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ABSTRACT Cognitive workload is an internal factor that can be influenced by external factors.When drivers
are distracted by these internal and external influences, their ability to drive safely can be compromised.
Electroencephalogram (EEG) is a non-invasive neuroimaging technique that measures the electrical activity
of the brain. and it can provide information about brain activity related to various cognitive and motor
functions. In this study, on-road driving experiments were conducted to investigate the EEG characteristics
of drivers under different levels of cognitive workload generated through mathematical calculations with
varying difficulties. The collected EEG signals were processed using continuous wavelet transform to
decompose them into delta, theta, alpha, beta, and gamma waveforms. Numerical values and power spectral
characteristics of each waveband in the left and right frontal regions of the driver were then analyzed.
Furthermore, the study utilized an improved multiscale sample entropy algorithm to analyze the EEG
entropy characteristics of drivers in different states. The results indicate that under different degrees of
cognitive workload, the amplitude of delta, theta, and alpha waves decreased, while beta and gamma waves
showed significant changes. The improved multiscale sample entropy algorithm provided a more objective
assessment of changes in entropy across different wavebands and stages, with smaller entropy fluctuation
ranges and more accurate complexity changes. Overall, this research provides valuable insights into the
characteristics of drivers under cognitive workload, contributing to the analysis of human factors in driving
safety. These findings can inform the development of strategies to mitigate the adverse effects of cognitive
workload on driving performance and enhance overall road safety.

INDEX TERMS Cognitive workload, EEG characteristics, continuous wavelet transform, power spectrum
characteristics, improved multiscale sample entropy.

I. INTRODUCTION
In recent years, people’s travel patterns have undergone great
changes, and traffic accidents have continued to increase.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shovan Barma .

The main causes of global traffic accidents are drunk driving,
fatigue driving and distracted driving [1]. How to make intel-
ligent auxiliary systems better understand the characteristics
of drivers and ensure personalised service has become a hot
issue in traffic safety research. Electroencephalogram (EEG)
signals are regarded as an objective indicator of drivers’
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activities and have attracted much attention. In the process
of driving, drivers are usually interfered by various external
factors, such as cognitive workload, which directly affect the
decision-making of the driver’s brain and have a significant
impact on driving safety. The exploration of cognitive work-
load has always been a hot spot in the field of neuroscience.
Studying cognitive behaviour with changes in EEG signals
can improve driving safety, provide a theoretical basis for
the development of driving assistance systems and have more
practical application value.

The brain wave was first detected by Hans Berger in 1924,
and the brain activity is called electromyogram [2]. Subse-
quently, an increasing number of scientists are conducting
research on human EEG in different fields, analysing its
generation mechanism and changing rules [3]. The electroen-
cephalogram, represented by waves, contains a great deal
of information about disease and physiology. The frequency
of human brain electrical signals is usually in the range of
0.5–50 Hz, and the amplitude of brain electrical signals is
usually 5–200 µV. According to the different frequencies,
EEG signals are usually divided into five frequency bands:
delta, theta, alpha, beta and gamma waves. Different wave-
forms can reflect the different mental states of the brain [4].
Many studies have shown that mental arithmetic has an effect
on electrical activity in the brain. Cohen et al. found that
the prefrontal cortex is related to the data extraction work of
calculation, and the top area is responsible for calculation [5].
Kong et al. studied the impact of the cognitive workload
of varying difficulties on the brain potential and found that
one can be more easily distracted when calculating high-
difficulty tasks than low-difficulty tasks [6]. Kou et al. found
that mental computation has a greater impact on the frontal
and parietal lobes of the brain [7]. Aydin et al. found that
the temporal lobe region responds to auditory stimuli, while
the frontal lobe region simultaneously integrates auditory
tasks [8].

Brain waves are closely related to the state of the driver.
Some studies are based on EEG activity indicators under
normal conditions. An analysis of the changes in EEG under
different conditions found that the activity of delta and theta
waves is most closely related to driving fatigue [9], [10].
The activity level of theta wave will increase with increasing
fatigue [11], while the activity of beta wave will decrease
under driving fatigue [12], [13]. On the basis of a study
on changes in a certain waveform activity, the ratio of fast
waves and slow waves in different frequency bands is often
used to reflect the brain’s electrical activity—for example,
theta/beta; theta/(alpha+ beta); (theta+ alpha)/beta; (theta+

alpha)/(alpha + beta) and many other forms [14], [15], [17].
The four equations listed all include theta activity as slow-
wave activity and beta as fast-wave activity. Many cognitive
tasks are interfering tasks, such as mathematical problem cal-
culation, N-back or decision-making tasks. Lin et al. designed
experiments on math problem calculation interference to pro-
duce cognitive distraction and found that the power of the

theta wave and beta wave in the frontal area of the brain
increases during distraction, and the power increase of the
theta wavewill reflect the degree of interference during actual
driving [18]. Borghini et al. analysed the influence of mental
workload on brain activity through EEG signals and found
that with the deepening of mental workload, the energy of
the theta wave increased, and the energy of the alpha wave
decreased [19].

With the development of digital technology, more complex
system methods are used to quantify brain functions. Entropy
is the most commonly used method. It can measure the com-
plexity of the brain and the network characteristic parameters
for studying brain functions. The entropy of a single discrete
random variable is a measure of its uncertainty, which can
characterise the degree of randomness of the random variable.
Based on the entropy parameter, it can reflect the orderly
changes of complex systems and point out the development
trend of the system, thus being used in the assessment of
brain function status [20]. The approximate entropy was pro-
posed so that its algorithm can be calculated with a small
amount of data and applied to the analysis of physiolog-
ical signals [21]. The approximate entropy algorithm was
improved to obtain sample entropy, which further expanded
the application scope of entropy theory in physiological data
analysis [22]. A multi-scale sample entropy algorithm was
proposed, which can measure the complexity of a finite long-
time sequence [23]. Currently, it is widely used in the anal-
ysis of biological signals. Many scholars have also proved
that evaluating the time correlation on different scales has
an important role in studying the characteristics of brain
electrical signals [24], [25], [26], [27], [28]. Many schol-
ars have also reconstructed the multi-scale entropy method
through research. For example, to reflect the existence of
high-frequency components of physiological signals, Ahmed
et al. combined empirical mode decomposition with multi-
scale and proposed multivariate sample entropy, which can
be applied to stable data testing [29]. Hu et al. proposed
the adaptive multiscale entropy method, which improved the
algorithm in the frequency domain [30]. Costa et al. improved
their own algorithm and proposed to use variance instead
of average to reconstruct time series on various scales [31].
Khanna A et al. proposed the idea of non-uniform segmen-
tation based on spatial trends, which can be divided into
several non-uniform segments according to the hidden space
information of the time series to improve the accuracy of the
data [32].

The current research results indicate that many achieve-
ments have been made in the study of EEG signal decompo-
sition and cognitive workload on human behaviour. For EEG
frequency, alpha and beta waveforms are mostly the main
research objects, but few scholars study the characteristics
of gamma wave (which is highly related to people’s learning
and cognitive behaviour). As for research on the influence
of cognitive workload generated by mathematical calcula-
tions on EEG, it mainly involves laboratory instrument tests,
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mostly for psychological or medical purposes. As a group
that is prone to cognitive load, drivers have manymysteries in
their brain electrical properties. Most related studies focus on
driving fatigue characteristics, and a few scholars implement
driving simulations to study the impact of cognitive workload
on drivers’ EEG.

Therefore, this paper will conduct on-road driving exper-
iments to make drivers generate cognitive distraction work-
load by calculating math problems or varying difficulties and
analysing the collected EEG data to study the behaviour char-
acteristics of drivers. The EEG signal decomposed into five
different bands of 0.5–50 HZ will be analysed through con-
tinuous wavelet transform, and the waveformwill be reorgan-
ised to achieve denoising. The effects of different cognitive
distraction workloads on drivers were analysed by comparing
the left and right brains. The fine-grain method requires more
time in the calculation process; thus, the multi-scale entropy
of the coarse-grain method is used more frequently. However,
the problem of short sequence and information loss is prone to
occurring. Improving the coarse-grain method and adopting
the method of moving delay value can reduce the fluctuation
and dispersion degree between scales and avoid important
information loss. This approach is used to analyse the EEG
characteristics of drivers in different cognitive distractions.
In this paper, the influence of different cognitive distraction
workloads on drivers’ brain electricity is studied, which can
be used to analyse drivers’ characteristics in the field of
human factors and make a beneficial contribution to the
improvement of driving safety.

II. EXPERIMENTAL PROCESS
A. PARTICIPANTS
Many studies have proved that small samples can also be used
in driver characteristic tests. Usually, the number of samples
is greater than 6 to be effective [33], [34], [35]. Twenty indi-
viduals (10males and 10 females) with amean age of 34 years
old (SD = 8.65, age distribution ranges from 25 to 55 years)
were recruited from the university community. They have a
mean driving experience of 7 years (SD= 6.96). The purpose
was to select a group of people who were representatives
of the drivers in the urban traffic environment. To ensure
driving safety, they need to be familiar with the local traffic
environment and to have driving licenses. According to the
preliminary screening survey, they had 20/20 or corrected-to-
normal vision with no mobility impairments. They were not
allowed to drink or smoke the day before the experiment and
remained healthy.

B. APPARATUS AND EXPERIMENTAL ROUTES
The experiment involved one conventional vehicle
(2017 SAGITAR 1.6T) with a human driver controlling the
throttle, brake and steering. To capture data related to the
driver’s actions and status in real time, the vehicle was
equipped with a laser ranging sensor (ranging scope of
0.5–200 m, ranging accuracy of ±0.5–1 m, measuring

frequency of 10–50 HZ), radar rangefinder and four synchro-
nised cameras (recording the front and rear of the vehicle, the
driver’s face and on-board operation video). The driver wore
an EEG collection device (NeuroOne EEG, with 21 sampling
channels) while driving. The drivers operate in accordance
with their own daily driving behaviours, thereby collecting
their natural driving behaviour in a real environment.

The starting point of the experimental route was the
intersection of Songpu Bridge and Zhongyuan Avenue
(Harbin, China), and the ending point was the intersection
of Zhongyuan Avenue and Xiang’an North Avenue, with a
total length of 10 kilometres. The road has six lanes in both
directions, separated by a central dividing belt and traffic in
the opposite direction. The experimental route was in good
condition, and the driver had clear vision. The test time was
9:30–11:00 in the morning or 2:30–4:00 in the afternoon on
weekdays. All testers conducted experiments on the same
line. No collision accident occurred in all experiments.

C. EXPERIMENTAL PROCESS
1) The staff introduced the driving test process to the partic-
ipants and asked for their personal information. After con-
firming that participants are qualified, the staff helped them
wear the device. 2) The staff guided the driver to the test
vehicle, turned on all the test equipment and completed the
calibration and synchronisation of the equipment. In addition
to the participant, the vehicle had two staff members; one
was responsible for adjusting the experimental equipment,
and the other was responsible for issuing the instructions
required for the experiment. 3) Once the preparations were
complete, the participants were allowed to drive in a safe area
for approximately 15 minutes to accommodate the vehicle
and the collection device. 4) The participants drove into the
designated test route and started driving. The staff marked
the starting point and began to record data. Unless there
was a safety hazard, the participants had to cooperate with
the instructions required to complete the experiment under
the guidance of staff. 5) On certain road sections, the driver
performed cognitive workload tasks while maintaining the
main driving tasks. They completed the corresponding math-
ematical calculations according to the experimental design
settings. If a dangerous situation occurred, then the driver had
the right to choose to terminate the task. 6) After reaching
the ending point, the staff marked the camera and ended the
recording of the experimental instruments. After turning off
all the instruments, they led the driver to a designated place to
rest and removed the device for him/her. 7) The participants
completed the final questionnaire and received a test reward
(200 RMB). The staff then copied and archived the test data.

The cognitive load task usually adopts N-back, mathe-
matical problem calculation, etc. This experiment conduct
listening and calculatingmathematical problems to reflect the
cognitive workload. According to the difficulty of the ques-
tions, they were divided into three levels: simple, general and
complex. At the same time, the cognitive load of mild, moder-
ate and high levels was defined when drivers distracted with
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different difficulties of problems, as illustrated in Table 1.
Besides, to ensure the effectiveness of on-road experiment,
this experimental scheme, the number of questions, and time
limit of answering were repeatedly tested and determined
in the indoor experiment. All the participants have a good
mathematical foundation. Each participant needs to complete
the experiments twice.

TABLE 1. Description of different cognitive workload tasks.

III. METHODOLOGY
A. CONTINUOUS WAVELET TRANSFORM
The original EEG signals are filtered using a 50Hz notch
filter and sampled at a rate of 256Hz. All electrodes are
referenced to the average electrode. To increase confidence
in the obtained data, the raw EEG signals are divided into
non-overlapping windows of 5 seconds and irrelevant elec-
trodes are removed based on the sample. The impact of
different frequency bands on drivers varies due to their dis-
tinct characteristics. Therefore, a certain method is needed
to decompose waves of different frequencies. The use of
wavelet transforms can better reveal the frequency features
of EEG.

The time-frequency window of the wavelet transforms
changes with the signal components to be analysed. The
expansion and translation of the window are determined
by the expansion factor and the translation factor. Wavelet
transform mainly has the advantage of reducing the correla-
tion between different features by selecting suitable filters.

Two types of wavelet transform exist: continuous wavelet
transform (CWT) and discrete wavelet transform. In this
paper, CWT is used.

A real signal with limited energy is assumed if its Fourier
transform satisfies (1)

Cψ =

∫
+∞

−∞

∣∣∣ψ̂ (ω)∣∣∣2
|ω|

dω < +∞ (1)

ψ (t) is the basic wavelet (mother wavelet), and Cψ is a
permissible constant.
ψ̂ (ω) is the Fourier transform of ψ (t), specifically shown

in (2). The corresponding inverse Fourier transform is shown
in (3). w is the angular frequency.

ψ̂(ω) =

∫
+∞

−∞

ψ(t)e−jωtdt (2)

ψ(t) =
1
2π

∫
+∞

−∞

ψ̂(ω)ejωtdω (3)

By expanding and translating the basic wavelet, we
obtain (4)

ψs,τ (t) =
1

√
s
ψ

(
t − τ

s

)
, s, τ ∈ R, s > 0 (4)

where ψs,τ (t) is the wavelet basic function, s is the scale
factor and τ is the translation factor.
ψs,τ (t) is determined by parameter s, and s controls the

expansion and contraction of the wavelet function, which
corresponds to frequency (inversely proportional), τ controls
the translation of the wavelet function, which corresponds to
time. The parameters s and τ are taken continuously; thus,
ψs,τ (t) is a continuous wavelet basis function. The function
f (t) with finite energy in any L2(R) space is transformed with
the function ψs,τ (t) as the integral core. This is called CWT,
as shown in (5).

Wψ (s, τ ) =
〈
f (t), ψs,τ (t)

〉
=

∫
R

f (t)ψs,τ (t)dt =
1

√
s

∫
R

f (t)ψ∗

(
t − τ

s

)
dt

(5)

whereWψ (s, τ ) is the wavelet transform coefficient; ψ∗(t) is
the complex conjugate function, which satisfies oscillating,
time-frequency localisation; and s ̸= 0, t and τ are continu-
ous variables.

The continuous wavelet inverse transformation or the orig-
inal signal reconstruction of f (t) is shown in (6).

f (t) =
1
Cψ

∫
+∞

0

∫
+∞

−∞

Wψ (s, τ )
ψs,τ (t)
s2

dsdτ (6)

It is analysed by the Morlet basis function, a single-
frequency sine function under a Gaussian envelope and com-
posed of a complex trigonometric function multiplied by
an exponential decay function. It is characterised by no
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scaling function itself and a non-orthogonal decomposition.
The Morlet basis function is expressed as (7)

ψ(t) = e−
1
2 t

2
cos(2π f0t) (7)

where f0 is the centre frequency.
The collected brainwave data were processed, and the

delta, theta, alpha, beta and gamma brain waves of different
frequency bands were obtained through continuous wavelet
decomposition, with a sample shown in Fig. 1. The waves
of these five frequency bands were reconstructed by wavelet,
and the new waveform was obtained, as shown in Fig. 2.

FIGURE 1. Schematic of wavelet transforms.

FIGURE 2. Schematic of denoised combined wave.

As can be seen in Fig. 2, compared with the original
brain wave, the recombined brain wave with a frequency
of 0.5–50 Hz has an obvious effect of denoising.

B. IMPROVED MULTI-SCALE SAMPLE ENTROPY
Entropy is the most commonly used method to measure
the complexity of the brain. Based on entropy parameters,

changes in the orderliness of complex systems can be
reflected, and the development trend of the system can be
studied. Therefore, entropy theory can be used for the evalu-
ation of brain functional states. Sample entropy is a common
used method in EEG signal analysis. Its main feature is that
its calculation process does not depend on the length of data,
which helps to improve the real-time performance of the
system and is insensitive to lost data. The biggest difference
between sample entropy and approximate entropy is that self
template matching is not performed, and self matching is
not included in statistics. The lower the sample entropy, the
higher the self similarity of the sequence, and the greater the
entropy, the more complex the sequence.

In the field of EEG research, the methodology has gradu-
ally transitioned from sample entropy to multi-scale sample
entropy. Multi-scale sample entropy can measure the prob-
ability of generating new patterns in a time series. A high
entropy value corresponds to a great probability of generating
new patterns and a complex sequence. It requires less data,
has better anti-noise and anti-interference capabilities, and
can analyse and determine signals, including random signals.
The algorithm steps are as follows:

An N -dimensional time series XN = {x1, x2, x3, · · · , xN }

is obtained by sampling at equal time intervals. The time scale
is S. Then a time series

{
ysj

}
related to the time length S is

constructed after coarse-grained processing. The length is 1/S
of the original sequence length, and the mean coarse-graining
process is shown in Fig. 3.

FIGURE 3. Schematic of the mean coarse-graining process.

The m-dimensional vector X (1), X (2), . . . , X (N -m + 1) is
reconstructed, where X (i) =

[
x1, x2, x3, · · · , x(i+m−1)

]
. The

similarity threshold is defined as r , and the value range of r is
r = 0.1× std ∼ 0.25× std. For 1 ≤ i ≤ N −m+ 1, count the
number of vectors with distances less than r , and calculate
the ratio of this vectors to the total number of vector pairs,
as shown in (8):

Bmi (r) =
(number of X (j) such that d [X (i),X (j)] ≤ r)

N − m
,

i ̸= j (8)
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d [X (i),X (j)] is the distance between two vectors, as shown
in (9).

d [X (i),X (j)] = Max [|x(i+ k) − x(j+ k)|] ,

i ̸= j,

k ∈ [0,m− 1],

j ∈ [1,N − m+ 1] (9)

For the m-dimensional and k = m+1-dimensional
reconstructed sequence vector, the average value Bm(r) and
Bm+1(r) of all i values is found. Equation (10) can be obtained
as [36], [37], [38]:

Bm(r) =

N−m+1∑
i=1

Bmi (r)

N − m+ 1

Bm+1(r) =

N−m+1∑
i=1

Bm+1
i (r)

N − m+ 1

(10)

Then, the sample entropy of this scale is shown in (11)

SampEn(m, r,N ) = −ln
Bm+1(r)
Bm(r)

(11)

The mean coarse-grained algorithm is improved. The time
scale is assumed to be S, and a new sequence

{
zSj

}
is derived

according to (10). When S = 1, only one sequence can be
obtained, which is the same as the original sequence; when
S > 1, the length is N -m/S-1. The schematic of the process
of improving the mean coarse-graining is shown in Fig. 4.
The greatest improvement is the employment of overlapping
sliding time windows to define the next time window by
specifying the sliding step of each time window, so as to solve
the problem of inaccurate analysis results caused by the sharp
decrease of time series length.

FIGURE 4. Schematic of the improved mean coarse-graining process.

After the sample entropy of the multiple sequences con-
structed at each scale is calculated, the mean value of the
sample entropy of each scale is calculated, and the improved
entropy value under this scale is obtained.

IV. RESULTS AND DISCUSSION
A. ANALYSIS OF EEG AMPLITUDE AND POWER
SPECTRUM CHARACTERISTICS
1) EEG AMPLITUDE CHARACTERISTIC ANALYSIS
Many studies have shown that, under cognitive workload
generated by different mathematical calculations, the frontal
area of the human brain has the highest energy sensitivity
and is more relatively concentrated. Therefore, the potential
signal amplitude in the left and right frontal areas of the brain
is used for research [39], [40], [41]. Tables 2–5 show the
mean value and standard deviation of the different waveband
amplitudes in the driver’s left and right frontal areas under
normal driving conditions and different cognitive workloads.

TABLE 2. Characteristics of brain amplitude under normal driving.

TABLE 3. Characteristics of brain amplitude under mild workload.

TABLE 4. Characteristics of brain amplitude under moderate workload.

TABLE 5. Characteristics of brain amplitude under high workload.

Tables 2–5 show that as the degree of cognitive workload
deepens, the amplitude of each band gradually increases, but
the amplitude is significantly different. Taken together, the
delta, theta and alpha waves have relatively small amplitudes,
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while the beta and gamma waves will have greater changes
with different levels of cognitive workload.

For delta waves, the left brain gradually increases under
light and moderate workloads but begins to decrease under
high workloads; although the amplitude of the right brain
increases with the depth of the workload, the changing trend
is slow. Under normal driving conditions and mild cognitive
workload, the amplitude of the right brain is higher than
that of the left brain. Under moderate cognitive workload,
the amplitude of the left brain is significantly higher than
that of the right brain. Under high cognitive workload, the
amplitudes of the left and right brains are basically the same.

For theta wave, the amplitude of the left brain and right
brain gradually increases with the increase in the cognitive
workload; in a normal driving state, the amplitude of the
left brain is higher than that of the right brain under mild
cognitive workload and moderate cognitive workload. Under
high cognitive workload, the right brain is higher than the left
brain.

For the alpha wave, the amplitude of the left brain starts to
increasewhen the cognitiveworkload ismild, and it decreases
when the cognitive workload is moderate and continues to
increase when the cognitive workload is high. The amplitude
of the right brain gradually increases with the increase in the
level of cognitive workload; in the normal driving state, the
amplitude of the left brain is higher than that of the right brain.
When the cognitive workload is mild, the amplitude of the
left and right brains is basically the same, but under moderate
and high cognitive workload, the amplitude of the right brain
is significantly higher than that of the left brain.

For the beta wave, compared with normal driving condi-
tions, the left brain has a larger increase in mild cognitive
workload, a weak increase in moderate cognitive workload
and a larger increase in high cognitive workload. As the
cognitive workload increases, the amplitude of the right brain
continues to increase significantly. Under normal driving
conditions and mild cognitive workload, the amplitude of the
left brain is higher than that of the right brain. Undermoderate
cognitive workload, the amplitude of the right brain is higher
than that of the left brain. Under high cognitive workload, the
amplitude of the two is basically the same.

For the gamma waves, the amplitude of the left brain
increased with the increase in cognitive workload. The right
brain amplitude was lower during mild cognitive distraction
than in normal driving and increased continuously under
moderate and high cognitive workloads. The right brain
amplitude is higher than the left brain amplitude under normal
driving, moderate and high cognitive workload, and also
under mild cognitive workload.

2) POWER SPECTRUM CHARACTERISTIC ANALYSIS
Fast waves and slow waves have different effects on the brain
under different conditions. The EEG data collected in the
experiment are analysed to calculate the average power spec-
tral density of different frequency bands in the EEG signal
to obtain the average power of different frequency bands.

The ratio of density R (alpha/beta), R (delta/beta),
R (theta/beta), R (gamma/alpha + beta), R (theta +

delta/alpha + beta), delta and theta represent slow waves;
alpha, beta and gamma represent fast waves; and these ratios
can reflect the characteristic laws between slow waves, fast
waves and fast-slow waves.

Figs. 5(a), 5(b) and 5(c) show the comparison among
different bands to beta under different conditions. With the
deepening of cognitive degree, the ratio of slow wave (delta
and theta) to beta significantly decreased, and significant
differences were found between the left and right brains.
The differences between left and right brain possibly because
that the left hemisphere controls people’s action behaviors,
such as language and calculations, while the right hemisphere
controls people’s imagination, spatial thinking, and intuitive
feelings. Therefore, it shows differences between left and
right brains. Under mild and moderate cognitive workloads,
the ratio of the left brain was greater than that of the right
brain, while the ratio of the right brain was in the left brain
under high cognitive workload. Fast wave alpha/beta gradu-
ally decreased as cognitive workload deepened. No signifi-
cant difference was found between the left and right brains
during normal driving states and under mild cognitive work-
load, but the ratio of the right brain was slightly higher under
moderate cognitive workload, while the ratio of the left brain
was higher under high cognitive workload.

In the combined ratio,Fig. 5(d) shows the ratio between the
sum of the two fast waves and the highest frequency gamma.
The gamma/(alpha + beta) ratio is the highest under the
normal driving state, and the ratio of the right brain is higher
than that of the left brain. With the deepening of cognitive
degree, the ratio decreases compared with that of the normal
driving state, and the value of the left brain is higher than that
of the right brain. With the deepening of cognitive workload,
the left brain shows a trend of rising first and then falling,
while the ratio of the right brain is relatively stable. Fig. 5(e)
shows the ratio of the sum of the two slowwaves to the sum of
the two fast waves. Under the normal driving condition, this
ratio was the highest in both the left and right brains, with
the right brain being significantly greater than the left brain.
When cognitive load appeared, this ratio decreased, with the
left brain being the lowest under mild cognitive load and still
lower than the right brain. With the deepening of cognitive
workload, the left brain showed a trend of first rising and
then declining, while the right brain showed a relatively stable
performance.

B. IMPROVED MULTI-SCALE SAMPLE ENTROPY UNDER
DIFFERENT COGNITIVE WORKLOADS
The 30 scales of the improved MSE and the traditional MSE
of the normal driving state data are analysed, and the results
are shown in Fig. 6.

A comparison among the entropy changes of the traditional
MSE and the improved MSE at various scales shows that as
the scale increases, all bands show a downward trend, but the
changing trend of the improved algorithm is more obvious
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FIGURE 5. Power spectrum ratio of each frequency band.

FIGURE 6. Comparison of improved multi-scale sample entropy and
traditional sample entropy under normal driving state.

among all bands, its entropy fluctuation range is smaller, and
the complexity change degree is more objective. Fig. 6(b)
shows that in normal driving conditions, the delta wave has
the highest entropy value and is more complex, followed by
the theta wave. The gamma wave has the lowest complexity
when the scale factor is less than 10, but afterward, it is greater
than 10, and its complexity gradually becomes higher than
that of the beta wave.

Through an analysis of the improved MSE under different
cognitive workload states, Fig. 7 shows that the entropy of
the theta wave is the highest and its complexity is greater
under mild cognitive distraction. The complexity of gamma
is the lowest at all scales, while the other three frequency
bands show a gradual and alternating downward trend under
different scale factors. The degree of complexity change of
delta and alpha waves is basically the same after scale 10.
Beta waves are similar in complexity to alpha waves within
a scale factor of 5, but as the scale factor increases, their
complexity decreases gradually. Under moderate cognitive
workload, the entropy values of the five frequencies gradually
decrease with the increase in the scale factor. The delta,
theta and alpha waves have similar complexity, being at a
more complex level, while the entropy of gamma is above
that of beta, but its complexity is still relatively low. Under
high cognitive workload, the entropy value of the gamma
wave is the largest and significantly higher than that of
other frequency bands, thereby indicating that the complexity
effect of the gamma wave is the most obvious at this stage.
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FIGURE 7. Comparison of improved multi-scale sample entropy under
different cognitive workload states.

The entropy value of the delta wave is at the lowest level under
all scale factors, indicating that its wave value characteristics
do not change obviously at this stage. Alpha and beta waves
have a significant downward trendwithin scale 10. After scale
factor 10, the complexity of the other four waves, except the
gamma wave, tends to be stable.

V. CONCLUSION
An analysis of the characteristics of the EEG amplitude of the
left and right brain waves under different states shows that the
amplitude of delta, theta and alpha waves was small, while
beta and gamma waves showed great changes under different
degrees of cognitive workloads. Compared with normal driv-
ing, the values of the five brain waves all increased, and the
changes in the left and right brains were greatly different.

An analysis of the power spectrum characteristics of left
and right brain waves under different states shows that with

the deepening of cognitive workload, the ratios of slow wave
(delta and theta), fast wave (alpha) and beta all showed
significant decreases, but the performance of the left and
right brains was different. In the study of the combined
wave ratio, the values of the left brain (gamma/(alpha +

beta) and (delta + theta)/(alpha + beta) showed a trend of
first increasing and then decreasing with the deepening of
cognitive degree, while the changes of the right brain were
relatively stable in each stage. Compared with the normal
driving state, these ratios all declined.

The improved multi-scale sample entropy algorithm has
more obvious change trends between bands at different
stages, its entropy fluctuation range is smaller and the degree
of complexity change is more objective. In a normal driving
state, the entropy value of the delta wave is the largest, and
as the scale increases, the entropy value decreases. Under
mild cognitive workload, the entropy value of theta is always
the largest, and the entropy value of gamma is the low-
est. With the increase in the scale factor, the entropy value
decreases. Under moderate cognitive workload, as the scale
factor increases, the entropy values of alpha, theta and delta
alternately lead, but the entropy values of gamma and beta are
always low. As the scale factor increases, the entropy value
shows a decreasing trend. Under high cognitive workload, the
entropy value of gamma is always the largest, followed by
alpha, and the entropy value of delta is always at the lowest
level. After the scale factor of 10, the complexity of the other
four waves, except the gamma wave, tends to be stable.

VI. LIMITATION AND FUTURE WORK
The rules of EEG characteristics under different states in
this paper do not consider the difference between the driv-
ing simulation and the actual driving experiment. Besides,
due to the complexity of implementing the experiments as
well as other project constraints (complexity of experiment
implementation, funding), there were several limitations to
this study. More participants will be recruited to explore
the brain characteristics of drivers under cognitive workload,
and we will add some driving simulation experiments for
supplementary comparative analysis.

In this paper, continuous wavelet decomposition is adopted
for signal noise processing and waveform decomposition.
In future research, white noise and other filters will be added
for signal denoising, and waveform decomposition will be
conducted in other ways. We will further study the difference
between left and right brains, as well as the resource occu-
pancy trends of the monitor, perception, visual and auditory
channels in different driving conditions.
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