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ABSTRACT One of the problems that cause a decrease in the performance of the ultra-high bit-patterned
magnetic recording (BPMR) system is track misregistration (TMR). Since the gap between data tracks
is extremely narrow, it easily affects keeping the reader in the desired position. Therefore, this paper
proposes the track misregistration mitigation included the estimation and correction techniques on single-
reader/two-track reading (SRTR) BPMR using only a readback signal. The TMR estimation technique uses
the convolutional neural network (CNN) to estimate the TMR level by the histograms of the readback
signal enabling minimization of the complexity of the CNN structure and amount of training time. The
estimated TMR levels obtained from the proposed CNN-histogram-based method will then be utilized to
detect the estimated recorded bit by the CNN-based data detector. The simulation shows that our proposed
system provides better TMR prediction accuracy even though the system has to face higher media noise.
Furthermore, the CNN-based data detectors perform superior to the partial response maximum likelihood
(PRML) based data detector, especially in strong electronic noise situations and the severe imperfection of
recording media.

INDEX TERMS Bit-patterned magnetic recording (BPMR), convolutional neural network (CNN), super-
vised learning, track misregistration (TMR).

I. INTRODUCTION
Bit-patterned magnetic recording (BPMR) [1] is one of the
future hard disk drive (HDD) technology that enables the
areal density (AD) gain beyond 1.0 Terabits per square inch
(Tbits/in2) [2] where a magnetic island represents one bit
of data instead of many magnetic grains in existing perpen-
dicular magnetic recording (PMR) technology. BPMR has
the advantage over the PMR which a magnetic island has
more energy barrier than a magnetic grain which makes it
harder to be affected by ambient energy causing the change
of magnetization direction [3], which we know as super-
paramagnetic; therefore, an AD increasing of BPMR can
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be achieved. To gain higher AD; the magnetic island must
be carried closer together, leading to the increase of inter-
track interference (ITI) and inter-symbol interference (ISI),
and the crucial problem ‘‘track misregistration (TMR)’’ as
well, which limited the bit-error-rate (BER) performance of
the BPMR system [4], [5]. Generally, the TMR effect can
be controlled by a servo mechanism [6], causing the record-
ing media to lose some areas to store the servo redundancy
bits. Without losing those areas and reducing this effect, the
mitigation techniques of interferences and TMR for BPMR
systems were proposed. For example, S. Nabavi proposed
the modified Viterbi algorithm to mitigate the ITI effect.
It can deliver better BER performance compared to an orig-
inal Viterbi algorithm under the system that experiences the
unknown TMR [7]. Warisarn proposed TMR estimation by
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using the simple energy ratio of the readback signal on a
single-reader/two-track reading (SRTR) BPMR, which cor-
rects the effect of TMR using a proper one-dimensional (1-D)
generalized partial response (GPR) target and 1-D equalizer
that was pre-designed corresponding to the estimated TMR
levels [8].

In our previous work, the variance ratio of readback sig-
nals from a three-reader/four-track reading BPMR system
was also used to estimate the TMR level and mitigate this
effect using a pair of 1-D equalizer and 2-D target together
with an ITI subtraction scheme [9]. The mentioned works
yield better BER performances and processes without a servo
mechanism.

The use of deep neural networks (DNNs) to solve the
problems of magnetic recording systems was recently pro-
posed [10], [11], [12], [13], [14], [15]. Due to it was being
composed of multiple non-linear modules, it enables learn-
ing very complex functions. In some cases, it performs
comparably to surpassing human expert performance [16].
For instance, in [10], the use of the multilayer percep-
tron (MLP) that is one of the artificial network mod-
els was adopted to improve the performance of a partial
response maximum likelihood (PRML) detector in BPMR
systems. Sayyafan et al. [11] also introduced the utilization
of Bahl-Cocke-Jelinek-Raviv (BCJR) and convolutional neu-
ral network (CNN) turbo-detection architecture to predict
the signal-dependent media noise, which can improve the
detection performance on a hard disk drive (HDD) mag-
netic recording based on a grain flipping probabilistic (GFP)
model. Li et al. [12] introduced the three tracks detec-
tion scheme in a heat-assisted interlaced magnetic recording
(HIMR) systemwhich iteratively fed the reliable soft estimate
of sidetracks to improve the 2-D neural network equalization
process of the middle track, then used the BCJR detector
and LDPC in data detection and error correction process.
Aboutaleb et al. [13] proposed three schemes of equalization
and detection for multilayer magnetic recording (MLMR)
where CNN is used as an equalizer, signal separator, and data
detector. Han et al. [14] proposed the detection scheme based
on MLPs in an array reader BPMR system; three readback
signals are utilized to estimate the TMR level by the first
MLP. Then, TMR effect is corrected by the second MLP in
the data detection process that uses the estimated TMR level
from the first MLP to be one of the inputs. The results shew
an improvement in BER performance over the conventional
scheme [14].

In this paper, we present the application of a CNN for
TMR mitigating, which both estimation and correction of
the TMR effect are investigated on the SRTR BPMR sys-
tem where the reader is positioned between two considering
data tracks on staggered bit-patterned media as illustrated in
Figure 1. First, we estimate the TMR level of the system
by using the histograms of a readback signal via the CNN-
histogram-based TMRestimator, where the optimal input size
is first used to maximize the prediction accuracy, reduce the
complexity, training time, and computational time of CNN.

FIGURE 1. The micro-pixel staggered bit-patterned recording media and a
reader with track misregistration situation under the areal density of
3.0 Tbits/in2.

FIGURE 2. The block diagram of SRTR BPMR channel with the proposed
CNN-histogram-based TMR estimator and CNN-based data detector.

Second, the estimated TMR level obtained from the proposed
CNN-based estimator will then be utilized as one of the inputs
in the data detection process using our proposed CNN-based
data detector to perform 1-D signal processing to detect the
estimated user bit sequence. Then, the BER performance of
our proposed TMRmitigation method will be compared with
the others.

The rest of this paper is organized as follows; Section II
describes the SRTR BPMR channel model. Section III
explains the proposed methods. Section IV gives the perfor-
mance evaluation, and Section V concludes this work.

II. SRTR CHANNEL MODEL
This paper considers the SRTR BPMR channel model as
shown in Figure 2. User bits sequence, ak ∈ {±1}, that is
defined as an independent and identically distributed random
variables (IID), is separated into two sequences that consist
of odd- and even-sequences denoted by ak,0 and ak,1, respec-
tively, before recording them to the medium. Note that the
writing process is assumed to be perfect, the magnetization
of bit-islands is alwaysmagnetized according to the recording
bits.

The bit-patterned medium model is constructed by many
small pixels, as illustrated in Figure 1 where the size of each
pixel is set to 0.25 × 0.25 nm2, and the pixel’s value of
the gray region is equal to 0, representing the nonmagnetic
material on the medium. The black and white areas represent
the magnetization direction of bit-island, which are equal to
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−1, and 1 respectively. The circular magnetic islands with an
average diameter d = 10 nm are created on the canvas. This
paper considers the AD of 3.0 Tbits/in2 where the track-pitch,
Tz, and bit-period, Tx , are set to be 14.5 nm. Moreover, for
obtainingmore realistic SRTRBPMRchannelmodel, the size
and position fluctuations of bit islands are added and given as
media noise.

The size fluctuation can be defined as the following
equation,

size fluctuation =
σd

d
, (1)

where d is the ideal diameter of the bit-island and σd is
a variance of the bit-island diameter defined as a Gaussian
distribution. As well as the position fluctuation is defined as
follows,

position fluctuation =
σp

p
, (2)

where p is the length of the bit-period, and σp is a variance
of the distance that is compared between the center of the
bit-island and the center of the ideal bit-island according
to the Gaussian distribution. Note that, in this paper, the
size and position fluctuations are independent and identically
distributed random variables.

In the reading process, the reading position of a reader
is positioned between two considering tracks, as shown in
Figure 1. To obtain the readback signal, s(x, y), as a function
of x- and y-coordinates (in nanometer), the magnetization
of each small pixel point (recording medium), m(x, y) ∈

{±1}, was convoluted with the reader sensitivity function,
h(x, y), [17], [18]. Therefore, we can express the readback
signal, s(x, y), as follows

s(x, y) =

∫∫
m(ξ, η)h(x − ξ, y− η)dξdη. (3)

When considering the reading process in the time domain,
the continuous readback signal, s(t), can be constructed by
s(x, y) as s(t) = s(t, l), where l is the center of the reader
sensitivity function in across-track direction. The continuous
time readback signal, r(t) can be obtained by the following
equation:

r(t) = s(t) + n(t), (4)

where n(t) is the adding additive white Gaussian noise that
directly adds to the continuous time readback signal and
its power spectral density is flat across the entire sampling
bandwidth. Here, n(t) can be calculated from

n(t) = σ × Z , (5)

where

σ =
A√

10SNR/10
, (6)

where Z ∼ N (0, 1), Z is the random variable distributed as
a standard normal distribution, with a mean equal to 0 and
its standard deviation equal to 1, A = 1 is peak amplitude

that obtained from normalizing the readback signal with the
saturated level of the isolated waveform, and SNR is the
signal-to-noise ratio in decibels (dB). To obtain the discrete
readback signal, rk , we use the over-sampling technique by
defining t = k × 0.5Tx . So, the discrete readback signal can
be expressed as rk = r(k×0.5Tx) and it was also assumed to
be the perfect synchronization. Then, the discrete readback
signal is sent along two paths. The first path goes to the
proposed CNN-histogram-based TMR estimator to estimate
the track misregistration level. The second path leads to the
CNN-based data detector to produce the estimated user bit,
âk , by using the estimated TMR level, TM̂R, to be one of the
inputs of the CNN-based detector, as illustrated in Figure 2.

III. PROPOSED METHODS
A. CNN-HISTOGRAM-BASED TMR ESTIMATOR
To estimate the TMR level on the SRTR BPMR system,
we propose to use the CNN performs together with the his-
tograms of readback signal, rk , obtained from the reading
process. Figure 3 illustrates the block diagram of the CNN-
histogram-based TMR estimator. First, the readback, rk , with
bit length,N = 4,096 bits for one data sector will be separated
into odd- and even-sequences, which are denoted as rk,0 and
rk,1, respectively. Each sequence of odd- and even-sequences
will then be sent to the histogram generator to produce their
histogram images, H′

0, and H
′

1, respectively. After that, CNN
predicts the TMR level from those histograms.

To construct the histogram images of readback signals,
we utilize the simple histogram creation process. First, the
bin- and frequency-coordinates will be obtained by setting
the number of bins to be 100 where bin width, w, is cal-
culated by w =

[
max(rk,0) − min(rk,0)

]
/100 or w =[

max(rk,1) − min(rk,1)
]
/100. The frequency of each bin is

obtained by counting the individual bit value of the odd- or
even-readback signals within the bin’s range. In our extensive
study, we found that the numbers of bins are around 90 to
100 can provide the highest accuracy percentage; however,
the histogram bin size of 100 yields the lowest root mean
square error (RMSE) compared between the target TMR and
estimated TMR levels. Therefore, we have fixed it to be
100 for this work. Second, we construct the histogram images
of each readback signal by creating a blank image (where
every pixel’s value = 0), the number of rows and columns
are set to be 250 and 100 pixels, respectively, and the number
of pixel’s values of each column will be replaced by 1 from
the bottom of the image according to the frequency of the
bin to obtain the full-size histogram, H0 and H1, as shown
in Figure 3. Before sending the histograms to the CNN for
predicting the TMR level, the histograms will be first resized
into squares of n × n pixels by using Bicubic interpolation
technique [19]. This resizing process aims to reduce the
number of inputs and the computational complexity (number
of addition and multiplication) of CNN in terms of overall
feed-forward operation by down-sampling histogram images
leaving only important features of the image that the optimal
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FIGURE 3. The block diagram of the CNN-histogram-based TMR estimator.

FIGURE 4. The structure of CNN on the CNN-histogram-based TMR estimator.

size can improve the estimation efficiency. The optimal input
size will be discussed later in this section.

The structure of CNN consists of an image input layer,
four convolutional layers, and a fully-connected layer with
an output neuron, as illustrated in Figure 4; the input layer
receives histograms H′

0 and H′

1, which are generated from
odd- and even- readback signals. These received histograms
are combined into a single histogram image, H′, that consists
of two channels. The convolutional layers extract the feature
maps from the histogram image by 32 kernels, where the size
of each kernel is set to be 3 × 3×2. The rectified linear unit
(ReLU) given as

f (x) =

{
0
x

for x < 0
for x ≥ 0

, (7)

is used as the activation function of each convolutional layer.
The max-pooling with a kernel size of 2×2 is used in the sub-
sampling process after each convolutional layer. The output
of the last convolutional layer will be flattened before being
sent to the fully connected layer for estimating the TMR level.
The CNN has 32,225 learnable parameters in total. Note that
the structure of the CNNwas obtained from the trial-and-error
method based on fixed training data set.

In the training process, the estimated TMR value of the
system is denoted by TM̂Rr where TM̂Rr ∈ R, is cal-
culated using regression at the output neuron, and the half-
mean-squared error is used as a loss function. The identity
function, f (x) = x, is the activation function of the output
neuron, where x is the function’s input. The Adam (adaptative

moment estimation) algorithm [20] is used to update the
weights and biases of the network, the minibatch size is set to
be 32, the number of training epochs and initial learning rate
are set to be 80 and 0.0001, respectively. After that, the TM̂Rr
will be passed to the multi-level threshold function to obtain
the estimated TMR level, TM̂R, according to the target of the
TMR level that appears in the system.

The training data set consists of 5,200 readback signals
that were generated from the SRTR BPMR channel model as
mentioned in Section III under the AD of 3.0 Tbits/in2 where
the media noise is set to be 0%, at various SNRs i.e., SNR =

10, 15, 20, and 25 dB and TMR levels (−3.0 to 3.0 nm step
up by 0.5 nm interval). The SNR is defined by following

SNR = 20log10(A/σ ), (8)

where σ is the standard deviation of electronic noise as
defined in (6).

To optimize the input size to CNN (H′

0 and H
′

1), we varied
the input size of the histogram image between 5 × 5 to
40×40 pixels via the image resizing process, as illustrated in
Figure 3, before sending it to CNN to predicting the TMR
level. The stem graphs comparison between the input size
to the CNN, validation accuracy, RMSE of prediction, and
the computational complexity are used to evaluate the pre-
diction performance of each input size as shown in Figure 5.
Regarding accuracy, some input sizes give 100% prediction;
however, the size of 15 × 15 pixels provides the minimum
RMSE and relatively low computational complexity com-
pared with the others. As a result, the total number of inputs
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FIGURE 5. The input size of histogram image vs. validation accuracy
percentage, RMSE, and computational complexity.

TABLE 1. Number of CNN layer variation of CNN-Histogram-based TMR
estimator with input size n = 15 × 15 pixels.

to the CNN is equal to 15 × 15 × 2 = 450 instead of using
full-size histograms, which are equal to 250 × 100×2 =

50,000. That means the input size can be reduced around
99%. So, we choose a 15 × 15 pixels image size for the
TMR predicting process in this study. To ensure that the
proposed CNN-Histogram-based TMR estimator’s structure
already reaches the optimal structure, we further investigate
the number of CNN layer variations as shown in Table 1. The
investigated results show that 3 to 8 CNN layers can yield
a 100 accuracy percentage of TMR estimation. However,
the number of CNN layers that is equal to 4 can provide
the lowest RMSE. Therefore, we have selected this CNN
structure for studying through this work.

B. CNN-BASED DATA DETECTOR
In TMR effect correction under the SRTR BPMR system,
in this work, we also proposed to use the CNN-based data
detector to detect the estimated user bits, âk , and correct the
TMR effect instead of a conventional detector-based PRML
detector [21], which consists of group detection and sliding
window detection schemes.

1) GROUP DETECTION SCHEME
The first scheme is the group detection scheme. The pro-
posed CNN-based data detector receives a group of readback

FIGURE 6. The structure of CNN-based data detector with group detection
scheme.

FIGURE 7. The structure of CNN-based data detector with sliding window
detection scheme.

signals and estimated TMR level, TM̂R, obtained from the
Histogram-CNN-based TMR estimator as one of the inputs
to produce the group of estimated user bits expressed as
â(j×n)+1, â(j×n)+2, . . ., â(j×n)+n as shown in Figure 6. The
group of readback signal consists of r(j×n)+1, r(j×n)+2, . . .,
r(j×n)+n which is separated from readback signal, rk , where
n is the number of bits in each group, and j, is the group’s
number that can be expressed as follow

j ∈
{
0, 1, 2, . . . ,floor(N/n)
0, 1, 2, . . . ,N/n− 1

,
for
for

n ∤ N
n | N

, (9)

where N = 4,096 is the bit length of readback signal, the sym-
bol ‘‘|’’ and ‘‘∤’’ denote divisible and indivisible, respectively.

As illustrated in Figure 6, the structure of a CNN-based
data detector consists of an input layer, four convolutional
layers, and a fully connected layer with n output neurons.
As the input layer, it receives a vector input, which has a size
of n + 1. Each convolutional layer uses 32 kernels with the
size of 3 × 1 to extract feature maps from the input vector.
The ReLU is used as an activation function. Zero padding
is used in every convolutional layer to prevent output size
reduction and loss of some crucial input information. The last
convolutional layer’s output will be flattened to be the input
of a fully connected layer before calculating output to the n
output neurons of the output layer, where each neuron uses the
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hyperbolic tangent function as an activation function, given as

tanh(x) =
ex − e−x

ex + e−x
. (10)

The outputs of the output layer will be passed through a hard
decision process to obtain estimated user bits.

The training of the proposed CNN-based data detector
is processed in the same manner as the CNN-histogram-
based TMR estimator except for the output layer’s activation
function and training data set, where the number of training
epochs and initial learning rate are set to be 20 and 0.0001,
respectively. The training data set consists of 4,680 readback
signals generated at various media noise (0, 5, and 10%),
SNRs (5, 10, 15, 20, 25, 30 dBs), and TMR levels (−3.0 to
3.0 nm step up by 0.5 nm interval). To optimize the number
of bits in a group, n, to be an input of the CNN. First, we start
from the small amount of training data set to investigate the
rough performance trend. There is 25% of the training data
set was selected for training the network. The number of
bit in a group is varied from 4 to 30, and the overall BER
performances are collected as shown in Table 2 by using
the 5,200 readback signals generated under media noise 5%,
SNR= 5, 10, 15, 20 dBs, and TMR= −3.0 to 3.0 nm step up
by 0.5 nm interval. The results show that n values around 14 to
18 can deliver good BER performance. Second, we increase
the training data to 100% and train the model with n values
between 12 to 20 to improve the BER results, as shown in
Table 3. The results show that n = 18 provides the best BER
performance, so in this paper, we decided to use this number
of inputs in the CNN-based data detector with group detection
scheme. After that, the total number of inputs to CNN is
equal to 19 by adding one more input obtained from the TMR
estimator.

2) SLIDING WINDOW DETECTION SCHEME
Furthermore, we also propose the CNN-based data detector
with sliding window detection by feeding the readback signal
in sliding window manner, as shown in Figure 7. The struc-
ture of CNN-based data detector with sliding window detec-
tion is the same as the CNN-based data detector with group
detection scheme except for the number of outputs, which
is fixed to be two outputs. The outputs consist of â(n/2)+j−1
and â(n/2)+j. The input consists of a group of readback signal,
which are equal to the window size, n, and an estimated TMR
level obtained from a CNN-histogram-based TMR estimator,
TM̂R. The group of readback signal consists of rj+0, rj+1,
rj+2, . . ., rj+n−1 where j ∈ {1, 3, 5, 7, 9, . . . , (N − n + 1)},
N = 4,096, and n ∈ {4, 6, 8, 10, 12, . . . , 4096}. We per-
form two-stride for the sliding window to keep the first
output, â(n/2)+j−1, and the second output, â(n/2)+j belong to
the odd- and even-tracks, respectively, for convenience in
model training. For example, if we consider (n, j) = (4, 1),
it means that the considered inputs will be {r1, r2, r3, r4} and
the detected outputs are {â2, â3}. In case (n, j) = (6, 3),
the inputs will become {r3, r4, r5, r6, r7, r8} and the outputs
should be {â5, â6}.

TABLE 2. CNN-based data detector input size variation with 25% training
data (group detection scheme).

TABLE 3. CNN-based data detector input size variation with 100%
training data (group detection scheme).

TABLE 4. CNN-based data detector input size variation with 100%
training data (sliding window scheme).

In the training process, we fixed the training parameters
identically to the group detection scheme with 100% training
data set. The BER performances are collected using the same
data set as the group detection scheme. The size of the sliding
window, n, is varied in the range of {4, 6, 8, 10, 12, . . . , 30}.
Table 4 shows the BER performances and size of the sliding
window, which shows that the n= 16 is optimal for the sliding
window scheme.

IV. SIMULATION RESULTS
A. TMR PREDICTION ACCURACY
To evaluate the performance of the proposed CNN-
histogram-based TMR estimator, the 46,800 readback signals
are fed to the TMR estimator as the testing data, which were
generated under the various media noise (0, 5, and 10%),
at various SNR levels (5, 10, 15, 20, 25, and 30 dBs), and
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FIGURE 8. The distribution of predicted outputs from the CNN-histogram-based TMR estimator.

FIGURE 9. TMR estimation accuracy by proposed CNN-histogram-based
TMR estimation at various SNRs under media noise 0, 5, and 10%.

various TMR levels (−3 to 3 nm, step up by 0.5 nm interval).
The distribution of predicted outputs is the estimated TMR
values denoted as TM̂Rr , which can be plotted and shown in
Figure 8, where each color represents the desired TMR level
to which the outputs belong. The distribution plot shows that
there is no overlap area between adjacent groups of outputs.
Therefore, we can create amulti-step function as the classifier
to decide the estimated TMR values, TM̂Rr , to be the desired
estimated TMR level, TM̂R, according to their TMR level.
Figure 9 illustrates the accuracy percentage of TMR esti-

mation, which is calculated by the following equation:

accuracy(%) = 100 −

∣∣∣TMR − TM̂Rr
∣∣∣

TMR
× 100, (11)

where TMR is the target TMR level, and TM̂Rr is the
estimated TMR value obtained from the proposed CNN-
histogram-based TMR estimator. The proposed method pro-
vides TMR estimation accuracy at various TMR and SNR
levels more than 90% for media noise 0 and 5%. At a media
noise of 10%, the accuracy percentage looks worse. However,

all of them still provide accuracy over 88% because of the
severe media noise at 10%, which is the size of bit islands
and their center’s positions deviate from the ideal making the
CNN detector performance deteriorate. Moreover, the accu-
racy percentage patterns, as shown in Figure 9, also imply that
the accuracy percentage is independent of electronic noises.

B. BER PERFORMANCES
We evaluate the CNN-based data detector from our proposed
TMR correction schemes on a staggered SRTR BPRM sys-
tem as illustrated in Figure 2 under AD of 3.0 Tbits/in2.
Figure 10 shows the BER performance of our proposed TMR
correction, which consists of a CNN-histogram-based TMR
estimator and CNN-based data detector with group detec-
tion scheme denoted by ‘‘Prop. system I’’ compared with
the ‘‘System I,’’ which is the conventional SRTR BPMR
system without TMR correction where used 1-D equalizer
and 1-D monic constrained GPR target designed for a non-
TMR situation in the data detection process, and ‘‘System II’’
represents the system that uses a pair of 1-D equalizer and 1-D
monic constrained GPR target designed according to each
TMR level in the data detection process and detect data bits
by PRML-based detector [8]. In this work, the coefficients of
GPR target and equalizer in ‘‘System I’’ and ‘‘System II’’ are
set to be 1 × 3 and 1 × 11 taps, respectively [8]. Since the
distribution of estimated TMR values represented in Figure 8
are non-overlapped. Therefore, we assumed that in the BER
collection process, the TMR estimation process provides per-
fect TMR estimation in order to analyze only the detection
efficiency. Each point of BER performance is calculated
using 819,200 randomized bits.

As mentioned above, we then compare the computational
complexity per bit of each detection scheme illustrated in
Table. 5 where ‘‘System I’’ and ‘‘System II’’ employ PRML-
based detection that performs under the equalization and
detection processes. The PRML-based detection’s computa-
tional complexity will be considered under the number of
equalizer coefficients and the number of addition and mul-
tiplication in each stage of 1-D Viterbi detector. While, the
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FIGURE 10. BER performances of the ‘‘System I,’’ ‘‘System II,’’ and ‘‘Prop. system I’’ at various media noise under the group detection scheme.

FIGURE 11. BER performances of the ‘‘Prop. system II’’ at various media noise under the sliding window detection scheme.

‘‘Prop. system I’’ and ‘‘Prop. system II’’ employ CNN-based
data detectors which differ in the number of inputs, outputs,

and detection behavior. Here, the computation complexity of
CNN can be calculated as provided in [23].
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FIGURE 12. BER performance comparison at positive TMR level of all systems at various media noise, where ‘‘Prop. system I’’ and ‘‘Prop. system II’’
represent the group and sliding window detection schemes, respectively.

TABLE 5. Detection computational complexity per bit.

Considering Figure 10 (a), (b), and (c), where the media
noise is set to be 0%, we will see that our proposed
scheme can provide an outstanding BER performance than
‘‘System I’’ and ‘‘System II’’. The ‘‘Prop. system I’’ have
17 dBs performance gain at a target BER = 10-4 for
TMR = 0 nm compared to other systems. At the media noise
5%, Figure 10 (d), (e), and (f), the ‘‘Prop. system I’’ delivers
better performance than others except for TMR level −3 nm.
Figure 10 (g), (h), and (i) represent all systems at media noise
10%; the proposed scheme provides lower BER than others
at strong electronic noise region. Moreover, when the system
suffered from the TMR effect, our proposed CNN-based data
detector with group detection scheme can correct this effect
effectively, as shown in Figure 10 (c) and (f) at media noise
0% and 5%. At media noise of 10%, there is a performance
degradation at high SNR; however, at low SNR the BER
performance is still superior to other systems. It is important
to note that we can utilize the iteration detection process
such as a low-density parity-check code (LDPC) [22] together

with our proposed system to improve the BER performances
where it has the BER performances degradation as shown in
Figure 10 (i).
Figure 11 (a), (b), and (c) illustrate the BER performances

of CNN-based data detector under sliding window detection
scheme denoted by ‘‘Prop. system II’’ at media noise 0%, 5%,
and 10%, respectively. Considering Figure 11 (c), the BER
performances under severe media noise 10% can be improved
when compared with the group detection scheme shown in
Figure 10 (i), we can see from the absence of the perfor-
mances degradation at low SNR region in Figure 11 (c).

The BER performance comparison at positive TMR levels
between ‘‘Prop. system I,’’ ‘‘Prop. system II,’’ ‘‘System I,’’
and ‘‘System II’’ are plotted in Figure 12 for easy eval-
uation. Figure 12 (a), (b), and (c) show the performances
under media noise 0%, 5%, and 10%, respectively. These
figures show the trend of BER performances of our proposed
CNN-based data detectors (both group and sliding window
detection schemes) and the other systems. As we have seen,
the proposed CNN-based data detectors (‘‘Prop. system I’’
and ‘‘Prop. system II’’) perform better than ‘‘System I’’ and
‘‘System II,’’ especially at extreme electronic noise because
the CNN-based data detectors are constructed from elements
that can learn the signal patterns under TMR effect, and we
can imply that it is able to isolate the electronic noise excel-
lently. However, the impact of the media noise still affects
its performance to some extent. We compared the ‘‘Prop.
system I’’ and ‘‘Prop. system II’’ for all media noise, the
group detection scheme provides lower BER than the sliding
window scheme at extreme electronic noise region, but the
sliding window scheme offers better BER performance under
strong media noise 10% at moderate and high SNR region.
Although the sliding window detection scheme can provide
better performance than the group detection scheme and
PRML-based detector; however, it must be invested with the
cost of greater processing time and higher complexity. Note
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that BER performances of ‘‘System I, (0.0)’’ and ‘‘System II,
(0.0)’’ are completely overlapping each other because they
use the same GPR target and 1-D equalizer’s coefficient.

V. CONCLUSION
In this paper, we propose the techniques for estimation and
correction of track misregistration (TMR) effect on a single-
reader/two-track reading (SRTR) bit-patterned magnetic
recording (BPMR) system. First, we present the convolu-
tional neural network (CNN) histogram-based TMR estima-
tor that uses the histograms of a readback signal to estimate
the TMR level. The optimal input size of the histogram
that is used to be as an input of CNN was studied for the
best estimation accuracy. Second, CNN-based data detectors
are also proposed to improve overall system performance,
which consists of group detection and sliding window detec-
tion schemes. The estimated TMR level that was generated
from the first CNN-histogram-based TMR estimator is then
adopted to be one of the inputs of the CNN-based data detec-
tors. The simulation results show that our proposed CNN-
histogram-based TMR estimator can provide a high accuracy
percentage. Therefore, it leads to getting better bit-error-rate
performance when the CNN-based data detectors experience
the severe TMR effect, position and size fluctuations, and
electronic noises.
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