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ABSTRACT The goal of this work is to examine the issue of state estimation-based synchronization of
nonlinear complex dynamical networks that are prone to external disturbances, repeated scalar nonlinearities
and time-varying coupling delays. In a nutshell, hybrid-triggered communication transmission nonfragile
control design with respect to the estimated states and extended dissipative theory is designed, which
comprises of both the time and event-triggered mechanisms, and a hybrid generator is presented between
the sensor and controller. More preciously, a stochastic variable satisfying the Bernoulli random binary
distribution is utilized to represent the phenomenon of random transmission between the time and event-
triggered mechanism. Furthermore, delay-dependent adequate conditions for ensuring the synchronization
of the addressed system are developed in the form of linear matrix inequalities. And, the requisite gain
matrices and hybrid-triggered parameters are evaluated with the help of solving these procured conditions.
Lastly, a numerical example with an application to memristor-based Chua’s circuit model is demonstrated
to ensure the effectiveness of established control technique.

INDEX TERMS Complex dynamical networks, repeated scalar nonlinearity, state estimation, non-fragile
hybrid-triggered mechanism, extended dissipativity.

I. INTRODUCTION
In control theory, complex dynamical networks (CDNs) have
fascinatingly established its influence in real process and
retained its ground for the last few decades. In fact, the explo-
sive growth of the technological industry today demands
the control of a wide range of networks, including wireless
networks, global positioning system services, cellular net-
works, power grids, transportation and so on [1], [2], [3],
[4]. In such a manner, these complex networks are vital and
are highly correlated to our day-to-day life. In the general
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sense, CDNs are composed of several inter-linked nodes,
wherein, each node signifies each dynamical system and the
links meter the communication between them. Moreover, the
nodes of the CDNs in this work are considered in nonlinear
form. To make it more general, we ought to treat those
nonlinearities as a repeated scalar nonlinearity, that encom-
passes distinct types of nonlinearities such as sine functions,
semi-linear functions, hyperbolic tangential functions, etc.
For this reason, a collection of relevant study results on
repeated scalar nonlinearities is being rendered by the aca-
demicians [7], [8], [9], [10]. With this essence, the article [8]
explores the question of stability of continuous-time repeated
scalar nonlinear Takagi-Sugeno fuzzy systems assisted by
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event-triggered H∞ control protocol. Intriguingly, a design
of sliding mode observer has been profoundly inspected for
repeated scalar nonlinear systems by the researchers in [10].
Notably, so far in the literature, none of the works addressed
the repeated scalar nonlinearity for CDNs. Thence, this CDNs
with repeated scalar nonlinear is a critical framework and the
acquired technical difficulties are analyzed in this study to
enlarge the practical applicability.

In a related note, experts in many disciplines, including
sociology, economics, biology, mathematics, etc., have ori-
ented their focus on the synchronization problem of CDNs.
This topic has indeed been relevant for years due to its
plethora of exciting applications, such as image process-
ing, harmonic oscillation generation, secure communication,
heartbeat regulation, routing messages in the internet [5], [6].
Besides, this has the potential to interpret a lot of natural
phenomena, notably harmony of flashing fireflies, rhythmic
beating of heart cells, etc. As a consequence, many con-
temporary literature has intensively studied the dynamical
behaviour of CDNs and other networks [13], [14], [15], [16],
[17], [18], [19], [20], [21]. For instance, the literature [17]
examines the synchronization transition behaviour over neu-
ronal networks with average degree, coupling strength and
information transmission delay. On another note, the exis-
tence of time delays is more common in real-world situations
such as in traffic congestions, electrical signal conveyance
across long distances and so forth. One cannot be much
ignorant in considering time-delays in system design as it
may lead to inaccurate analysis. Such time delays can some-
times potentially lead to instability and have an impact on
performance of the system [11], [12]. Thus, researches on
behaviour of networks in the presence of time delays would
be more pertinent and perhaps other exciting works on CDNs
with delays have been conducted [23], [24]. More particu-
larly, an admirable work has been made on the Markovian
CDNs with time-varying coupling delays and an incom-
plete transition rates addressing the issue of synchronization
in [24]. The implications of aforementioned applications and
their significance prompted the discussion of synchronization
analysis for repeated scalar nonlinear CDNs (RSNCDNs)
with coupling delays in this study, to fill the research
gap.

Over and above, in this modern era of technology and
communication, the inquiry on control of networks via time-
triggered/sampled-data controllers drew the researchers’
interest since it is more beneficial in regard to effective-
ness, the ease of installation and other factors. Importantly,
it assisted in ensuring the proper function of systems even
in adverse circumstances like external disturbances, limited
channel bandwidth, etc. However, as it periodically com-
municates the data to the controller regardless of whether
the transfer is essential, it may result in needless consump-
tion of communication resources. The challenge of how to
tackle this flaw, led to the raise of event-triggered con-
trollers which delivered only the selected sampled data to the

controller. This choice is made with the aid of a specified
event-triggering condition. As a result of these benefits,
countless studies on event-triggered control for networks
have been published [25], [26], [27], [28], [29], [30], [31].
The work in [27], aimed to reach the consensus for leader-
following multi-agent networks with effective utilization of
event-triggered control. Strikingly, event-triggered approach
is deployed in discrete time-varying nonlinear complex net-
works to prevent communication bandwidth wastage and
needless executions, followed by quantization of data in [29].
Yet, in real-world scenarios, changes to the network loads
may exist which must be considered. Taking these aspects
into account and in addition to these kinds of advancements
in this area of research, a far more suitable communication
method referred to as a hybrid-triggered control scheme has
been devised to strike a balance between the mitigation of
communication transmission burden and system’s perfor-
mance assurance [32], [33], [34]. These prompted scientists
to investigate on this problem for a variety of systems, includ-
ing Takagi-Sugeno fuzzy systems, neural networks, multi-
agent systems and so on.

On the contrary, the confrontation of state estimation issue
in the circumstances of inaccessibility of system’s internal
states have been addressed broadly due to its wide applica-
tions. Moreover, the states of the system under consideration
are well reconstructed with the use of state observer and
system monitoring, fault detection, realization of feedback
control are only a few of its many essential applications.
Extensively, in various control systems and applications,
the states of a system are not always measurable. In these
circumstances, stabilization is probably best served by the
enforcement of observer-based controllers [22], [35], [36],
[37]. Due to their propensity to approximate unavailable
states from the system’s available input and output, these
kind of controllers are habitually used in industries to van-
quish practical applications. Most of all, the design of an
observer-based event-triggered controller for networks has
drawn much attention among the academic researchers due
to their cumulative benefits as those stated above [38], [39],
[40], [41]. A remarkable work on the analysis of switched
linear systems that are susceptible to disturbances and delays
is made, aided by an observer-based event-triggeredH∞ con-
trol [38]. Besides, aging of the components, round off errors,
analog-to-digital and digital-to-analog conversion in numeri-
cal computing do produce uncertainties or inaccuracies when
a controller is implemented. Thus, designing a controller
which ensures that it is insensitive to a certain level of flaws
with its gain, commonly known as the nonfragile control
problem, is extremely vital [42], [43], [44]. As a consequence
of the abovemade discussions, this work solely contributes on
the topic of designing an observer-based nonfragile hybrid-
triggered controller for RSNCDNs by describing the gain per-
turbations in a linear fractional form. Speaking of which, the
linear fractional uncertain form includes the norm bounded
form as its special case [45].
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Motivated by the above facts, by the virtue of an extended
dissipativity performance procedure, the external distur-
bances that are anticipated to occur in the RSNCDNs to be
modelled are dampened. More pertinently, it is the incorpora-
tion of well-known performance indices which includes H∞,
passivity, L2 − L∞ and dissipativity, which can be reduced
to any one of them by modifying the weighting factors in
design [46]. Incentivized by the foregoing discussions, the
major highlights of this work are hereunder:

• This study concerns a state estimation-based synchro-
nization issue for RSNCDNs that are exposed to external
disturbances and influenced by time-varying coupling
delays.

• The Luenberger observer approach has been intended in
such a way as to cope up with the unmeasurable states in
real course of events. These ideas are brought into appli-
cation by designing a hybrid-triggered controller with
respect to the observer designed with gain fluctuations
in linear fractional form.

• The attempted RSNCDNs for study that are assumed
to be exposed to external disturbances can readily be
tackledwith the aid of adopting an extended dissipativity
performance scheme.

• By the virtue of Lyapunov stability theory, adequate
conditions for guaranteeing the synchronization of the
networks under examination are accomplished by the
dint of linear matrix inequalities.

As a conclusion, a numerical example on memristor-based
Chua’s circuit model is rendered to exemplify the prominence
of the presented results and formulated strategy. Notably,
by using theMATLAB programme to solve the achieved con-
ditions, the necessary gainmatrices of the controller, observer
and the matrix involved in hybrid triggering are obtained.

II. PROBLEM STATEMENT
In this investigation, we take into account a class of
RSNCDNs with coupling delays composed of N linearly
coupled nodes that are expressed in the following manner:

ξ̇i(t) = Aξi(t) + Bς (ξi(t)) + a
N∑
j=1

cijDξj(t)

+ b
N∑
j=1

eijFξj(t − d(t)) + Gui(t) + Hϖi(t),

yi(t) = Jξi(t),

ξi(t0) = ϕi(t0), t0 ∈ [−dM , 0], i = 1, 2, . . . ,N , (1)

where ξi(t) ∈ Rp, ui(t) ∈ Rq and yi(t) ∈ Rr are the
system state, control input and output vector of the ith node,
respectively. ϕi(.) specifies the initial condition of RSNCDNs
(1) for node i defined on [−dM , 0]; d(t) is the time-varying
coupling delay with 0 ≤ d(t) ≤ dM < ∞; ς (.) ∈

Rs
→ Rs is the repeated scalar nonlinear function; ϖi(t)

indicates the external disturbance of the ith node which are
assumed to be a square integrable function; a and b are

positive scalars representing the coupling strengths; D and
F means the inner-coupling matrices of non-delayed and
delayed coupling of RSNCDNs (1), respectively. Further, cij
and eij configures the elements of outer coupling matrices,
wherein C = [cij]N ×N and E = [eij]N ×N are determined
to meet the zero-row-sum property. As well, A, B, G, H
and J are the appropriate dimensioned real-valued coefficient
matrices. The addressed RSNCDNs (1) are further assumed
to be observable and controllable.

Let s(t) and ys(t) denote the state and output trajectory of
the target node of the intended synchronization, respectively,
whose dynamics is given by

ṡ(t) = As(t) + Bς (s(t)),

ys(t) = Js(t). (2)

Let us now denote, the synchronization error for ith node of
RSNCDNs (1) as γi(t) defined by γi(t) = ξi(t) − s(t) whose
dynamics is characterized as

γ̇i(t) = Aγi(t) + Bς (γi(t)) + a
N∑
j=1

cijDγj(t)

+ b
N∑
j=1

eijFγj(t − d(t)) + Gui(t) + Hϖi(t),

yiγ (t) = Jγi(t),

where ς (γi(t)) = ς (ξi(t)) − ς (s(t)), yiγ (t) = yi(t) − ys(t).
Meanwhile, while we intend to design a state feedback

controller, it is necessary to know about the state variables
of the specified controller earlier, which is important in real-
world applications. As a result, we adopt an observer-based
approach in control design. In order to do this, we take into
account the dynamics of the state observer as shown below:

˙̂
ξi(t) = Aξ̂i(t) + Bς (ξ̂i(t)) + a

N∑
j=1

cijDξ̂j(t) + b
N∑
j=1

eijF

× ξ̂j(t − d(t)) + Gui(t) + L(yi(t) − ŷi(t)),

ŷi(t) = Jξ̂i(t), (3)

wherein ξ̂i(t) ∈ Rp and ŷi(t) ∈ Rr denote the observer state
and output of ith node, i.e., the estimates of state ξi(t) and
output yi(t), respectively. As well, L implies the observer gain
matrix and let us define the state estimation error ξi(t)− ξ̂i(t)
as ∇ξi(t).

In this paper, we ought to design a hybrid-triggered
controller based on observer (3) in order to lessen the trans-
mission of unwanted data in the network. Over and above,
it should be noted that this model is constructed in a set-
ting that allows a probabilistic switching between time and
event-triggered scheme by means of a random variable which
aids in enabling a balance between the system performance
and data transmission. Now, in case when the time-triggered
scheme is selected, then the control data denoted as ui(t) will
be of the form

ui(t) = Kγ̂i(t − τ (t)), t ∈ [tkh+ τtk , tk+1h+ τtk+1 ), (4)
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where γ̂i(t) = ξ̂i(t) − s(t) and tkh is the sequence of sam-
pling instants with sampling period h; tk is the sequence
{t1, t2, . . .} = {1, 2, . . .}; τ (t) is the network induced delay
defined by τ (t) = t − tkh, τ (t) ∈ [0, τM ]. Here, τM is the
upper bound of the network induced time-delay and K is the
controller gain to be determined.

Now, in accordance with the event-triggered control
scheme, the following condition determines whether or not
the signal must be transmitted to the controller:

εTi (tkh)�εi(tkh) ≤ σ γ̂ Ti (tkh+ lh)�γ̂i(tkh+ lh), (5)

wherein εi(tkh) = γ̂i(tkh) − γ̂i(tkh + lh) which is the error
between the latest transmitted data γ̂i(tkh) that is sampled
and the present sampling data γ̂i(tkh + lh); l = 1, 2, . . . , h;
σ is a positive scalar in (0, 1) and � is a positive definite
matrix. In here, the current sampled data packets are sent
to the controller, only when the above condition (5) is vio-
lated. Thus, the control signal under event-triggered control
scheme, given the notation ui(t), will be of the form

ui(t) = K[γ̂i(t − η(t)) + εi(t)],

t ∈ [tkh+ τtk , tk+1h+ τtk+1), (6)

herein, η(t) is the network induced time-delay defined by
η(t) = t − tkh − lh and η(t) ∈ [0, ηM ] with ηM being the
upper bound of η(t).
Having said that, the switching between the time and

event-triggered scheme in the adopted hybrid-triggered
mechanism is supposed to obey Bernoulli distribution and the
nonfragile control law ui(t) with linear fractional parametric
gain variations is expressed by combining (4) and (6) in the
following manner:

ui(t) = α(t)(K + 1K(t))γ̂i(t − τ (t)) + (1 − α(t))

× (K + 1K(t))
[
γ̂i(t − η(t)) + εi(t)

]
, (7)

where α(t) indicates the Bernoulli distributed random vari-
able with expectation and variance ᾱ and ᾱ(1 − ᾱ), 1K(t)
signifies the variation of controller gain having the form
1K(t) = MF (t)N with F (t) = (I − G F̄ (t))−1F̄ (t),
I − G TG > 0, where M and N are constant matrices and
F̄ (t) satisfies F̄ T (t)F̄ (t) ≤ I .
Remark 1: It ought to be highlighted that the switch-

ing mechanism between time and event-triggered schemes
is depicted by a random variable α(t). In here, the
time-triggered control scheme is activated when α(t) = 1 and
the event-triggered controller is employed to transmit control
data when α(t) = 0. Also, in real-world situations, the mean
value ᾱ of the random variable α(t) is crucial for achieving
the required performance with the available resources in line
with the requirements. The value of ᾱ can be chosen to be
large enough to meet the expectations when performance
requirements are higher and network resources are sufficient,
or in the contrary scenario to the above, the value can be fixed
to be small in order to meet the demands.

The designed controller (7) is now substituted in the
RSNCDNs (1) and with the exploitation of Kronecker prod-
uct, we obtain the following system of equations:

˙̂
ξ (t) = (I ⊗ A)ξ̂ (t) + (I ⊗ B)ς (ξ̂ (t)) + a(C ⊗ D)ξ̂ (t)

+ b(E ⊗ F)ξ̂ (t − d(t)) + α(t)(I ⊗ G)(I ⊗ (K

+ 1K(t)))[γ̂ (t − τ (t)) − ∇ξ (t − τ (t))] + (1 − α(t))

(I ⊗ G)(I ⊗ (K + 1K(t)))[γ (t − η(t)) − ∇ξ (t − η(t))

+ ε(t)] + (I ⊗ LJ)∇ξ (t), (8)

∇ ξ̇ (t)=(I ⊗ (A − LJ))∇ξ (t) + (I ⊗ B)ς (∇ξ (t))+ a(C ⊗ D)

∇ξ (t) + b(E ⊗ F)∇ξ (t − d(t))+(I ⊗ H)ϖ (t), (9)

γ̇ (t) = (I ⊗ A)γ (t) + (I ⊗ B)ς (γ (t)) + a(C ⊗ D)γ (t)

+ b(E ⊗ F)γ (t − d(t)) + α(t)(I ⊗ G)(I ⊗ (K

+ 1K(t)))[γ̂ (t − τ (t)) − ∇ξ (t − τ (t))] + (1 − α(t))

(I ⊗ G)(I ⊗ (K + 1K(t)))[γ (t − η(t)) − ∇ξ (t − η(t))

+ ε(t)] + (I ⊗ H)ϖ (t). (10)

From this spot, the following notations will be followed:
• For any matrix A, the Kronecker product (I ⊗ A) will
be A.

• For any two matrices C and D, the Kronecker product
(C ⊗ D) will be ascertained as CD.

Thus, with the above acknowledged details, the augmented
closed-loop form of the system of equations (8)-(10) is
acquired as

8̇(t)= Â8(t) + B̂f(8(t))+Ĉ8(t − d(t))+ α(t)D̂8(t − τ (t))

+ (1 − α(t))Ê8(t − η(t)) + (1 − α(t))F̂ε(t) + Ĥϖ (t),

y(t) = Ĵ8(t), (11)

where 8T (t) =
[
ξ̂T (t) ∇ξT (t) γ T (t)

]
, ςT (8(t)) =[

ςT (ξ̂ (t)) ςT (∇ξ (t)) ςT (γ (t))
]
,

Â =

A + aCD LJ 0
0 A + aCD − LJ 0
0 0 A + aCD

 ,

B̂ =

B 0 0
0 B 0
0 0 B

 , Ĉ =

bEF 0 0
0 bEF 0
0 0 bEF

 ,

D̂ = Ê =

0 −G(K + 1K) G(K + 1K)
0 0 0
0 −G(K + 1K) G(K + 1K)

 ,

F̂ =

G(K + 1K)
0

G(K + 1K)

 , Ĥ =

0
H
H

 and Ĵ =
[
J J J

]
.

III. PRELIMINARIES
Additionally, the following preliminaries beneficial for the
derivation of main results are granted:
Assumption 1: The function ς (.) in the RSNCDNs (1) is

assumed to satisfy the ensuing requirement:

|ς (á) + ς (b́)| ≤ |á + b́|, ∀á, b́ ∈ R. (12)
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Assumption 2: For the provided matrices Û1, Û2, Û3 and
Û4 the requirements presented herewith are met:

• Û1 = ÛT
1 ≤ 0, Û3 = ÛT

3 > 0 and Û4 = ÛT
4 ≥ 0.

• (∥ Û1 ∥ + ∥ Û2 ∥)· ∥ Û4 ∥= 0.
Definition 1: [46] The augmented closed-loop sys-

tem (11) is referred to be extended dissipative with the
afore-mentioned matrices Û1, Û2, Û3 and Û4 assenting the
Assumption 2, if for every ϖ (t) ∈ L2[0, ∞) and any tλ ≥ 0,
there exists a scalar µ such that

E
[ tλ∫

0

J (t)dt − sup
0≤t≤tλ

yT (t)Û4y(t)
]

≥ µ, (13)

having J (t) = yT (t)Û1y(t) + 2yT (t)Û2ϖ (t) +

ϖ T (t)Û3ϖ (t).
Lemma 1: [8] Any given matrix P̄ in Rs̄×s̄ with elements

[p̄rs] is a positive diagonally dominant if and only if P̄ >

0 and there exists a matrix W̄ in Rs̄×s̄ with elements [w̄rs]
fulfilling the condition

∀r ̸= s, w̄rs ≥ 0, p̄rs + w̄rs ≥ 0,

∀r, p̄rr −

∑
s̸=r

(p̄rs + 2w̄rs) ≥ 0.

Lemma 2: [8] Every nonlinear functions of form f̄(.) that
are contigent to Assumption 1 obeys

f̄T (ζi(t))P̄f̄(ζi(t)) ≤ ζ Ti (t)P̄ζi(t), ∀ ζi(t) ∈ Rs̄,

for a given positive diagonally dominant matrix P̄ > 0 and
each node i.

IV. MAIN RESULTS
The purpose of this section is to determine a novel suffi-
cient conditions for guaranteeing asymptotic stability of the
augmented closed-loop system (11), which thereby ensures
the state estimation-based synchronization of RSNCDNs (1)
with the aid of configured non-fragile observer-based hybrid-
triggered controller. Moreover, in order to demonstrate the
above-said two theorems, one having known gain matrices
with ϖ (t) = 0, 1K (t) = 0 and the later with unknown gain
matrices in the presence of external disturbances and gain
perturbations are offered.
Theorem 1: In consideration with Assumption 1, the

closed-loop augmented system (11) with ϖ (t) = 0 and
1K (t) = 0 is asymptotically stable if for given positive
scalars σ , dM , τM , ηM , ᾱ, π and matrix� > 0, the controller
and observer gain matrices K and L, respectively there exist
matrices P̂ > 0, Q̂y > 0, R̂y > 0, Ŝy, (y = 1, 2, 3), such that
subsequent relations are met

[ℵ]9×9 <0, (14)[
R̂y Ŝy
∗ R̂y

]
>0, (y = 1, 2, 3) (15)

with ℵ1,1 = P̂Â+ ÂT P̂+Q̂1+Q̂2+Q̂3− R̂1− R̂2− R̂3+ (1−

π )P̂+ ÂTOÂ, ℵ1,2 = P̂Ĉ + R̂1 − Ŝ1, ℵ1,3 = Ŝ1, ℵ1,4 =

ᾱP̂D̂ + R̂2 − Ŝ2, ℵ1,5 = Ŝ2, ℵ1,6 = (1 − ᾱ)P̂Ê + R̂3 −

Ŝ3, ℵ1,7 = Ŝ3, ℵ1,8 = (1 − ᾱ)P̂F̂, ℵ1,9 = P̂B̂, ℵ2,2 =

−2R̂1 + Ŝ1 + ŜT1 + ĈTOĈ, ℵ2,3 = R̂1 − Ŝ1, ℵ3,3 = −R̂1 −

Q̂1, ℵ4,4 = −2R̂2 + Ŝ2 + ŜT2 + ν1D̂TOD̂, ℵ4,5 = R̂2 −

Ŝ2, ℵ5,5 = −R̂2 − Q̂2, ℵ6,6 = −2R̂3 + Ŝ3 + ŜT3 + σ�̂ +

ν2ÊTOÊ, ℵ6,7 = R̂3 − Ŝ3, ℵ7,7 = −R̂3 − Q̂3, ℵ8,8 =

−� + ν2F̂TOF̂, ℵ9,9 = −(1 − π )P̂ + B̂TOB̂ where O =

d2M R̂1 + τ 2M R̂2 + η2M R̂3, �̂ = diag{0, −σ�, σ�} and other
terms zero and ν1 = ᾱ2

+ ᾱ(1− ᾱ), ν2 = (1− ᾱ)2+ ᾱ(1− ᾱ).
Proof: In order to assert the necessary result, the

Lyapunov-Krasovskii functional candidate is assigned as
follows:

V(t) =

3∑
k=1

Vk (t), (16)

where

V1(t) = 8T (t)P̂8(t), (17)

V2(t) =

t∫
t−dM

8T (s)Q̂18(s)ds+

t∫
t−τM

8T (s)Q̂28(s)ds

+

t∫
t−ηM

8T (s)Q̂38(s)ds, (18)

V3(t) = dM

0∫
−dM

t∫
t+θ

8T (s)R̂18(s)dsdθ + τM

0∫
−τM

t∫
t+θ

8T (s)

× R̂28(s)dsdθ + ηM

0∫
−ηM

t∫
t+θ

8T (s)R̂38(s)dsdθ,

(19)

with P̂ = diag{P1,P2,P2}, Q̂z = diag{Qz1,Qz2,Qz3}, R̂z =

diag{Rz1,Rz2,Rz3}, where P1 > 0, P2 > 0, Qz1 > 0, Qz2 >

0, Qz3 > 0, Rz1 > 0, Rz2 > 0, Rz3 > 0, (z = 1, 2, 3).
It is to be mentioned that, in the further, the mathemat-

ical expectation will be denoted by E{.}. The outcomes
listed below are obtained by evaluating the expectation of
first derivative of the above-mentioned Lyapunov-Krasovskii
functional (16) along the trajectories of the augmented
closed-loop system (11):

E{V̇1(t)} = E{8T (t)P̂8̇(t) + 8̇T (t)P̂8(t)}, (20)

E{V̇2(t)} = E{8T (t)(Q̂1 + Q̂2 + Q̂3)8(t) − 8T (t − dM )

Q̂18(t − dM ) − 8T (t − τM )Q̂28(t − τM )

− 8T (t − ηM )Q̂38(t − ηM )}, (21)

E{V̇3(t)} = E{8̇T (t)(d2M R̂1 + τ 2M R̂2 + η2M R̂3)8̇(t)

− dM

t∫
t−dM

8T (s)R̂18(s)ds− τM

t∫
t−τM

8T (s)
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× R̂28(s)ds− ηM

t∫
t−ηM

8T (s)R̂38(s)ds}. (22)

With an aim to acquire the desired results in terms of linear
matrix inequalities the single integral terms in the preceding
equation can indeed be reconfigured as follows with the aid
of Lemma 1 in [30]:

− ϱM

t∫
t−ϱM

8T (s)R̂l8(s)ds ≤

 8(t)
8(t − ϱ(t))
8(t − ϱM )

T

R̂l R̂l − Ŝl Ŝl
∗ −2R̂l + Ŝl + ŜTl R̂l − Ŝl
∗ ∗ −R̂l

  8(t)
8(t − ϱ(t))
8(t − ϱM )

 , (23)

where for l = 1, ϱ implies d, for l = 2, ϱ implies τ and for
l = 3, ϱ implies η.

As well, using the Lemma 2, we can now articulate the
below inequality;

ςT (8(t))P̂ς (8(t)) ≤ 8T (t)P̂8(t) (24)

which for any π = [0, 1) becomes

−(1 − π )8T (t)P̂8(t) ≤ −(1 − π )ςT (8(t))P̂ς(8(t)).
(25)

Besides, from the inequality (5), we arrive at

σ γ̂ T (t − η(t))�γ̂ (t − η(t)) − εT (t)�ε(t) ≥ 0. (26)

Putting together the equations (20)-(26), we yield

E{V̇(t)} ≤ 𭟋T (t)ℵ𭟋(t), (27)

where 𭟋T (t) =

[
8T (t) 8T (t − d(t)) 8T (t − dM ) 8T (t −

τ (t)) 8T (t− τM ) 8T (t−η(t)) 8T (t−ηM ) εT (t) ςT (8(t))
]

having the elements as posted in the statement of Theorem 1.
Ultimately, we come to the conclusion that E{V̇(t)} <

0 holds true as long as the condition (14) in the statement
of Theorem 1 does. Thus, when ϖ (t) = 0 and 1K(t) = 0,
ie., in the absence of external disturbances and gain pertur-
bations, it is inferred that the augmented closed-loop system
(11) exhibits asymptotic stability and is the conclusion of the
proof. □
The augmented closed-loop system (11) with non-zero

disturbances, gain perturbations and unknown gain matrices
is now integrated into the inference of Theorem 1.
Theorem 2: In concern with Assumptions 1 and 2, for

given positive scalars κ , σ , π , µ, ᾱ, dM , τM , ηM ,
there exists positive scalar ϵ, positive definite matrices

X̂ =diag{X1,X2,X2}, X̆ ,
ˆ̂Qy,

ˆ̂Ry,
ˆ̂Sy, (y = 1, 2, 3),

P̂ =diag{P1,P2,P2}, Ŵ =diag{W1,W2,W2}, with Px =

[puv
x ] ∈ Rp×p, Wx = [wuv

x ] ∈ Rp×p and appropriate
dimensioned matrices Y , M, the dynamics of closed-loop

system (11) is asymptotically stable, if the following holds:

˜̃
ℵ =


ℵ̃ 41 4̄T

1 4̄T
2 42

∗ −ϵI ϵGT 0 0
∗ ∗ −ϵI 0 0
∗ ∗ ∗ −ϵI ϵGT
∗ ∗ ∗ ∗ −ϵI

 < 0, (28)

[
−κI JX2 − X̆J
∗ −I

]
< 0, (29)[

−ωX̂ X̂JT Û1/2
4

∗ −I

]
< 0, (30)[

ˆ̂Ry
ˆ̂Sy

∗
ˆ̂Ry

]
> 0, (y = 1, 2, 3), (31)

∀u ̸= v, wuv
x ≥ 0, puv

x + wuv
x ≥ 0, (32)

∀u, puv
x −

∑
u̸=v

puv
x + 2wuv

x ≥ 0, P̂X̂ = I (33)

with ℵ̃1,1 = 9Â + 9T
Â

+
ˆ̂Q1 +

ˆ̂Q2 +
ˆ̂Q3 −

ˆ̂R1 −
ˆ̂R2 −

ˆ̂R3 +

(1 − π )X̂ , ℵ̃1,2 = ĈX̂ +
ˆ̂R1 −

ˆ̂S1, ℵ̃1,3 =
ˆ̂S1, ℵ̃1,4 =

ᾱ9D̂ +
ˆ̂R2 −

ˆ̂S2, ℵ̃1,5 =
ˆ̂S2, ℵ̃1,6 = (1 − ᾱ)9Ê +

ˆ̂R3 −
ˆ̂S3, ℵ̃1,7 =

ˆ̂S3, ℵ̃1,8 = (1 − ᾱ)9F̂ , ℵ̃1,9 =

B̂, ℵ̃1,10 = Ĥ − 2X̂ ĴT Û2, ℵ̃1,11 = dM9T
Â
, ℵ̃1,12 =

τM9T
Â
, ℵ̃1,13 = ηM9T

Â
, ℵ̃1,14 = X̂ ĴT

√
ˆ̂U1, ℵ̃2,2 =

−2 ˆ̂R1 +
ˆ̂S1 +

ˆ̂ST1 , ℵ̃2,3 =
ˆ̂R1 +

ˆ̂S1, ℵ̃2,11 =

dM X̂ ĈT , ℵ̃2,12 = τM X̂ ĈT , ℵ̃2,13 = ηM X̂ ĈT , ℵ̃3,3 =

−
ˆ̂R1 −

ˆ̂Q1, ℵ̃4,4 = −2 ˆ̂R2 +
ˆ̂S2 +

ˆ̂ST2 , ℵ̃4,5 =
ˆ̂R2 −

ˆ̂S2, ℵ̃4,11 = dM
√

ν19
T
D̂
, ℵ̃4,12 = τM

√
ν19

T
D̂
, ℵ̃4,13 =

ηM
√

ν19
T
D̂
, ℵ̃5,5 = −

ˆ̂R2 −
ˆ̂Q2, ℵ̃6,6 = −2 ˆ̂R3 +

ˆ̂S3 +

ˆ̂ST3 + σ
ˆ̂
�, ℵ̃6,7 =

ˆ̂R3 −
ˆ̂S3, ℵ̃6,11 = dM

√
ν29

T
Ê
, ℵ̃6,12 =

τM
√

ν29
T
Ê
, ℵ̃6,13 = ηM

√
ν29

T
Ê
, ℵ̃7,7 = −

ˆ̂R3 −

ˆ̂Q3, ℵ̃8,8 = −�, ℵ̃8,11 = dM
√

ν29
T
F̂
, ℵ̃8,12 =

τM
√

ν29
T
F̂
, ℵ̃8,13 = ηM

√
ν29

T
F̂
, ℵ̃9,9 = −(1 −

π )X̂ , ℵ̃9,11 = dM B̂T , ℵ̃9,12 = τM B̂T , ℵ̃9,13 =

ηM B̂T , ℵ̃10,10 = Û3, ℵ̃10,11 = dM ĤT , ℵ̃10,12 =

τM ĤT , ℵ̃10,13 = ηM ĤT , ℵ̃11,11 = −2X̂ +
ˆ̂R1, ℵ̃12,12 =

−2X̂+
ˆ̂R2, ℵ̃13,13 = −2X̂+

ˆ̂R3, ℵ̃14,14 = −I , and all other
terms zero, where ν1 = ᾱ2

+ᾱ(1−ᾱ), ν2 = (1−ᾱ)2+ᾱ(1−ᾱ).
Moreover,

4T
1 =

[
ϵGM 0 ϵGM 0 . . . 0︸ ︷︷ ︸

33 times

]
,

4̄1=
[
0 . . . 0︸ ︷︷ ︸

10 times

−ᾱN X2ᾱN X2 0 0 0 0 − α̂N X2

α̂N X2 0 0 0 α̂N X2 0 . . . 0︸ ︷︷ ︸
14 times

]
,

4T
2=

[
0 . . . 0︸ ︷︷ ︸

10 times

−
√

ν1N X2
√

ν1N X2 0 0 0 0
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FIGURE 1. Memristor-based Chua’s circuit [10].

−
√

ν2N X2
√

ν2N X2 0 0 0
√

ν2N X2 0 . . . 0︸ ︷︷ ︸
14 times

]
,

4̄2 =
[
0 . . . 0︸ ︷︷ ︸

26 times

dMϵGM 0 dMϵGM τMϵGM 0

τMϵGM ηMϵGM 0 ηMϵGM 0
]
,

9D̂=9Ê=

0−GY GY
0 0 0
0 −GY GY

 , 9F̂ =

GY
0

GY

 ,

9Â=

AX1+ aCDX1 MJ 0
0 AX1+ aCDX1− MJ 0
0 0 AX1+ aCDX1

 .

Additionally, the relation to determine the controller and
observer gain matrices is proffered by

K = YX−1
2 and L = MX̆−1.

Proof: The same Lyapunov-Krasovskii functional (16)
is fabricated and similar procedures as in proof of Theorem 1
is performed by considering the circumstances in the pres-
ence of external disturbances and control gain perturbations,
i.e., ϖ (t) ̸= 0 and 1K(t) ̸= 0. Besides, the further advance-
ment is carried on by implementing the extended dissipativity
performance condition along with. In the vein of above dis-
cussions, we reach

E{V̇(t)} − J (t) ≤ 𭟋̄T (t)ℵ̄𭟋̄(t), (34)

where 𭟋̄T (t) =
[
𭟋T (t) ϖ T (t)

]
and ℵ̄ =

[
ℵ P̂Ĥ − 2ĴT Û2

∗ −Û3 + ĤTOĤ

]
,

here the elements ofℵ are same as in (14) except the termℵ1,1
is replaced with P̂Â + ÂT P̂ + Q̂1 + Q̂2 + Q̂3 − R̂1 − R̂2 −

R̂3 − P̂+ ÂTOÂ− ĴT Û1Ĵ .
Let us allow, X̂ = P̂−1, where X̂ =diag{X1,X2,X2}.

Following this, pre and post multiplying the matrix ℵ̄ with
diag{X̂ , . . . , X̂︸ ︷︷ ︸

7 times

,X2, I , I } and treating the gain perturbations

1K(t) in the resulting design to be in a linear fractional
form split in accordance with Lemma 3 of [45] followed by

FIGURE 2. Synchronization of three trajectories of RSNCDNs ξi (t),
(i = 1, 2, . . . , 5) in (39) to their isolated node s(t).

the application of Schur complement lemma, we obtain the
matrix ˜̃

ℵ as clearly proclaimed in the statement of Theorem 2.
Moreover, on the condition that the linear matrix inequality
˜̃
ℵ in (28) holds it would be evident that

E{V̇(t)} − J (t) < 0. (35)

So as to proceed further, the integration of above accom-
plished inequality is carried out from 0 to t , yielding

t∫
0

J (s)ds > E{V(t) − V(0)} > E{8T (tλ)P̂8(tλ)} + µ.

(36)
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FIGURE 3. Trajectories of RSNCDNs ξg(t) in (39) and their estimates ξ̂g(t)
as in (3), (g = 1, 2, 3).

Now, with an objective to prove that the relation (13) in
Definition 1 is true for the two possible cases of Û4, i.e.
∥ Û4 ∥= 0 and ∥ Û4 ∥> 0, the discussion is proceeded.
We initiate with the case when ∥ Û4 ∥= 0. Then, from (36),

we get
tλ∫
0

J (s)ds ≥ E{8T (tλ)P̂8(tλ)} + µ ≥ µ, ∀0 ≤ tλ.

Thus, it is obvious that when ∥ Û4 ∥= 0, the relation
(13) is fulfilled. Progressing forward to the next case, it is

FIGURE 4. Trajectories of RSNCDNs ξg(t) in (39) and their estimates ξ̂g(t)
as in (3), (g = 4, 5).

apparent from the Assumption 2 that, other matrices involved
in extended dissipativity will be Û1 = Û2 = 0 and Û3 > 0.
Let ĴT Û4Ĵ < ωP̂ for some ω ∈ (0, 1) and 0 ≤ t ≤ tλ, then
in compliance with above findings, we acquire

tλ∫
0

J (s)ds ≥ E{ω8T (t)P̂8(t)} + µ ≥ E{8T (t)ĴT Û4Ĵ8(t)}

+ µ = E{yT (t)Û4y(t)} + µ (37)

which verifies that equation (13) is possessed for any non-
negative tλ. In accordance with the above evaluation, it is
proved that the closed-loop augmented system (11) achieves
stability in the extended dissipative sense. In addition,
it should be pointed out that, in tandem with the proof of
Theorem 2 of [8], it is also clear that P̂ is diagonally dominant.
Ultimately, the needed proof is obtained. □

V. SIMULATION VERIFICATION
This part exemplifies the effectiveness of the designed con-
troller and correctness of the compiled results by taking
the memristor-based Chua’s circuit (as in Fig. 1) into con-
sideration, whose parameters are borrowed from [10]. The
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FIGURE 5. Control data release instants and intervals of nodes 1, 2, 3 of
RSNCDNs (39).

memristor-based Chua’s circuit to be examined is of the
following form:

C1V̇C 1(t) =
1
R p

(
VC 2(t) − VC 1(t)

)
− g(VC 1(t)),

C2V̇C 2(t) = −
1
R p

(
VC 2(t) − VC 1(t)

)
+ i(t),

L i̇(t) = −Rqi(t) − VC 2(t), (38)

FIGURE 6. Control data release instants and intervals of nodes 4, 5 of
RSNCDNs (39).

having components, C1, C2 are the two capacitors with volt-
ages VC 1,VC 2 across them, L being the inductor with
current i(t) through them, Rp and Rq are the two linear resis-
tances and g(.) is the characteristic of nonlinear resistance
defined by g(VC 1(t)) = g1VC 1 +

1
2 (g2 − g1)(|VC 1(t)+ 1| −

|VC 1(t) − 1|). Note that the notations C, R and L in Fig. 1
represents C , R and L in (38).

Based on the displayed circuit model, the RSNCDNs (1)
with 5 nodes, assuming that there exists external disturbances
ϖi(t) along with the control input ui(t) is described as

ξ̇i(t) = Aξi(t) + Bς (ξi(t)) + a
5∑
j=1

cijDξj(t) + b
5∑
j=1

eijF

ξj(t − d(t)) + Gui(t) + Hϖi(t), (i = 1, 2, . . . , 5),
(39)

with the borrowed parameters A =

−z1z2 z1z2 0
z2 −z2 z2
0 z3z2 z4z2

,

B =

−z1z2 0 0
0 0 0
0 0 0

 and the nonlinear function ς (ξi(t)) to

VOLUME 11, 2023 42077



R. Sakthivel et al.: State Estimation-Based Hybrid-Triggered Controller Design for Synchronization of RSNCDNs

FIGURE 7. Event occuring instants of nodes 1, 2, 3 of RSNCDNs (39).

be g(.) in (38), wherein z1 =
C 2
C 1 , z2 =

1
RpC 2 , z3 = −

C 2Rp
L

and z4 = −
C 2RpRq

L .
The parameters of memristor-based Chua’s circuit to be

explored is given by C 1 = 0.4, C 2 = 0.48, Rp = 2,
Rq = 4, L = 4. In addition, the other parameters associated
with RSNCDNs (39) taken as G =

[
1 0 0

]T , H =
[
1 0 0

]T ,
J =

[
0.1 0 0

]
.

The inner coupling matrices of normal and delayed cou-
pling of RSNCDNs are assigned as D = I3 and F =

FIGURE 8. Event occuring instants of nodes 4, 5 of RSNCDNs (39).

I3, respectively. The coupling strengths are categorized as
a = b = 0.1, whereas the outer coupling matrices

are chosen to be C =


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

 and E =


−1 1 0 0 0
1 −1 0 0 0
0 0 −1 1 0
0 0 1 −2 1
0 0 0 1 −1

.

Firstly, we ought to check whether the considered system
parametersmeet the observability condition. For this purpose,
we compute the observability matrix Obs with the aid of
MATLAB toolbox from the system matrices A and J chosen

and is obtained as Obs =

 1.0000 0 0
−1.2500 1.2500 0
2.8646 −2.8646 2.6042

.

Thismakes it clear that the rank ofObs is 3. As the observabil-
ity matrix has full rank, ie., the rank is equal to the number of
states, it is clear that the addressed RSNCDNs are observable.
Moreover, the scalars employed in the feasibility assessment
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FIGURE 9. Bernoulli distributed random variable α(t) with its expectation
value ᾱ = 0.4.

are intended to be dM = τM = ηM = 0.1, σ = 0.22,
θ = 0.00001,µ = 0.01 ω = 0.1; the expectation value of the
Bernoulli distributed random variable α(t) engaged in hybrid
triggering mechanism is opted as ᾱ = 0.4; the parameters
related to linear fractional nonfragile gain fluctuations are
M = 0.001, N =

[
0.001 0.001 0.001

]
and G = 0.0001I .

The feasible collection of matrices is found under the
conditions shown above. the matrix � engaged in the event
generator function, the requisite controller and observer gains
are, respectively, earned as
K =

[
−0.0636 −0.0471 −0.0160

]
, L =

[
−0.0636 0 0

]T
and � =

 36.0269 −25.0382 −0.6993
−25.0382 63.4427 −16.9119
−0.6993 −16.9119 13.1793

.

After which, in order to move forward with the simulation
testing, we choose the necessary parameters listed herein.
The time-varying coupling delay d(t) in (39) with bound
[0, 0.1] is picked as d(t) = 0.05 + 0.05 sin(t), the external
disturbance functions are taken as wi(t) = 0.2(sin(t) +

sin(π t)), i = 1, 2, . . . , 5 and function F (t) concerned in
nonfragilty is F (t) = sin(t) which is selected in such as
way that it satisfies F T (t)F (t) ≤ 1 as indicated in Lemma 3
of [45]. Alongside the above specified information in hand
and the initial conditions ξ1(t0) = ξ̂1(t0) = [8 6 8]T ,
ξ3(t0) = ξ̂3(t0) = [5 6 5]T , s(t0) = ξr (t0) = ξ̂r (t0) =

[−10 2 − 10]T , r = 2, 4, 5, with sampling period 0.01,
the simulation outcomes are illustrated in the Figures 2-9.
The effective synchronization responses of the three trajec-
tories of RSNCDNs (39) under the intended controller is
disclosed in Fig. 2. As is shown in this figure, the trajectories
of each node of RSNCDNs (39) are effectively synchronized
to their respective isolated node trajectories which shows
that the developed controller does its best to achieve the
intended performance. Withal, it is evident from Figs. 3, 4
that, the states of the addressed RSNCDNs are estimated
by the designed Luenberger observer (3) in a vivid manner
for all the five nodes. The input-data release instants along
with its time-intervals for 5 nodes of RSNCDNs is clearly

demonstrated in Figs. 5, 6. And here, it is apparent that, the
control data packets are sent only when needed and it is obvi-
ous that the unnecessary usage of resources are prevented.
Meanwhile, the instants at which the event generator function
(5) is violated has beenmarked in the Figs. 7, 8. It can be seen
that, the number of triggers via the employed hybrid-triggered
controller lies between 45 to 50 for all the nodes. In a
further, with a traditional time-triggered controller, where
data packets are exchanged on a periodic basis, there are
2000 updates to the control input data. Here, it is apparent
that with the implementation of our designed controller the
network burden is reduced to 2.5%which is of huge benefit in
real-time scenarios. In addition, the trajectories of the random
variable α(t) involved in the swap process between time and
event triggered control protocol is displayed in Fig. 9. Thus,
from the results provided and graphs represented, it is obvi-
ous that the devised extended dissipative non-fragile hybrid-
triggered controller scheme served best in accomplishing the
desired requirements while improving the state estimation
performance under the satisfied disturbance attenuation index
for the addressed RSNCDNs (1).

VI. CONCLUSION
This work reports the scrutinization on the topic of
state estimation-based synchronization issues for RSNCDNs
liable to time-varying coupling delays and external distur-
bances. In particular, CDNs with a new class of repeated
scalar nonlinearities is examined instead of the conventional
nonlinear functions. Notably, Luenberger observer, which
estimates the states of the system to a significant extent,
is meant to cope with the system states that are gener-
ally immeasurable in realistic conditions. Withal, a hybrid-
triggered control protocol based on Luenberger observer
approach has been developed that tackle problems such as
limited communication bandwidth while still ensuring sys-
tem’s performance. Besides which, extended dissipativity a
unified form of other existing performances like H∞, passiv-
ity, L2 − L∞ and dissipativity has been incorporated with an
eye to lessen the impact generated by external disturbances
on the RSNCDNs. Over and above, the adequate conditions
have been fabricated by the virtue of Lyapunov stability
theory in the form of linear matrix inequalities in the context
of assuring the stability of resulting augmented closed-loop
system. In the end, a conclusive validation on the rightness
of offered theoretical results and efficacy of the attempted
approach are given through a simulative representation of
memristor-based Chua’s circuit model. In addition, our future
research will be on addressing the issues of fault estimation
and security control simultaneously for a class of nonlin-
ear complex dynamical networks with semi-Markovian jump
topologies.
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