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ABSTRACT For low probability of intercept (LPI) radar waveform identification accuracy (ACC) problem
at low Signal-to-Noise Ratios (SNRs), an approach based on time-frequency analysis (TFA) and Asymmetric
Dilated Convolution Coordinate Attention Residual networks (ACDCA-ResNeXt) is proposed to recognize
twelve kinds of LPI radar signals automatically. First, we apply Choi-Williams distribution (CWD), which
shows superior performance at low SNRs, to transforming radar signals into time-frequency images (TFI).
Then, in order to obtain the high-quality TFIs, a series of image processing techniques, including 2DWiener
filtering, image cutting, and image resize, are used to remove the background noise and redundant frequency
bands of the TFI and obtain a fixed-size gray scale image containing main morphological features of the
TFI. Finally, the TFIs are input into ACDCA-ResNeXt network that can extract and learn deep features to
recognize radar waveforms. Furthermore, a fusion loss function, which is composed of a soft-label smoothed
cross entropy loss function and a center loss function, improves the generalization capability performance
of network and achieves a better clustering effect. Experimental results demonstrate that, for twelve kinds of
LPI radar waveforms, the overall recognition ACC of the proposed approach achieves 97.94% when SNR
is −8 dB.

INDEX TERMS Radar waveform recognition, time-frequency analysis (TFA), asymmetric convolution
(AC), dilated convolution, coordinate attention (CA) mechanism.

I. INTRODUCTION
Special modulation is usually adopted for the low probability
of interception (LPI) radar to prevent interception and detec-
tion by non-cooperative intercept receivers. Therefore, LPI
radar waveform recognition is a part of the key technologies
of radar countermeasure system [1]. In recent years, a large
number of approaches based on modulation features have
been proposed to recognize radar signals such as spectral
correlation analysis [2], modulation domain analysis [3] and
joint Holder coefficient feature [4]. These approaches have
effectively enhanced the ACC of LPI radar waveform recog-
nition, but they have some shortcomings and thus fail to meet
the recognition requirements of automation, informatization
and intelligence of the system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

Since the time-frequency analysis(TFA) method can effec-
tively establish the time-frequency correspondence of non-
smooth signals, this method has become an effective tool
to study non-smooth signals in non-ideal environments
[5], [6] [7], such as short-time Fourier transform (STFT),
Wigner-Ville distribution (WVD) and Choi-William distri-
bution (CWD). In recent years, combined with deep learn-
ing methods, they have been applied to LPI radar signal
recognition and achieved good recognition performance.
Zhang et al. [8] proposed an approach based on TFA and
convolutional neural network (CNN), which could recognize
eight types of LPI radar modulation signals. ACC of rec-
ognizing eight types of radar signals achieved 94.5% when
SNR was −2 dB. However, four types of ploy-phase coded
signals (P1-P4) in the LPI radar signals were not consid-
ered in this approach except Frank code. In addition, binary
phase shift keying (BPSK) and T1 code had similar features
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in time-frequency images (TFI) at a low SNR, which was
not conducive to recognize these signals. The waveform of
multiple continuous pulses was applied to TFI of BPSK,
but the TFIs of other signals only contained a single pulse,
which made dissimilar features generate and restrict the
applications of this approach in practice. Kong et al. [9] uses
CNN and CWD to identify twelve LPI radar signals (BPSK,
Costas, LFM, Frank, P1 P4 and T1 T4), and experimen-
tally verifies the effects of different image sizes, the size
and number of filters, and the number of neurons on the
recognition accuracy. Qu et al. [10] utilized Cohen time-
frequency distribution, image processing and convolutional
neural network to recognize twelve types of radar modulation
signals. Although the recognition effect was satisfactory at a
low SNR, binary image was still used as CNN input in this
approach. Ma et al. [11] proposed a multi-feature image for
joint decision-making model for the non-stationary charac-
teristics of most LPI radar signals. The short-time autocorre-
lation image, double short-time autocorrelation images and
TFIs were simultaneously input into the hybrid model classi-
fier, and the overall recognition rate of this approach achieved
87.7% when the SNR was −6 dB. Qin et al. [12] proposed
a recognition approach based on CWD and dilated residual
network. When the SNR was −6 dB, the overall recognition
ACC of linear frequency modulation (LFM) signals with
similar TFI features exceeded 95%. Ni et al. [13] proposed
a multi-resolution depth feature fusion approach based on
the FSST, which was utilized for LPI radar waveform recog-
nition. The overall recognition ACC of this approach was
95.2% at −8 dB. In addition, some researchers extracted
features of TFI through transfer learning and conducted clas-
sification by the support vector machine (SVM) [14].

The above approaches made some progress in the ACC of
radar waveform recognition. However, they did not take into
account the effect of redundant frequency bands in the TFIs
on recognition ACC, and the built network did not consider
the learning capability of space and channel. As the size of
the feature map used for classification was too small, the
subtle features of TFIs were neglected. In addition, Softmax
faced the problems of insufficient generalization capabil-
ity and poor clustering effect. In this paper, we propose a
novel approach for LPI radar signal modulation recognition
which uses TFA, image processing and ACDCA-ResNeXt to
address the above problems under noise jamming. We study
the recognition of twelve types of LPI radar signals including
BPSK, LFM, Costas, five polyphase codes (such as Frank,
P1, P2, P3 and P4) and four polytime codes (such as T1, T2,
T3 and T4).

The main contributions of this paper can be summarized as
follows.

1) We propose a new signal preprocessing technique to
eliminated background noise and redundant frequency bands
in TFIs by using CWD, 2D Wiener filtering, image cutting
and image resize.

2) To further enhance the location information extraction
capability and channel feature extraction capability of the

ResNeXt network, we help it learn more expressive and
directional parameters during training by adding a coordinate
attention (CA) block to the network.

3) We introduce the Asymmetric convolution (AC) block,
i.e., we add the horizontal and vertical convolution operations
to the square convolution to improve the extraction capability
of the ordinary convolution for spatial location features.

4) A fusion loss (LF ) function is proposed, which consists
of soft-label smoothed cross entropy loss (LSLSCE ) function,
and center loss (LC ) function. The LSLSCE function is used to
regularize the network to boost signal classification perfor-
mance, while the LC function is used to increase the distance
between different types of signals and reduces the distance
within the same category.

The rest of the paper is organized as follows. Section II
introduces the system structure and the signal model. In Sec-
tion III, TFA and image preprocessing are entered into detail.
Section IV illustrates ACDCA-ResNeXt and LF function in
detail; Section V provides the simulation results. The conclu-
sion is presented in Section VI.

II. SYSTEM STRUCTURE AND SIGNAL MODEL
In this section, we present the structure of LPI radar classifi-
cation system and the definition of LPI radar signals consid-
ered in this paper.

A. SYSTEM STRUCTURE
As Figure. 1 in shown, the classification system consists of
three main parts: signal preprocessing, feature extraction and
classification. In the signal preprocessing stage, the received
LPI radar waveform is firstly converted to TFI by CWD,
which can reflect the instantaneous frequency of the signal
and has good anti-noise performance at the same time. For
modulation identification of radar waveforms, we pay more
attention to the morphological characteristics of the TFIs,
so 2D Wiener filtering is used to smooth the TFI to reduce
noise interference, and image cutting is used to remove redun-
dant frequency bands. Next, the size of the TFI is adjusted
to reduce the training cost of network. Then, a ACDCA-
ResNeXt is designed for feature extraction. Finally, we apply
full connection layer and use Softmax as a classifier to realize
waveform recognition.

B. SIGNAL MODEL
Assuming that the received LPI radar signal is a pulse wave
with additive white Gaussian noise (AWGN). Then, the signal
model can be expressed as

y[k] = x[k] + n[k], 0 ≤ kTs ≤ T (1)

where

x[k] = A[k]ejθ[k] (2)

is the discrete time complex LPI radar signal samples, k is the
sample index increasing every Ts for a sampling frequency fs,
A[k] is the ideal sampling signal of instant envelope, T is
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FIGURE 1. The proposed LPI radar waveform recognition system.

the pulse duration, Ts is the sampling interval, n[k] is white
Gaussian noise, and θ [k] is the instantaneous phase of the
ideal sampling signal.

Here, θ [k] can be computationally expressed by instanta-
neous frequency f [k] and the instantaneous phase offset ϕ[k]
as below

θ [k] = 2π f [k](kTs) + ϕ[k] (3)

which determine the modulation type of radar signal.
In this subsection, we define twelve LPI radar waveforms

are shown in Table 1, including LFM, Costas, BPSK, five
polyphase code (such as Frank, P1, P2, P3 and P4 codes), and
four polytime codes (such as T1, T2, T3 and T4 codes) [9].

TABLE 1. LPI radar signal modulation parameters.

In Table 1, B, fc, fmin, Υ , ρ, n and s represent the mod-
ulation bandwidth, center frequency, fundamental frequency,
number of encoded phases, length of encoded sequence, num-
ber of phase states and number of step frequency segments,
respectively. i, j represent an iterative integer value from 1 to
Υ . ⌊·⌋ denotes the integer downward function. mod(a, b)
represents the remainder function.

III. SIGNAL PREPROCESSING
In this section, we introduce the various methods used to
process the received radar signal in detail, which include
CWD, 2DWiener filtering used to remove background noise
of the TFI, image cutting used to remove redundant frequency
bands and image resize.

A. CHOI-WILLIAMS DISTRIBUTION
The most widely used methods to extract the TFI, include
STFT, WVD and so on. Once the window function and its
length are chosen, the time-frequency resolution of STFT is
fixed. The optimal time position and the best frequency reso-
lution cannot be achieved simultaneously. Therefore, STFT
is only suitable for analyzing quasi-stationary signals that
are stationary at the scale of the short time window. The
WVD does not involve any window function and thus it has
very high time-frequency resolution, but its applications are
inevitably hindered by the cross-term interference. CWD is
able to obtain desired characteristics such as higher resolution
and removal of cross-terms by smoothing the WVD through
time and frequency offsets using kernel function [7]. The
mathematical definitions are shown as

TFRx(t, ω) =

∫∫
As(τ, υ)φ(τ, υ)e−j(υt+ωτ )dτdυ (4)

As(τ, υ) =
1
2π

∫
x(t +

τ

2
)x∗(t −

τ

2
)e−j2πυtdt (5)

φ(τ, υ) = e
−υ2τ2

ε (6)

where As(τ, υ) is the ambiguity function of input signal x(t).
τ and υ are the time delay and frequency shift, respectively.
φ(τ, υ) is kernel function and ε > 0 is scaling factor.

The TFIs of the twelve kinds of LPI radar signals when
SNR=10 dB are illustrated in Figure. 2. The TFI of LFM
with f [k] increasing or decreasing linearly from the initial fre-
quency fc to fc + B with the pulse interval T is characterized
by a diagonal straight line, as shown in Figure. 2(a). Costas
has pseudo-random frequency hopping pattern over a wide
signal bandwidth B and its TFI is shown Figure. 2(b). The
phase offset ϕ of BPSK has only two states (i.e.), 0 and π ),
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and its TFI shows a ‘‘<’’ shape, as shown in Figure. 2(c). The
TFIs for the polyphase codes (i.e.), Frank, P1, P2, P3 and P4
codes) are shown in Figure. 2(d)-2(h), respectively. The TFIs
of Frank, P1 and P2 codes has staircase patterns, whereas
the TFIs of P3 and P4 codes are linear frequency variation.
Among the polytime modulations, the TFIs of T1 and T3
codes have ‘‘<’’ shapes, as shown in Figure. 2(i) and 2(k).
On the other hand, the TFIs of T2 and T4 codes are an ‘‘X’’
shape as shown in Figure. 2(j) and 2(l). With the decrease of
SNR, the stepped and linear time-frequency characteristics
of multiphase modulation signals and LFM signals are weak-
ened to some extent. As the TFIs of BPSK and T1, T2 and
T4 codes are similar to it, it will be confused easily during
recognition [9].

B. 2D WIENER FILTERING
Although CWD can suppress the cross terms, a lot of noise
still exists in the TFIs at a low SNR. The noise will affect
the subsequent recognition effect. Therefore, the reduction of
noise interference is necessary. 2DWiener filter is an adaptive
one, which can adjust the effect of the filter according to the
local variance of the TFI.
Im×n is used to represent a TFI of m× n pixels, and each

pixel can be expressed as I (i, j), i = 1, . . . ,m,j = 1, . . . , n.
ηa×b is the local neighborhood of each pixel in Im×n, and the
size of ηa×b is generally set as 40 × 40. The neighborhood
mean value ϵ and variance ς2 of each pixel are calculatedwith
(7) and (8), respectively, and the image T (i, j) after Wiener
filtering is calculated with (9).

ϵ =
1

a× b

∑
i,j∈η

I (i, j). (7)

ς2
=

1
a× b

∑
i,j∈η

I2(i, j) − ϵ2. (8)

T (i, j) = ϵ +
ς2

− κ2

ς2 (I (i, j) − ϵ). (9)

In (9), κ2 is the noise variance, which can be expressed by the
mean value of neighborhood variance.

C. IMAGE CUTTING AND IMAGE RESIZE
After 2D wiener filtering, the noise in the TFI is effectively
smoothed out. To further highlight the differences between
LPI radar signals with different modulation types, we used
marginal frequency distribution (MFD) to remove redundant
regions, and then resized the images by bilinear interpolation.

The MFD provides a way to obtain the region containing
the signal energy in the TFI under low SNR [15]. It sums the
time values of each frequency in the smoothed TFI and stores
them as column vector H. It is defined as

H(ω) =

N−1∑
t=0

TFRx(t, ω). (10)

A histogram of the normalized MFD is created, contain-
ing 100 subgroups, and the appropriate group number Ng is

FIGURE 2. TFIs of twelve kinds of LPI radar waveforms (SNR=10 dB).

selected to determine first detection threshold. However, even
if there is no signal distribution at a low SNR, the threshold
will sometimes be exceeded. When Ng is great, it will be
lower than the threshold even if there is signal distribution.
Therefore, we adopted the ‘‘secondary threshold’’. That is,
the marginal frequency is considered to have a signal when it
is continuously higher than the threshold for ξ times, and it
is considered to have no signal when it is continuously lower
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than the threshold for λ times. The effective interval of signal
energy distribution is determined [16].

After determining the starting and ending positions of the
valid information region in the TFI, the region is intercepted
and scaled to 224×224 by image resize (e.g., bilinear interpo-
lation)to reduce the training cost of the network. According to
the analysis to signal above, themethod the signal prepressing
is adopted to transform the received signals. As shown in
Figure. 3, we chooseNg = 45, corresponding to a normalized
energy H = 0.5786 as the threshold, and λ = ξ = 5.
The final TFI can well reflect the morphological features of
original TFI.

FIGURE 3. Preprocessing of T1 signal (SNR = −8 dB).

Figure. 4 shows the ACC of effective interception of T1
signal obtained from 1,000 Monte Carlo experiments at dif-
ferent SNRs. It can be seen that the ACC can achieve 100%
when it is −8 dB and above.

D. DESCRIPTIONS OF SIMULATION DATA SET
In the experiment, twelve types of simulated LPI radar sig-
nals in Section I are generated for training and testing the
recognition system and their specific parameters are shown
in Table 2. Here, Nh is number of frequency hopping, U (·)
denotes a uniform distribution based on the sample rate. The
length of signals is set between 1,024 and 2,048 randomly.
In order tomake the simulated signal similar to the real signal,
Gaussian white noise with different SNRs is added to the
signal.

FIGURE 4. Relationship between effective interception and SNR.

In order to analyze the generalization capability of the
network, the SNR of the training set ranges from −8 dB to
8 dB for each signal, 200 signals are generated every 2 dB,
and there are totally 21,600 samples. The SNR of the test set
ranges from−10 dB to 10 dB, 100 signals are generated every
2 dB, and there are totally 13,200 samples [9].

TABLE 2. Parameters of twelve kinds of LPI radar waveforms.

IV. METHODOLOGY
This section provides detailed information for ACDCA-
ResNeXt, including its structure and parameters. Then,
we combine LC and LSLSCE function to propose a LF func-
tion to achieve better clustering effect and enhances the gen-
eralization performance of the network.

A. ACDCA-ResNeXt
ACDCA-ResNeXt is composed of AC block [17], CA block
[18] and ResNeXt block [19], which strengthens capability
of the ResNeXt block to obtain spatial, channel and location
information and improves the receptive field of the model
through dilated convolution.

1) AC BLOCK
AC block uses 1D asymmetric convolution kernels to
strengthen the square convolution kernel and improve the
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spatial information extraction capability of the convolution
layer and the robustness of flipping and rotating images.
We assume that F ∈ RK×K×C is 3D convolution kernel
and its number is D, the input of a convolutional layer is
M ∈ RU×V×C which is a feature map with a size of U × V
and C channels, the output is O ∈ RR×T×D withD channels,
respectively. The j of the output feature map channel is

O:,:,j =

C∑
k=1

M:,:,k ⊙ F (j)
:,:,k , (11)

where ⊙ represents 2D convolution operator, M:,:,k is the
channel k of M expressed in the U × V matrix form, and
F (j)

:,:,k is the channel k of F (j), namely the 2D kernel of
K × K .

Generally, the batch normalizations are conducted to
reduce overfitting and accelerate the training process of the
network, and then the expression capability is enhanced by
nonlinear mapping. Therefore, compared to (11), the output
channel j becomes

O:,:,j = (
C∑
k=1

M:,:,k ⊙ F (j)
:,:,k − µj)

γj

σj
+ βj, (12)

where µj and σj are the mean value and standard deviation of
batch standardization, γj and βj are the scaling factor and bias
term, respectively.

In order to strengthen the features extracted by 3D con-
volution kernel, the 3 × 3 convolution is split into three
parallel convolutions including square 3 × 3, asymmetric
1× 3 and 3× 1 convolution kernels, and then the multi-scale
features extracted by convolution kernels with different sizes
are added together to enrich the feature spatial information.
Therefore, the output channel j by AC block is

Õ:,:,j = Ǒ:,:,j + Ō:,:,j + Ô:,:,j (13)

where Ǒ:,:,j, Ō:,:,j and Ô:,:,j represent the outputs of 3 × 3,
1 × 3 and 3 × 1 branch, respectively.

2) DILATED CONVOLUTION
Traditional convolutional neural networks are made of con-
volutional layers, and pooling layers are stacked continuously
to deepen the network layers and improve the performance.
However, as the network continues to deepen, the presence
of pooling layers makes the image size smaller and smaller,
and inevitably some information will be lost, and thus the
accuracy of the final result will be affected. Based on this
problem, we introduce dilated convolution to improve its
deficiency [18]. The dilated convolution effectively extends
the field of perception without using stride and without losing
the resolution of the TFIs, and does not add an additional
burden to the network training. A 2D dilated convolution with
filter X of size K × K is defined as

P :,:,c =

K∑
k1

K∑
k2

X :+d×k1,:+d×k2,c ×Wk1,k2 (14)

where X :,:,c represents a feature map and P :,:,c is the cor-
responding output. k1, k2 denote the location in the filterW .
The dilation rate d corresponds to the stride. By changing
the dilation rate, the receptive field size of its filters can be
effectively enlarged.

3) ResNeXt BLOCK
Then, the feature Õ ∈ RR×T×D extracted byAC block is used
as input of the ResNeXt block, and ResNeXt extends residual
learning from single-path convolution to multi-path group
convolution. The data Õ is sent to multiple paths whose num-
ber is a branch base, and convolution calculation is conducted
independently for each path, and the calculation result is
connected based on channels. Therefore, the ResNeXt block
output is

K = Fskip(Õ) + U (15)

where

U =

G∑
i=1

Ti(Õ) (16)

is an aggregated transformations in Figure. 5(a), Ti is a bot-
tleneck structure consisting of 1 × 1 convolution, dilation
convolution, and 1× 1 convolution, G is the same number of
structures in the residual block, Fskip(·) is 1 × 1 convolution
function, and K is the output of ResNeXt block.

4) CA BLOCK
The feature maps U act as the input to CA block. CA block
is divided into embedding of coordinate information and
generation of coordinate attention to capture the relation-
ship between location information and channel informa-
tion. An example is the coordinate attention mechanism in
Figure. 5(b).
In the embedding of coordinate information, for an input

U ∈ RQ×P×N , pool kernels of size (Q, 1) and (1, P) are used
to encode information of each channel along the horizontal
and vertical directions, respectively. The specific processes
of pooling are given as follow

zhc(h) =
1
P

P∑
j=1

uc(h, j). (17)

zwc (w) =
1
Q

Q∑
j=1

uc(i,w). (18)

where zc is the output of the c channel, Q and P denote the
height and width of the input feature map, respectively, uc is
the input of the c channel.
The above two transformations aggregate U along two

spatial directions, respectively, to obtain a pair of directional
perceptual feature maps zh ∈ R1×1×N and zw ∈ R1×1×N ,
which help the network to locate the target of interest more
accurately.
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In the generation of coordinate attention, we concatenate
zh and zw and then transform them with Fskip(·), yielding

v = δ(Fskip([zh, zw])), (19)

where [,] is the concatenation operation along the spatial
dimension, δ is a non-linear activation function, and v ∈

RN/ζ×(Q+P) is featuremap that encodes spatial information in
the horizontal and vertical directions. Here, N is the number
of channels, and ζ is the reduction rate.

The v is decomposed into two independent tensors vh ∈

RN/ζ×Q and vw ∈ RN/ζ×P along the spatial dimension, and
then use Fskip(·) to transform vh and vw into tensors input with
the same number of channels as U , respectively, and finally
use the sigmoid activation function σ to process to obtain gh

and gw, which are define as

gh = σ (Fskip(vh)), (20)

gw = σ (Fskip(vw)), (21)

As shown in Figure. 5(c), the output Z ∈ RH×W×N of
ACDCA-ResNeXt block is

Z = Fskip(Õ) + U × gh × gw. (22)

In summary, we improve the spatial information extrac-
tion ability of the convolutional layer through the AC block,
and enhance its information extraction ability in position
and channel features by introducing the CA block into the
ResNeXt block. Meanwhile, we replace the normal convo-
lution in the top layer of ResNeXt block with the dilated
convolution to increase its perceptual field to obtain the finer
features of TFI. As shown in Figure. 6, the proposed network
consists of four ACDCA-ResNeXt blocks. To input the pre-
processed TFIs, ACDCA-ResNeXt network is used to extract
and learn the deep features of different modulation types, and
then Softmax classifier is used to classify them.

B. FUSION LOSS FUNCTION
Due to the high similarity between the different classes of
samples in this paper. In order to improve the recognition
ACC and generalization ability of the network, the gap
between the classes is increased and the gapwithin the classes
is reduced so that the samples can achieve better clustering
effect. Therefore, we propose an effective LF function com-
bining LSLSCE function [21], [22] and LC function [23].
Suppose that there are l samples (x(1), y(1)), . . . , (x(l), y(l))

in a training batch, in which x(i) is a training sample i, y(i) is
the real label of x(i). The cross-entropy loss (LCE ) function is
as follows

LCE = −
1
l

l∑
i=1

J∑
j=1

y(i)j log(p(i)j ) (23)

p(i)j =
erj∑J
n=1 e

rn
(24)

where yij represents one-hot encoding vector converting the
real label of the sample i into the J -dimension; J is the

classification number of LPI radar signals; rj represents the
prediction probability that the sample i falls into the j class;
p(i)j is the prediction probability of the sample i.
LSLSCE function reduces the risk of overfitting the network

training by adding the labels of noise smoothing real labels,
and avoids the loss of information between similar classes to
a certain extent by smoothing the p(i)j . The LSLSCE function is
as follows:

LSLSCE = −
1
l

l∑
i=1

J∑
j=1

ȳ(i)j log(p
′(i)
j ) (25)

p
′(i)
j =

e
(
rj
S
)

∑J
n=1 e

(
rn
S

)
(26)

ȳ(i)j = (1 − ϑ)y(i)j + (1 − y(i)j )
ϑ

J
(27)

where ϑ is label smoothing coefficient, and ȳ(i)j is the real
label after label smoothing. The greater the soft coefficient S,
the smoother the probability distribution

In order to narrow the intra-class gap and maintain the gap
between the classes,LC function is adopted in this paper. The
formula for it is as follows

LC =
1
2

l∑
i=1

∥f (x(i)) − Cy(i)∥
2
2 (28)

where f (x(i)) represents the feature vector of the sample i
before the fully connected layer, and Cy(i) represents the
center feature of the category to which the sample i belongs.

Specifically, the LF is formulated as follows

LF = LSLSCE + αLC (29)

where α is used to balance the two losses.

V. EXPERIMENTS AND RESULTS
In this section, we analyze the performance of the proposed
network in detail and the computational complexity and then
compare the performance of the proposed algorithm with
other approaches at different SNRs. In addition, we visualize
the regions of TFIs that are of interest to different approaches
by Grad-CAM.

A. EXPERIMENTAL PARAMETERS
In the training of ACDCA-ResNeXt, SDG and Adam were
used as optimizers for center loss and cross entropy loss. The
initial learning rate was 0.1, the batch of training batches
was 64, and the total number of iterations was 90. When the
loss of test and verification set did not decrease for 3 con-
secutive times, the learning rate would be reduced by 30%.
All networks were implemented on the PyCharm Commu-
nity 2018 Platform using PyTorch 1.8.1 and CUDA 10.1. The
computer configuration was Intel® Core 17-10700 2.9 GHz,
16 GB RAM, and NVIDIA GeForce GTX 1060 with 6GB
hardware capabilities.
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FIGURE 5. The block of (a) Group Residual, (b) Coordinate Attention, and (c) proposed
ACDCA-ResNeXt.

FIGURE 6. The structure of the ACDCA-ResNeXt.

B. THE EFFECTS OF TFI PREPROCESSING ON
RECOGNITION ACC
We compare the effects of different preprocessing operations
on recognition ACC. Qu et al. [10] binarized and scaled the
TFI after 2D Wiener filtering, which improved the recog-
nition effect. However, at a low SNR, the binary image
information was seriously lost, resulting in low classification
ACC [10]. After the preprocessing method proposed in this
paper, the noise interference and the position difference in the
frequency dimension in TFI can be reduced. The data after
preprocessing mentioned above were used to train ACDCA-
ResNeXt separately, and the overall recognition rate was
shown in Figure. 7. Also, the TFIs after 2D Wiener filtering
were also used as the network input. The experimental results
demonstrated that the overall recognition ACC of LPI radar
signal by the preprocessing approaches proposed in this paper
was higher than other similar preprocessing approaches at
different SNRs.

In addition, we discussed the effect of the input layer
sizes (56 × 56, 112 × 112, 224 × 224 and 448 × 448)
of ACDCA-ResNeXt on recognition effect. As shown in
Figure. 8, the smaller the size (e.g., 56×56), themore detailed

FIGURE 7. Comparison of recognition ACC of different preprocessing
methods.

information (e.g., frequency hopping at the end of the TFI of
BPSK signal) lost in the TFI. This will make it difficult to rec-
ognize the signals with similar time-frequencymorphological
characteristics under the noise effect. On contrary, if the input
layer of the network is too large (e.g., 448× 448), it increases
the parameters of the network while keeping the size of the
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convolutional kernel constant, which leads to overfitting and
thus reduces the performance. Therefore, 224 × 224 was
reasonably selected as the input size of the network.

FIGURE 8. The effect of the input layer size of the ACDCA-ResNeXt on
recognition effect.

C. COMPARISON WITH DIFFERENT LOSS FUNCTIONS
The effect of different S values on the classification ACC
of ACDCA-ResNeXt was determined through experiments.
As shown in Figure. 9, when therewere 2100 training samples
in each category and the S value was between 1.5 and 5, the
best classification ACC was obtained if S was 3. Therefore,
the optimal S could be determined by the parameter search
approach. In the same way, the weights of ϑ = 0.3 and
α = 9 could be determined by this approach.

FIGURE 9. Classification results of the ACDCA-ResNeXt under different S
values.

To better understand the classification effect of the pro-
posed network with different loss functions, 90 samples
were randomly selected from each class of test dataset, and
t-distributed stochastic neighbor embedding (t-SNE) [24] was
used to reduce the dimensionality of inputs and features
extracted byACDCA-ResNeXtwithLCE , ACDCA-ResNeXt
withLSLSCE , and ACDCA-ResNeXt withLF to 2D represen-
tation. The results were shown in Figure. 10. It could be seen
that LF could significantly improve the generalization ability
of the network and achieved better clustering effect.

FIGURE 10. Visualize of twelve signals categories in of different loss
functions.

D. RECOGNITION PERFORMANCE OF THE PROPOSED
APPROACH
To demonstrate the recognition performance of the proposed
approach, we compared the approach with CNN [10], dilated
residual network (DRNet) [12] and ResNet [25]. Meanwhile,
ResNeXt was taken a control to verify the improvement of
ResNeXt recognition performance by dilated convolution,
AC block and CA block. Literature [10] used CNN to extract
the features of the binary TFI after 2D Wiener filtering.
Literature [12] and Literature [25] adopted the preprocess-
ing operations of graying, opening operation and bicubic
interpolation, and then used DRNet and ResNet to extract
the features. Finally, they all used the Softmax classifier to
complete the LPI radar signals classification.

FIGURE 11. Performance comparison of five approaches at different
SNRs.

Figure. 11 showed the overall ACC of the above five
approaches at different SNRs. When SNR>−4 dB, the
ACC of other approaches except CNN exceeded 97%. With
the decrease of SNR, the recognition curve of the control
approach declined significantly, while the recognition ACC
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of the proposed approach could still achieve 97.94% when
SNR=−8 dB, which were 20.72%, 4.44%, 2.07% and 1.02%
higher than CNN, ResNet, DRNet and ResNeXt, respectively.
When SNR=−10 dB, the proposed approach could still
achieve high recognition ACC for the test data that were
not involved in training, and its generalization capability
outperformed other approaches.

The following verifies the respective recognition ACC of
different approaches for twelve types of LPI radar signals at
different SNRs, as shown in Figure. 12. With the decrease of
SNR, the identification ACC of our approach is significantly
improved compared with other approaches for LFM, P1,
P3, P4, BPSK, and T2. Figure. 13 showed the recognition
confusion matrix at SNR=−8 dB. Recognition errors mainly
occurred in the P1 and P3 codes, and the P2, P3 and Frank
codes for both groups of signals, which is due to the fact that
the step characteristics in the TFIs of the two groups of signals
became vague or even disappeared at low SNRs, resulting in
confusion between the signals.

E. VISUALIZATION RESULTS OF DIFFERENT APPROACHES
In order to analyze the recognition performance of different
networks in the previous section, the three networks (CNN,
ResNet, and DRNet) were trained with the same data set, and
the heap map of the confusing signal samples (P1, P3, P4
and Frank) in the test set were generated by the visualization
approach Grad-CAM [24], as shown in Figure. 14. When
CNN and ResNet recognized the above test samples, they
were easily affected by background noise and thus scattered
and incomplete attention areas appeared. DRNet, based on
the residual block, introduced dilated convolution to increase
the receptive field. It focused on the edge area of signal
time-frequency energy, but the part of interest was still miss-
ing. Under the premise of introducing dilated convolution,
we analyzed the focus areas of D-ResNeXt, ACD-ResNeXt
and CAD-ResNeXt when recognizing the four types of con-
fusing signals, as shown in Figure. 15. To sum up, the network
proposed could pay attention to the edge features of energy
distribution in TFIs by using dilated convolution, AC block
and CA block. It was not easily affected by background noise,
and the attention was more evenly distributed.

F. THE COMPUTATIONAL OF OTHER ATTENTION
MECHANISMS
As TFI was rich in details, we should pay attention to the
more useful parts when recognizing specific samples. In order
to obtain a better classification effect, attention mechanism
was introduced into the network, which was usually used
to tell the network what content and attention should be
concerned. Starting from the visualization and computa-
tional complexity and based on ACD-ResNeXt, we analyzed
the performances of three different attention mechanisms,
squeeze-and- excitation (SE) [27], convolutional block atten-
tion module (CBMA) [28] and CA.

FIGURE 12. Recognition ACC of twelve radar signals at different SNRs.

1) VISUALIZATIONS RESULTS OF DIFFERENT ATTENTION
MECHANISMS
As shown in Figure. 16, as SE only considers the encoding of
features between the channels, it neglected the importance of
location information. CBAM only obtained the local correla-
tion between location and channel by using a large pooling
layer. The CA used in this paper encoded the information of
different channels along the horizontal and vertical directions
and integrated the location and channel information more

VOLUME 11, 2023 45177



X. Wang et al.: LPI Radar Signals Modulation Recognition Based on ACDCA-ResNeXt

FIGURE 13. Confusion matrix for waveform classification (SNR=−8 dB).

FIGURE 14. Grad-CAM visualization results obtained using different
approaches.

FIGURE 15. Grad-CAM visualization results obtained using the ResNeXt
block with different blocks.

harmoniously, which would have more advantages in the
extraction of TFI features.

2) COMPARISONS OF DIFFERENT ATTENTION MECHANISMS
Floating point of operations (FLOPs) and learning parame-
ters are widely applied in the computational complexity of
convolutional neural networks. The FLOPs calculations of

FIGURE 16. Grad-CAM visualization results obtained using the
ACD-ResNeXt with different attention mechanisms.

convolutional layers and linear layers are as follows

FLOPsc =

D∑
m=1

2M2
mE

2
mLm−1Lm (30)

FLOPsl =

D∑
m=1

(2Lm−1 − 1)Lm (31)

where FLOPsc and FLOPsl represent the FLOPs of convolu-
tion and linear layers, respectively, L and D are the numbers
of layers and channels, respectively, andM and E denote the
lengths of feature maps and kernels of the l layer.

In order to verify the performances of three different
attention mechanisms, the ratios of the increased ACC
to the increased parameters and FLOPs were defined as
Score1 and Score2 by comparing with the baseline approach.
The Score1 and Score2 are shown as

Score1 =
ACCc − ACCb

Pc − Pb
, (32)

Score2 =
ACCc − ACCb

Fc − Fb
, (33)

where ACCc and ACCb denote the overall ACC of current
and baseline approaches, respectively, Pc and Pb denote the
parameters of current and baseline approaches, respectively,
and Fc and Fb denote the FLOPs of current and baseline
approaches, respectively.

When the Score was greater, it would indicate that this
approach could sacrifice a few parameters/computational
complexities to achieve higher ACC than the baseline
approach.

It could be seen from Table 3 that 1) the embedding
attention mechanism could effectively improve ACC. The
SE and CBAM blocks were increased by 0.05% and 0.2%
respectively when compared with the baseline approachwith-
out any attention mechanism; 2) by using CA block, the
location and channel information were integrated more har-
moniously, and the recognition ACC achieved 99.23%; 3) the
ACDCA-ResNeXt network witnessed the highest Score1 and
Score2, which indicated that CA block could sacrifice the

45178 VOLUME 11, 2023



X. Wang et al.: LPI Radar Signals Modulation Recognition Based on ACDCA-ResNeXt

least model parameters and algorithm complexity to obtain
a higher ACC.

TABLE 3. Result comparasions under different attention mechanisms.

VI. CONCLUSION
In this paper, we propose a recognition approach of LPI radar
modulation signal based on TFI preprocessing and ACDCA-
ResNeXt network. Firstly, in order to eliminate noise inter-
ference and redundant frequency band interference in TFI,
we propose a new TFI preprocessing. Secondly, to strengthen
the learning capability of space, location and channel features
of network, we introduce AC block and CA block based on
ResNeXt and increase the receptive field by using dilated
convolution. Finally, joint training of center loss and soft label
smoothing is proposed to overcome the problems of insuf-
ficient generalization capability of cross entropy loss and
unsatisfactory clustering effect. Experimental results demon-
strate that, for twelve kinds of LPI radar waveforms, the
overall recognition ACC of the proposed approach achieves
97.94% when the SNR is −8 dB. Compared with the existing
approaches, the proposed approach gets a better adaptability
to low SNR and a stronger anti-confusion capability.

Finally, taking into account that Wiener filtering requires
manual parameter adjustment and is difficult to be applied
in practical engineering applications, future research can
explore the use of deep learning networks to achieve blind
denoising of time-frequency images and further suppress
noise in images.
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