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ABSTRACT Electroencephalography (EEG) signals from each channel mainly reflect activities of the brain
region close to the channel position, and the activities cooperated by various brain regions are response to
the emotion-induced stimuli. In this paper, temporal, spatial and connective features are extracted from EEG
signals gotten around the head, and used for emotion recognition via a proposed model, spatial-temporal-
connective muti-scale convolutional neural network (STC-CNN). The channel-to-channel connectivity is
gotten to describe brain region-to-region cooperation under emotion stimuli. The model obtained an average
accuracy of 96.79% and 96.89% in classifying the two emotional dimensions of valence and arousal.

INDEX TERMS Emotion recognition, EEG, connective features, STC-CNN.

I. INTRODUCTION
Emotion is an important component in daily life [1]. Negative
emotions make people more prone to mental illnesses such
as depression, schizophrenia. Therefore, emotion recognition
plays an important role in the regulation of emotions. Emo-
tional information is expressed mainly through facial expres-
sions, voice tones, and physiological signals (EEG,EOG) [2].
Physiological signals are not affected by subjective factors
and can accurately respond to emotional information. EEG
signals have the advantage of being noninvasive and easy to
use [3]. Therefore, EEG emotion recognition has been the
focus of researchers with good results. In emotion recog-
nition, the boundaries that distinguish emotional states are
fuzzy but the changes in states are continuous. To better
describe emotional states, a dimensional model is used. Emo-
tional states are described as coordinate points in space using
several basic dimensionswith continuous values (e.g. arousal,
valence), each of which is a measure of some aspect of emo-
tion. Zheng used a bipolar dimensional model that includes
arousal and valence dimensions [4].
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The discrete emotion model describes emotions such as
happiness, anger, sadness, disgust, and then all other emo-
tions can be fused by these basic emotions [5]. The value
of the valence axis from positive to negative refers to a
measure of whether an individual’s emotion is positive or
negative. Similarly, positive values in arousal states indicate
activated states (arousal), while negative values indicate inac-
tive states (apathy). Dimensional emotion models are more
intuitive and easier to accurately define the state of emotions
by coordinates, and therefore are widely used in the task
of emotion recognition. P.Bashivan proposed networks with
feature reuse mechanism and used the dimensional emotion
model to achieve high accuracy emotion recognition [6].

The advantages of deep learning are gradually manifested
in the application of EEG. Deep learning, with its ability to
automatically extract features and achieve end-to-end classi-
fication, is increasingly being used in emotion recognition.
Kim proposed a model which based on a convolutional
long short-term memory network [7]. Zhang proposed a
spatial-temporal recurrent neural network (STRNN) for
emotion recognition, and the results showed that STRNN
significantly outperformed SVM [8]. In Zhang [9], [10],
a convolutional neural network (CNN) is used to capture
the relationship between channels by aggregating features
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of adjacent channels using convolutional layers. Nakisa use
a convolutional neural network (ConvNet) long short-term
memory (LSTM) model to fuse the EEG and BVP sig-
nals [11]. Alhagry proposed a network to identify emotions
from raw EEG signals, which uses LSTM-RNN to learn fea-
tures from EEG signals and perform classification [12]. Tao
proposed an attention-based convolutional recurrent neural
network (ACRNN) to extract more informative discrimina-
tive features [13].

EEG signals are non-smooth and using a single size of
convolution kernel may not sufficiently extract rich features
for EEG classification tasks. Previous studies have shown
that using convolutional kernels of different sizes can learn
multi-scale EEG features that are beneficial for different EEG
classification tasks [14]. Liu used ResNet as the backbone
of EEG-based emotion recognition, where deep spatial fea-
tures were extracted using pre-trained ResNet in the same
way as the original EEG signal [15]. Although ResNet has
a strong feature extraction capability, it cannot capture the
contextual information of time-series signals and limits the
correlation between channels due to the fixed size of its con-
volutional kernel. Zhang proposed a ResNet-based dynamic
multiscale network for EEG signal classification, which can
learn multi-scale features from different receptive domains
at a finer level [9]. Li proposed a multi-scale fusion CNN
model based on the attention mechanism. Multi-scale CNNs
have also been introduced to emotion recognition [16]. Phan
proposed a two-dimensional CNN model with convolutional
kernels of different sizes for arousal and potentiated binary
classification. They used kernel sizes of 5 × 5 and 7 × 7 to
extract spatial features to describe the short-range and long-
term relationships between EEG channels [14].

Emotion recognition based on EEG is not only improved
on the model, but also studied on the extraction of EEG
features in the temporal domain, frequency domain and
spatial domain. Various handcrafted features have been
used to extract the differences between different emotional
states. Zheng manually extracted five features, power spec-
tral density (PSD), differential entropy (DE), difference
asymmetry, rational asymmetry, asymmetry, and differential
causal features, to identify emotions using SVM and graph
regularized extreme learning machine (GELM) classifiers,
respectively [17]. Liumanually extracted the spatial-temporal
feature of EEG signals and proposed the 3DCNN model
to better extract the dynamic relation well between the
multi-channel EEG signals and the internal spatial relation
of the multi-channel EEG signals in view of the differences
in EEG signals under different emotions [18].

Deep learning-based EEG features (DE and PSD) can
represent the activity of each brain region. However, the
brain is an organic whole. Brain is essentially a network,
of which the function can be interpreted as the interaction
between regions through the network. The expression of
emotions is a result of cooperation between different areas
of the brain [19]. Linhartov Phe have shown that people

are able to regulate their brain activity in the presence of
rt-fMRI-NF in areas of the brain associated with emotion
regulation, including the amygdala, anterior insula and ante-
rior cingulate cortex [20]. Therefore, emotion can be ana-
lyzed not only through the activities of each brain region,
but also the connectivity between different brain regions,
which motivates us to take advantage of the brain connec-
tivity in EEG signals. Therefore, the connective feature of
EEG signals, which are different from the conventional EEG
features, provide the relevant activity information of emotion.
Liu used Pearson correlation coefficient (PCC) to estimate the
correlation between all channel pairs. They extracted PCC
features and convolutional neural network (CNN) features
in parallel to classify emotional states [21]. Lee and Hsieh
used three types of connective feature to distinguish three
different emotional states. Phase synchronization captures
synchronous activity in the brain, allowing for comprehensive
mining of effective structural and functional cognitive pat-
terns [22]. Li used PLV for emotion recognition, which cap-
tures nonlinear phase synchronization between different brain
regions [23].

This paper has two main contributions: (1) Features of
channel-to-channel connectivity in each region of the brain
to describe the mechanisms of cooperation between brain
region-to-region, and combined with spatial-temporal fea-
tures for modeling emotion recognition. (2) A multi-scale
convolution kernel is proposed for CNN, which fully
extracts the differential EEG signal features and capture
the interactions between different brain regions in differ-
ent emotional states. Experiments were conducted on the
DEAP dataset, and we obtained higher accuracy than tra-
ditional methods on both valence and arousal dimensions.
The results show that considering spatial-temporal feature
and connective feature is more effective in EEG emotion
recognition.

II. MODEL
As the embodiment of emotion changes, the spatial-temporal
features of EEG signals significantly represent the activi-
ties of each brain region. The generation of emotions is the
result of brain region-to-region cooperation. The correlation
features between each brain area provide information about
emotion related activities. Different from the spatial-temporal
features, the connective features are used as both the sup-
plement to the spatial-temporal features and the input of the
(STC-CNN) model. As shown in Figure 1.

A. SPATIAL-TEMPORAL FEATURE EXTRACTOR
The expression of emotions is continuous.Therefore, we need
to process EEG signals over a continuous period of time.
The processed EEG signal will be divided into N segments
by a length of the Ts window. EEG signals embody a lot
of emotion-related features, however it also contains much
noise. Putting the signals directly into the network will extract
features unrelated and affect the accuracy of recognition.
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FIGURE 1. The structure of model.

FIGURE 2. Mapping of electrodes distribution to matrix.

To extract more accurate features and reduce the influence
of noise, it is necessary to further extract emotion-related
features manually.

The model extracts the differential entropy (DE) features
of θ (4-8Hz), α (8-12Hz),β (12-30Hz) and γ (30-50Hz) fre-
quency bands from the EEG data of each length of T s,
which have been shown to better identify emotions [24]. The
formula of DE is

D E(x) = −

∫
+∞

−∞

1
√
2πδ2

exp
(x − µ)
2δ2

log
1

√
2πδ2

·

exp
(x − µ)
2δ2

dx =
1
2
log 2πeδ2 (1)

where the random variable x follows a Gaussian distribution
N

(
µ, δ2

)
.

EEG electrodes are equipped on the brain surface with
spatial distribution according to the international 10-20 sys-
tem standard. The brain is divided into frontal lobe, tem-
poral lobe, parietal lobe, and occipital lobe. For frontal
lobe, electrodes are FP1, FP2, AF3, AF4, F7, F3, Fz,
F4, F8, FC5, FC1, FC2, and FC6. For temporal lobe,
electrodes are T7, T8. For parietal lobe, electrodes are
CP5,CP1,CP2,CP6,P7,P3,Pz,P4,P8,PO3,PO4. For occipital
lobe, electrodes are O1,Oz,O2. C3,Cz,C4, electrodes are
located in the middle of the brain.To extract spatial infor-
mation,the spatial distribution of electrodes is converted
into matrix form, and the conversion process is shown in
Figure 2. The format of two-dimensional transformation fea-
ture matrix, where FP1,FP2,AF3. . . ,O1,Oz,O2 are the corre-
sponding channels of EEG, and the remaining points are filled
with zeros (2), as shown at the bottom of the next page.

EEG signals in period Ts are represented as a matrix S(t)
for feature extraction. In other words, Vi(t) is the measured
EEG data of the i-th channel, and the unit is µV . To com-
bine the temporal features with the spatial features, the DE
features is converted into a two-dimensional matrix as shown
in Figure 3, where Cj ∈ RX×Y (j ∈ {1, 2, 3, 4,N }), X and Y
are set to 9.

B. CONNECTIVE FEATURE EXTRACTOR
For the connective feature extractor, depending on the
distribution of electrode channels in brain regions, the
collaboration of brain regions is refected by the connectiv-
ity information we extracted from different electrode chan-
nels. Given the volume conduction effect, the brain signals
obtained from adjacent brain regions tend to be similar, and
the connectivity features can be represented as a smooth
matrix. The sorting method for this is to start from the elec-
trode in the left frontal area and select the electrode closest
one to the current electrode as the next, which is shown as
following: FP1, AF3, F3, FC5, T7, CP5, P7, P3, PO3, O1,
Oz, O2, PO4, P4, P8, CP6, T8, FC6, F8, F4, AF4, FP2, Fz,
FC1, C3, CP1, Pz, CP2, C4, FC2, Cz. The number (i, k) in the
connectivematrix represents the correlation between the EEG
signals of the i-th channel and the k-th channel. As shown
in Fig.4, EEG signals are first divided into four frequency
bands (θ (4-8Hz), α(8-12Hz), β(12-30Hz) and γ (30-50Hz)).
Then, the connective features will be extracted from the four
frequency bands and connected together. The dimension of
the connective feature matrix is 4×32×32 , where 4 denotes
the four frequency bands extracted from the EEG signal,
and 32 × 32 denotes the number of channels of the EEG
signal. Connexity reflects the correlations between different
brain regions, and each node represents the activity intensity
between different EEG channels.

Connective features are divided into three categories
1)PCC
PCC is a linear correlation coefficient reflecting the linear

correlation between EEG signals of different channels. The
calculation formula is as follows

PCC =
cov(w, z)

σwσz
(3)

where w and z denote the two EEG signals from different
channels, cov(w, z) is the covariance between w and z, σw
and σz is the standard deviation of w and z. The value of PCC
lies between -1 and 1, of which the larger the absolute value,
the stronger the linear correlation.
2)PLV
PLV describes the phase synchronization between two

EEG signals by calculating the average value of phase dif-
ference, and the calculation formula is

PLV =
1
M

∣∣∣∣∣
M∑
n=1

ej1φn

∣∣∣∣∣ (4)

where M is the sampling point of EEG signal, and 1φn is
the phase difference of the NTH sampling point. It used the
Hilbert-Huang transform to calculate the phase difference
between two EEG signals. The value of PLV is between
0 and 1.
3)PLI
PLI is another measure of phase synchronization between

two signals. By calculating the average value of phase
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FIGURE 3. Spatial-temporal feature extraction.

FIGURE 4. Connective feature extraction.

difference, the calculation formula is

PLI =
1
M

∣∣∣∣∣
M∑
n=1

sign (1φn)

∣∣∣∣∣ (5)

where M is the number of sampling points of EEG signal,
sign(.) denotes the sign function and 1φn is the phase differ-
ence of the nth sampling point.

C. STC-CNN MODEL
To combine spatial-temporal features with connective fea-
tures, this study proposes a convolutional neural network of
STC-CNN. As shown in Fig.5, the designed model is com-
posed of convolutional layer, fully connected layer and max-
pooling layer, which adopts a two-branch model architecture.
The inputs of the model are 3D-DE features and connective
features. The CNNmulti-scale method is used to extract high-
level spatial-temporal and connective information from the
features. Then, a fully connected layer is added after the
fusion layer to extract the deep features. Finally, a softmax
layer receives the output of the fusion layer for the final
emotion prediction. For DE branches, the model inputs are
3D-DE features D ∈ R9×9×4. The model consists of three
convolutional layers, a scaled exponential linear unit (SELU)
activation function, and a Flatten layer. The first layer is
Convs1,there are 32 filters, the convolution size is 5 × 5 ,
stride is 1, the other two convolution operations are similar
to Convs1, where Convc2 has 64 kernels of size 3 × 3 con-
volution and Convc3 has 128 kernels of size 3 × 3. Deep
level features will be obtained through these operations and
turned into one-dimensional features Fs through the Flatten
layer.

The input of the model is connectivity feature C ∈

R32×32×4, which reflects the correlation between different
EEG channels. The multi-scale method is adopted, and the
size of each convolution is different, indicating that different
receptive domains can fully capture the connection feature of
different channels and fully reflect the interaction of differ-
ent brain regions. The model consists of three convolutional
layers, two max-pooling layers and one Flatten layer. The
first layer is Convc1, with 32 filters, the convolution size is
7 × 7 , the stride is 1, and the SELU activation function. The
remaining two convolution operations are similar to Convc1,
where Convc2 has 64 kernels of size 5 × 5 convolution and
Convc3 has 128 kernels of size 3× 3. The maximum pooling
layer is respectively distributed behind the second convolu-
tional layer and the third convolutional layer to reduce the
feature dimension and the number of parameters. These Conv
operation to obtain the feature of the deep, by will Flatten

S(t) =



0 0 0 V1(t) 0 V17(t) 0 0 0
0 0 0 V2(t) 0 V18(t) 0 0 0

V4(t) 0 V3(t) 0 V19(t) 0 V20(t) 0 V21(t)
0 V5(t) 0 V6(t) 0 V22(t) 0 V23(t) 0

V8(t) 0 V7(t) 0 V24(t) 0 V25(t) 0 V26(t)
0 V9(t) 0 V10(t) 0 V28(t) 0 V27(t) 0

V12(t) 0 V11(t) 0 V16(t) 0 V29(t) 0 V30(t)
0 0 0 V13(t) 0 V31(t) 0 0 0
0 0 0 V14(t) V15(t) V32(t) 0 0 0


(2)
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FIGURE 5. The structure of the proposed STC-CNN.

layer characteristic flat for a vector Fc. We fuse EEG features
with different attributes and make use of the complementarity
between features, and fuse the advantages between features,
so as to improve the performance of the model. In the fusion
stage, the spatial-temporal data and connectivity data are
normalized to improve the data concentration and eliminate
the adverse effects of sample outliers. The spatial-temporal
DE features Fs and connectivity features Fc will be respec-
tively connected to an integrated vector Fsc, which is the
final comprehensive feature used for emotion classification.
The final feature map will be used to visualize the model
in the following analysis, and the classification part consists
of two fully connected layers. The first layer FC1 contains
128 neurons and the activation mode is ReLU. There are two
neurons in the output layer FC2. The softmax function maps
the output y of the previous layer to the predicted probability
p, and the output is as follows

P (li/y) =
exp(y)∑N
i=1 exp(y)

(6)

At the same time, a dropout layer is added between the fully
connected layers, so as to effectively suppress the overfitting
problem.

III. DATA PROCESSING
A. DEAP DATASET
The DEAP dataset included EEG data from 32 participants
of 16 males and 16 females. Participants were induced to feel
similar emotions by watching 40 different one-minute music
videos as emotional stimuli. During each subject’s 40 trials,
EEG signals were recorded using a 32-channel system.Music
video playback, the experiment will last for 63 seconds, the
first 3seconds is the time of each video conversion, the last
60 seconds is the actual music video playback time. During
this process, participants should try to maintain their balance
and reduce movements. Thus, the size of each participant’s
EEG was 60 × 32 × 40. Each participant was asked to make
40 self-assessments on the SAM questionnaire and rate each
video on a scale of 1 (low) to 9 (high) on arousal and pleasure
levels. The details of the DEAP dataset are shown in Table 1.

TABLE 1. Description of the data set.

FIGURE 6. The diagram of baseline correction.

B. DATA PREPROCESSING
For data preprocessing, in order to reduce noise and improve
the stability of EEG data, baseline correction and Z-score
normalization are carried out on the dataset, which are com-
mon preprocessing methods of EEG. The baseline correc-
tion diagram is shown in Fig.6. First, data downsampling
was used to reduce the frequency to 128Hz, and then blind
source separation was used to remove electrical eye (EOG)
artifacts and 3s baseline data. These operations can improve
the accuracy of emotion recognition by reducing the inter-
ference to basic emotional states before the task cycle. The
EEG signal is split into T=3s long segments with an overlap
time of 2.5s to obtain a sufficient number of data samples
to train the STC-CNN. Since the database has a trial time
of 1 minute, we obtained 115 EEG signal segments per
trial. In this experiment, valence and arousal were selected
as emotion evaluation criteria, and the threshold of the two
categories was set as 5 according to the level of arousal
and valence (1-5 was negative emotion, 6-9 was positive
emotion).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A dimensional model of arousal, valence is used to bet-
ter describe emotional states. This paper first describes the
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TABLE 2. Relevant parameters in the network.

FIGURE 7. Accuracy of model STC-CNN (PLV) in valence(a) and arousal(b).

implementation of the model. Using the dimensional model,
the accuracy of three different connectivity features for emo-
tion recognition is compared. Finally, the results of the
STC-CNN are compared with related research models, and
the STC-CNN achieves high accuracy on the arousal and
valence dimensions for the DEAP dataset.

A. IMPLEMENTATION OF THE MODEL
For the STC-CNN, cross entropy was used as the loss func-
tion. First, the Adam optimiser was used to minimise the loss
function. For the first 20 learning cycles, the learning rate is
0.001, and the learning rate drops to 0.0001 for later learning
cycles. Further,to solve the overfitting problem, we have
set the dropout value to 0.4. For the dataset,10-fold cross-
authentication was used and the performance of the model
was assessed by average accuracy across all subjects.

B. EXPERIMENTAL RESULTS
The proposed model STC-CNN, combines the connectivity
characteristics between different brain regions under different
emotions and the spatial characteristics of EEG channels.
Using multi-scale method, the spatial information of EEG
signal can be fully extracted. Different sensory domains can
capture the interaction of different brain regions in different
emotional states. The model performed an experiment on
valence and arousal dimensions of samples from the DEAP
dataset, as shown in figure 7, and the average accuracy of
96.79% and 96.89% were obtained, respectively.

To better verify whether the model can improve the accu-
racy of emotion recognition under the three connectivity
features. In this paper, three kinds of connectivity features
are tested on the DEAP dataset and their accuracy rates
are compared. In order to explore the relationship between

FIGURE 8. The performance of model STC-CNN.

TABLE 3. Accuracy of different feature.

connectivity features and emotion recognition based on EEG,
we conducted experiments on three connectivity features
(PCC,PLV,PLI), and analyzed the results in two dimensions,
namely valence and arousal. These three types of connection
features are extracted from the EEG signals, and the details
are as follows:

Figure 8 shows that in the dimension of valence, the final
accuracy of PLV connection features is 2.36% higher than
PCC and 1.23% higher than PLI. In the dimension analysis of
arousal, PLV also had the highest connection characteristics,
with an accuracy rate 3.54% higher than PCC and 1.37%
higher than PLI.

It can be seen from the above analysis that different
connectivity features have an impact on the final accuracy,
which indirectly indicates that PLV connectivity character-
istics considering phase synchronization are more closely
related to emotional EEG. Although PLI also considers the
phase synchronization between two signals, it only reflects
the indication of the phase difference between the signals, not
the size of the phase difference. In the connectivity features
PLI, the loss of some EEG signal features leads to low accu-
racy and performance degradation.

With the purpose of explore the influence of spatial,
frequency and connectivity information on EEG emotion
recognition, we compared STC-CNN with two-dimensional
CNN, and to verify whether the connectivity feature infor-
mation and temporal and spatial DE feature information are
complementary, so as to improve the performance of the
model. Table3 shows the average accuracy of our model and
the accuracy of two dimensional CNN. The STC-CNNmodel
outperforms othermodels in both dimensions. STC-CNNwas
10.44% higher in valence dimension and 9.38% higher in
arousal dimension than the CNN+DE model, which indi-
cated that the connectivity feature was complementary to the
two-dimensional mesh DE feature. It could be considered
that the connectivity feature could enhance the spatial infor-
mation of EEG signals. Valence ratio of STC-CNN was
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TABLE 4. Accuracy of STC-CNN and other methods.

FIGURE 9. Diagram of five feature classification results.

16.51%, 9.43%, 10.05% higher than that of CNN+PCC
model, CNN+PLV model and CNN+PLI model, respec-
tively. In arousal dimension, STC-CNN evoked 14.93%,
6.16%, 9.54% higher. DE features are rich in spatio-temporal
information, and the addition of emotions as a complement
to the connectivity features helps to identify emotions.

To further investigate each model and STC-CNN results,
we use t - SNE on final figure on the characteristics
of visual features. The feature classification is shown in
Figure 9. . It can be observed that the features extracted in
the proposed STC-CNN have better separability than other
methods.

In order to further verify the performance of the model
STC-CNN, we compared the model with the other four mod-
els on the DEAP dataset, as shown in Table 3.
Table 4 shows that in the valence dimension and arousal

dimension, the network model with the highest accuracy is
STC-CNN, with an accuracy rate of 96.79% and 96.89%,
respectively. Model STC-CNN was higher than model
CNN+Bi-LSTM by 24.41%, model EEG-GCN by 15.02%,
model GCNN by 6.34%, and model RACNN by 2.14%.

For the selection of features, the first three models all
extract single-level emotional features, and feature extraction
is not sufficient. The STC-CNN model extracts multi-level
emotion features, and the accuracy of emotion recognition is
greatly improved. But the accuracy of RACNN is relatively

FIGURE 10. Average accuracy of valence (a) and arousal (b) dimensions
for 32 subjects.

close, and both combine two different emotional feature.
Compared with STC-CNN, the connectivity feature of the
entire brain region is more suitable for the recognition of
emotions than the distinguishing feature between the two
hemispheres.

For the construction of the models, the STC-CNN model
not only extracts multi-level features but also has a simple
model structure with few parameters, and a multi-scale strat-
egy is more conducive to mining deeper features.

To observe the accuracy performance of the model
STC-CNN on each subject. Figure 10 shows that the figures
are valence dimension and arousal dimension respectively,
and the accuracy of each subject. It can be found that with the
change of subjects, STC-CNN has better performance than

VOLUME 11, 2023 41865



T. Li et al.: EEG-Based Emotion Recognition Using Spatial-Temporal-Connective Features

other models, which can produce higher accuracy across all
subjects.

V. CONCLUSION
An emotion recognition method, STC-CNN, is proposed to
extract the connective features and the spatial-temporal fea-
tures by using multi-scale convolution kernel. It is proved
that the method can achieve the average accuracy of 96.79%
and 96.89% in valance and arousal of DEAP dataset,which is
superior to the existing models.

This work is our active attempt at EEG-based emotion
recognition. We will continue to explore the impact of the
number of EEG signal segments on the accuracy of feature
extraction, explore the characteristics of functional brain net-
work connectivity, and intensity differences between the left
and right hemispheres of the brain will be considered.
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