
we need to either increase the length of shorter action trajec-
tories to match that of the longest one or clip longer action
trajectories to a pre-determined length. Based on the desired
length, we choose to repeat the last action in shorter action
trajectories for the required number of times and trim longer
trajectories. Each action trajectory is a dA × T dimensional
array, where dA is the dimension of action space, and T is
the total number of actions in the trajectory. Every output
action trajectory is concatenated with a training trajectory
such that the resulting pair is a 2dA × T dimensional array.
The pairs are subsequently passed to the attack classifiers in
multi-dimensional arraysR2dA×T andR2dA×T×m in individ-
ual and collective modes, respectively. The value m refers to
the number of pairs in each batch in the collective mode.

3) ATTACK CLASSIFIER ARCHITECTURE
We use Temporal Convolutional Networks (TCNs) [44]
as the classifier for individual MIA, and Residual Net-
work (ResNet) [45] deep architecture for collective MIA.
Figure 3 shows a schematic of TCN (Figure 3(a)) and ResNet
(Figure 3(b)) architectures.
Individual-Mode Attack Classifier Architecture- As both

training and output trajectories of RL models are composed
of temporally correlated transition tuples, the choice of attack
classifier must utilize the input-level temporal correlation
in its feature representation. TCNs are structurally designed
to utilize the inherent temporal correlation in the training
data through a hierarchy of temporal convolutions architec-
ture. In this regard, TCN employs a 1D fully-convolutional
network (FCN) architecture [46], where each of its hidden
layers has the same length as the input layer (Figure 3(a)).
The main advantage of TCN is its ability to use dilation in
convolution layers to keep the long-range temporal depen-
dency and increase the receptive field of the convolutional
layers. In the individual MIA mode, since the input data to
the classifier is a pair of temporally correlated tensors (i.e.
R2dA×T ), the long-range correlation between input tuples
within each trajectory is well-aligned with the input structure
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FIGURE 3. The network architecture of TCN (a) and ResNet (b) used in the individual and collective MIAs,
respectively.

of TCNs. For more information on the internal structure of
TCN architecture, refer to the Supplementary Information.
Collective-Mode Attack Classifier Architecture- In this

case, while more information is accessible to the attacker,
it requires a more complex learning architecture and
more sophisticated hyper-parameter tuning to exploit the
cross-correlation among the training trajectories and the
temporal correlation within a trajectory. In the collective
mode, our input is in the form of a three-dimensional tensor
(e.g. R2dA×T×m). Unlike the individual MIA mode, which
involves 2-dimensional inputs, in the collective MIA mode,
we have another dimensionm for the number of trajectories in
each batch of trajectories, similar to the data structure used in
image classification problems [45], [47], [48]. Thus, we use
the deep residual network (ResNet) architecture [45] because
of its inherent compatibility with data sets with temporally
deep structures. ResNets are popular for solving standard
computer vision problems [45], [49], [50].

C. PERFORMANCE METRICS
We adopt the standard performance metrics used in the clas-
sification literature [51] to evaluate the performance of our
proposed attack models. We measure the performance of the
attack classifier with the following metrics:

Overall accuracy (ACC), which captures the overall per-
formance of the attack classifier and is calculated as follows,

ACC =
TP + TN

TP + TN + FP + FN
, (5)

where TP (true positives) denotes the number of correctly
recognized positives, and TN (true negatives) shows the num-
ber of correctly recognized negative ones. The two other
quantities, false positives FP and false negatives FN indicate
the number of incorrectly recognized positives and negatives,
respectively.

Precision (PR), which shows the fraction of pairs classi-
fied as matching pairs that are indeed coming from the same
model, and is written as, PR = TP/TP + FP.

Recall (RE), which measures the fraction of matching
pairs that the attack classifier can infer correctly, and is
computed as, RE = TP/TP + FN.
F1 score (F1), which is the harmonic mean of the pre-

cision (PR) and recall (RE), and is calculated as F1 =

(2.PR ∗ RE)/(PR + RE).
Matthews Correlation Coefficient (MCC) [52], which

calculates the correlation between the predicted and the true
classification labels, and is defined as,

MCC =
TP.TN − FP.FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

(6)

MCC is an effective and meaningful combination of all
four quantities TP, TN, FP, and FN, and ranges from −1 to 1.
The closer MCC is to 1, the better the model performs [53].
MCC= 0 shows that the model is a random guesser. The
other evaluation metrics ACC, PR, RE, and F1 vary in the
[0, 1] range. In a well-performing model, all of these eval-
uation metrics have values close to 1. Finally, to show the
performance of our proposed MIA classifiers in individual
and collective modes at different classification thresholds θ ,
we plot the receiver operating characteristic (ROC) curve,
which shows the changes of recall RE as a function of False
Positive Rate FPR = FP/(FP+TN) for different values of θ .

V. RESULTS AND DISCUSSION
This section presents and discusses the results of differ-
ent experimental scenarios to capture the interdependence
between different parameters that affect the accuracy ofmem-
bership inference in deep RL settings.

A. COLLECTIVE VS. INDIVIDUAL MIAs
Using different classification metrics, we assess the
behaviour of TCN and ResNet attack classifiers in predicting
the membership probability of individual and collective data
points, respectively. Figure 4 presents the performance of
the classifiers TCN and ResNet in Hopper-v2 (Figure 4(a)),
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FIGURE 4. The performance of the attack classifiers in tasks Hopper-v2 (a), HalfCheetah-v2 (b), and Ant-v2 (c) in
individual and collective attack modes. Each data point is determined from the average result of 5 separate runs.
The error bars depict the error on the mean for ACC (top) and MCC (bottom) in the corresponding runs. The batch
size m = 50 in the collective mode.

FIGURE 5. The MIA accuracy in Hopper-v2 (a), HalfCheetah-v2 (b), and Ant-v2 (c) in the collective attack mode for
different batch sizes. Each data point is determined from the average result of 5 separate runs. The error bars
depict the error on the mean. The maximum trajectory length T max = 100.

HalfCheetah-v2 (Figure 4(b)), and Ant-v2 (Figure 4(c)) in
terms of ACC and MCC for different maximum trajectory
lengths T max. The full report of their performance in these
three tasks is provided in Section II of the Supplementary
Information file. The results show that our proposed attack
framework can infer the RL model training data points with
high accuracy (e.g. > 0.8 in the individual and > 0.9 in the
collective mode for T max ≥ 100 in Hopper-v2), indicating a
high risk of privacy invasion. Moreover, the results reveal that
for a fixed T max, the adversary infers collective data points
with significantly higher accuracy than the accuracy value in
the individual mode. For example, in the Hopper-v2 task, the
membership inference accuracies in the collective mode for
Tmax are more than 12% higher than those in the individual
mode. This observation shows that the deep RL algorithm
is more vulnerable to MIA in the collective mode, which is
expected since more information is provided to the attack
classifier through a batch of data points instead of one.
In particular, in the collective mode, the adversary can
capture the collective properties of the training data points
and their relationship with the output trajectories, which
could be veiled in one individual trajectory.

To further study the effect of batch size on the performance
of MIA in the collective mode, we conduct MIAs against the
deep RL agent for different batch sizes (Figure 5). A closer
analysis of the two figures (Figure 4 and Figure 5) reveals
that while larger batch sizes correspond to a higher level
of deep RL training members’ vulnerability to MIA, batch
sizes m ≤ 5 in Hopper-v2, m < 25 in HalfCheetah-v2, and
m ≤ 10 inAnt-v2 lead to smaller values of inference accuracy
compared with those in the individual mode. We believe that
this difference in the performance of the adversary between
the two cases corresponds to the different structures used in
the individual and collective modes (i.e. TCN and ResNet).
In particular, our results show that the effectiveness of the
ResNet classifier in inferring the membership of the data
points surpasses that of TCN in larger batch sizes.

B. THE IMPACT OF T max
We test the performance of attack classifiers against the target
model for different values of T max in a set of experiments.
As the environment is unvarying, the value of T max remains
unchanged throughout each experiment. Our observations
presented in Figure 4 show that as T max increases, the
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FIGURE 6. Deep RL curves in three high-dimensional locomotion tasks Hopper-v2 (a), HalfCheetah-v2 (b), and Ant-v2 (c). The
graphs depict the performance of the deep RL model as a function of time for different maximum trajectory lengths T max. The
plots are averaged over 5 random seeds. The performance of the deep RL policy is assessed every 5000 step over 1000000 time
steps.

FIGURE 7. The receiver operator characteristic (ROC) curves of the MIA in HalfCheetah-v2 in the
individual (a) and collective (b) modes for different values of T max.

accuracyACC of the attack classifiers in inferring the training
data points in both individual and collective modes improves.
Moreover, our results show consistent improvement of MCC
as a function of Tmax in all three environments Hopper-v2,
Half Cheetah-v2, and Ant-v2, which is consistent with the
changes in ACC. Note that as MCC utilizes all four values in
the confusion matrix, it provides a more reliable and robust
measure compared to the other metrics (for additional results
and comparison, refer to the tables provided in the Supple-
mentary Information file).

Maximum trajectory length T max plays a significant role
in the performance of deep RL models. Figure 6 illustrates
the learning curves for the deep RL model in Hopper-v2
(Figure 6(a)), HalfCheetah-v2 (Figure 6(b)), and Ant-v2
(Figure 6(c)) for different values of T max. The plots show
that as T max increases, the deep RL policy presents a con-
sistently improved behaviour. As RL policy is a function
that maps the visited states to the selected actions, a closer
deep RL policy to the optimal policy corresponds to a more
predictable relationship between the training and the output
trajectories. We argue that this feature of deep RL policies
contributes to the higher level of vulnerability of the deep RL
models that are trained with larger values of T max.

As the attack classifiers output membership probabilities,
we determine the predicted binary label for a range of accep-
tance thresholds θ = 0.1, 0.2, . . . , 0.9, and subsequently

choose the threshold θ , at which the classifier shows the
highest performance. Figure 7 depicts the sample ROC curves
for HalfCheetah-v2 in individual (Figure 7(a)) and collective
(Figure 7(b)) modes. The plots show that larger values of
T max lead to better performance of the attack classifiers. The
best result is obtained at T max = 200 in both individual
and collective modes. We find that the acceptance threshold
θ = 0.5 yields the highest performance throughout all of our
experiments.

C. TEMPORAL CORRELATION
The results presented so far exhibit the performance of the
MIAs against deep RL as a result of training the attack
classifiers on the temporally correlated data collected from
the training set and the output of the deep RL model. Con-
sidering that the training trajectories are decorrelated in the
replay buffer as the first step after entering the deep RL
trainer oracle, a question arises as to what role the temporal
correlation in the data set plays in the vulnerability of deep
RL models to MIAs. To answer this question, we have per-
formed a set of experiments where prior to the data augmen-
tation phase, the temporal correlation between the deep RL
training trajectories is broken. In particular, we decorrelate
the training trajectories by shuffling their constituent tuples.
We subsequently store the decorrelated transition tuples in an
auxiliary buffer. In the next step, we generate trajectories of
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FIGURE 8. Comparison of the MIA accuracy between correlated and decorrelated settings for Hopper-v2 (a),
HalfCheetah-v2 (b), and Ant-v2 (c).

the desired length by sampling actions uniformly at random
from the buffer. Finally, we pass the collection of decorrelated
training trajectories together with output trajectories to the
data augmentation mechanism and train the attack classifiers
with the paired trajectories in the individual and collective
modes. Figure 8 compares the accuracy of the MIA in the
correlated mode with that in the decorrelated mode for the
three tasks. The plots depict that the adversary’s accuracy in
inferring RL training members decreases significantly upon
decorrelating the training trajectories. The results show that
despite the inevitable input decorrelation imposed by the
replay buffer mechanism in the training phase of off-policy
deep RL models, the temporal correlation in the training
trajectories is channelled to the model output data points.
Thus, the attack classifiers trained on temporally correlated
training data points exhibit higher accuracy than those trained
on decorrelated trajectories.

VI. CONCLUSION
In this study, we design and evaluate the first membership
inference attack (MIA) framework against off-policy deep
RL in collective and individual membership inference modes
by exploiting the inherent and structural temporal correla-
tion present in deep RL data points. We demonstrate the
performance of the proposed adversarial attack framework
in complex high-dimensional locomotion tasks for different
maximum trajectory lengths. Our proposed attack framework
reveals the substantial vulnerability of a state-of-the-art off-
policy deep RLmodel to the black-boxMIAs.We show that it
is significantly more vulnerable to MIA in the collective set-
ting when compared to its vulnerability in individual MIAs.
Moreover, our results demonstrate a consistent increase in the
accuracy of the membership inference as a function of batch
size in the collective mode. Furthermore, our experimental
results reveal that the maximum trajectory length (in the
episodic RL setting), which is set by the environment, plays
a significant role in the vulnerability of the training data used
in the deep RL model to the MIA. We show that a longer
maximum trajectory length leads to an improved deep RL
policy, thus a more defined relationship between the training
and output trajectories, and consequently less private training
data. Moreover, our results reveal the determinative role of
temporal correlation in obtaining high MIA performance,

which the attacker can utilize to design high-accuracy MIAs
against deep RL. Despite the existence of replay memory as
an intermediate data decorrelation mechanism at the heart
of deep RL models, the trained policy still fully exploits
the inherent correlation in learning feature representation,
which poses a significant privacy concern in the deployment
of trained RL policies at the industrial scale. Finally, the
results from this study highlight serious privacy concerns in
thewidespread deployment of similar deep RLmodels, which
demand more investigation of this matter to offer solutions in
future studies. The tasks employed in the current study are
under the umbrella of robotics simulation tasks that motivate
the extension of experiments to real-world robot learning
tasks. Moreover, dialogue systems such as Amazon Alexa,
Apple Siri, and Google Assistant are other interesting future
platforms to apply RL-based MIAs on. In virtual dialogue
systems, a data point is presented by a collection of inter-
action trajectories between the chatbot and the end user.
A chatbot in this setting is the trained RL policy, and the user
interactions with the bot form the training trajectories. In such
settings, the collective mode is the natural inference setting
since a collection of user interactions with the bot represents
individual identity in the training set. In other words, the
user’s presence in the training set can be inferred by the
adversary if and only if the attacker correctly infers a batch
of trajectories representing the individual in the training set.
Another extension to this line of research is to investigate
MIAs against Deep RL models in a white-box setting, where
the internal structure of the target policy is also known to the
adversary.
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