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ABSTRACT People find it challenging to control smart systems with complex gaze gestures due to the
vulnerability of eye saccades. Instead, the existing works achieved good recognition accuracy of simple gaze
gestures because of sufficient eye gaze points but simple gaze gestures have limited applications compared
to complex gaze gestures. Complex gaze gestures need a composition of multiple subunits of eye fixation to
contain a sequence of gaze points that are clustered and rotated with an underlying complex head orientation
relationship. This paper proposes a new set of eye gaze points and head orientation angles as new sequences
to recognize complex gaze gestures. Eye gaze points and head orientation angles powerfully influence gaze
gesture formation. The new sequence was obtained by aligning clustered gaze points and head orientation
angles with a simple moving average (SMA) to denoise and interpolate the gap between successive eye
fixations. The aligned new sequence of complex gaze gestures was utilized to train sequential machine
learning (ML) algorithms. To evaluate the performance of the proposed method, we recruited and recorded
the eye gaze and head orientation features of ten participants using an eye tracker. The results show that
Boosted Hidden Markov Models (HMM) using Random Subspace methods achieved the best accuracies
of 94.72% and 98.1% for complex, and simple gestures respectively, which outperformed the conventional
methods.

INDEX TERMS Eye-tracking, gaze gestures, head orientation angles, machine learning, sequence
recognition.

I. INTRODUCTION
People apply the eyes as one type of input modality for
interacting with smart systems such as smartphones, assis-
tive devices, etc. Eyes serve as substitutes for people with
hand disabilities and biometric applications [1]. The smart
systems capture eye gaze in form of gaze patterns for tar-
get selection, gaze prediction, and smartphone control [2].
Gaze patterns are known as gaze gestures and are recog-
nized by machine learning (ML) algorithms like decision
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trees (DT), template matching (TM), etc. The gaze gestures
recognized by the ML algorithms depict the real actions
of people [3]. Machine learning algorithms demonstrate
good performance to simple gaze gestures like swiping left,
straight lines, etc. However, other gaze gestures such as
curvy, zigzag, etc. are known as complex gaze gestures and
their recognition performance is limited [4]. This is because
each complex gaze gesture requires several eye gaze points.
These gaze points constitute the beginning and end of com-
plex gaze gestures. Existing works proved that recognition
of complex gaze gestures can be precisely achieved using
gaze points [5]. However, it is studied that complex gaze
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gestures have instantaneous angle changes which consist of
fewer eye fixations leading to noise in the gaze gestures.
The noise is due to uncontrolled rapid eye saccades [6].
Therefore, a suitable ML algorithm is needed to improve
the recognition of complex gaze gestures in smart system
applications.

In Shi et al. [7], a graph convolution network (GCN) was
used to recognize nine simple gaze gestures from gaze points
of optical flow approximations. The GCN treated each gaze
point of the optical flow as a node and generate edges to
connect each successive node. The connected nodes con-
verted the gaze gesture into a graph. GCN convolution layer
takes in the graphs and recognizes each through its nodes and
self-connected edges. Finally, classification scores were gen-
erated by the softmax function to recognize the graphs of nine
simple gaze gestures. However, the major limitation of this
method is that the generated nodes were clustered at one point
of the graph, leading to multicollinearity. The multicollinear-
ity happened due to approximations of most neighboring
gaze points in each subunit of eye fixation of the optical
flow. These subunits affect the recognition performance of
complex gaze gesture. Hence, an effective approach to trans-
form and decompose these subunits is needed. To decompose
subunits in complex gaze gestures, we present a new set of
gaze points that are obtained from the clustered eye gaze
points and head orientation angles, which were absent in
[7]. These new sets of gaze point have more distinguishable
information and small underlying orientation changes for
complex gaze gestures. Each set of gaze points was obtained
by selecting a window of ten consecutive gaze points and
computing an average gaze point from their respective pixel
values. To obtain the next average gaze point, the window
selection shift forward to include the next gaze point and
leave out the first gaze point. This operation is called simple
moving average (SMA) and is performed for all gaze points
until the last gaze point. Similarly, SMA process is also
performed for the head orientation angles to align the small
orientation changes. The new set of gaze points and head
orientation angle were combined to form new sequence of
complex gaze gesture. The random subspace method was
used to randomly select features among the sequence of
complex gaze gesture. Boosted HMM was used to learn the
sequence of complex gaze gesture from the selected fea-
tures for recognition. Our contributions to this work are as
follows:

i. We measured participants’ eye gaze points and head
orientation with a single eye tracking sensor from
0.45m to 0.95m having a field of view of 40 ×
40 degrees.

ii. We employed simple moving average to reduce redun-
dant fixation density, aligned the sequences of gaze
points and head orientation angles, and interpolated the
gap between successive fixations.

iii. We adopted a strategy to decompose and restore the
fixation from the motion features of the eyes, but the

existing method did not consider their influence in
causing multicollinearity.

Subsequent sections of this article are as follows: Related
works and problem analysis were introduced in section II,
and Section III presented the conceptual gaze and head ori-
entation tracking, extraction and transformation of the gaze
points and head orientation angles, models of complex gaze
gesture, sequence machine learning, models training, and
evaluation. Section IV gives the details of the experimental
results, performance comparison with baseline method, and
ablation studies. Section V provides the discussion. Finally,
the conclusion is in section VI.

II. RELATED WORKS
From the existing works, gaze gestures (GG) are widely
captured with either one of these three groups of input sen-
sors as depicted in Table 1, depending on the application,
availability, and cost. The first group addressed motion-based
sensors for GG including EOG which works based on an
electric potential difference between the retina and cornea
causing changes in the electrostatic field [8]. These position
changes were sensed by the electrodes attached to the users’
skin closer to the eyes as in [9], [10], [11], and [12]. These
systems are wearable, cumbersome, user-unfriendly and the
electrodes are biase at some positions. The second group is
a multi-modal-based sensors, which combined two or more
sensors to capture other input features. The combination of
these features can assist in detecting or recognizing some
events in the gesture as in [13], [14], [15], and [16]. But
these system generally required calibration of the sensors first
which make the system to be complex and unfriendly. The
third group is Video oculography (VOG) which is the most
adopted nowadays because, it can capture the images of the
subject eyes, estimate eyes positions, and point of gaze (POG)
i.e where the user is looking [17], [18]. The first sub-group of
VOG is camera-based, which detects pupil pose and converts
them into coordinates [2], [8], [19], [20]. But camera-based
suffers from interpolation, head movement, segmentation,
identification, and is sometimes cumbersome. The second
sub-group is an eye tracker based, the major advantages of
using an eye tracker nowadays are: it senses the presence
of the subject, locates the positions of the eye(s) precisely,
and the POG. Moreover, it is very light, cheap, and comes
in two forms depending on the application namely: inversive
and non-inversive [6]. The inversive eye trackers are in form
of wearable glasses, but wearing these systems [21], [22] is
cumbersome, unnatural, and disturbed by motions from the
users’ heads. The non-inversive eye trackers are placedwithin
their trackable distance of operation from the user and can
operate excellently [23], [24], [25]. Eye tracker-based system
does not need complex segmentation, it gives the transitions
of the eyes movements but has maximum tracking distance
of operation to detect the human eyes. Table 2 depicted the
summary of the available gaze gesture recognition (GGR)
methods.
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TABLE 1. GGR according to the input modalities.

A. PROBLEM ANALYSIS
To solve the problem of gaze gesture recognition, authors in
[7] introduced GCN and utilized gaze points in 2D velocity
as node. However, multicollinearity caused by these veloc-
ity nodes is more vulnerable in complex gestures because
there are more subunits of eye fixations f and saccades s
transitions in complex gestures. Each f is a cluster of many
gaze points g, the composition of f and s formed gaze pat-
terns G that is learned in the recognition of given target
gaze gesture T . Since, neighborhood frames in f formed

the majority gaze points and are comparably closed to each
other, their corresponding velocity approximations lead to
a cluster of most g at some point as in Figure 1(a). Con-
sequently, velocity approximation changed the entire G of
the circle gaze gesture as depicted in Figure 1(b). Hence,
velocity approximated features lead to multicollinearity and
low-performance recognition of a given T in complex gaze
gesture. However, small changes in head orientation angle
O features, result in a large variation in g as shown in
Figure 1(c). Moreover, the head orientation has more subunit
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TABLE 2. Gaze gesture recognition methods.

FIGURE 1. Representation of simple gaze gesture (sliding right) and complex gaze gesture (circular), the Red lines describe the expected patterns of the
eye gesture in each figure while the respective Blue represent the corresponding gaze points of the eyes: (a) Optical flow to describe sliding right gaze
gesture in [7] (b) Optical flow to describe circular gaze gesture (c) Proposed gaze and head orientation to describe sliding right gaze gesture (d) Proposed
gaze and head orientation angles to describe circular gaze gesture.

changes and underlying relationship that can explain why
complex gaze gesture T are performed well or not as in
Figure 1(d).

III. MATERIALS AND METHODS
This section enumerates the proposed method for gaze
gesture recognition. It consisted of the following steps:
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FIGURE 2. Workflow of proposed method.

Conceptual gaze and head orientation tracking, extraction and
transformation of gaze points and head orientation angles,
models of complex gaze gesture, sequence machine learning,
models training, and evaluation. These steps are depicted in
Figure 2. The microscopic gaze and head orientation angles
of the participants were remotely tracked with a single eye
tracking device. SMA was utilized as a processing tool to
denoise and aligned the sets of gaze and head orientation
angle features. The new sets of features were combined to
form a new sequence and utilized to form the models and fed
to the sequence ML for complex gesture recognition. Hence,
the models training performance and the performance of
each ML classifier were evaluated to measure the recognition
performance.

A. CONCEPTUAL GAZE AND HEAD ORIENTATION
TRACKING
The process of tracking eye gaze and head orientation angle
changes is studied by conducting experiments with a single
integrated tracking setup. The device tracked the participants
eye gaze points and head orientation angles of the participants
simultaneously.

1) INTEGRATED TRACKING SETUP
Instead of tracking eye gaze and head orientation separately
or using a complex setup, a single eye-tracking sensor was
used in this work. Tobii eye tracker 5 was selected to simul-
taneously track the microscopic changes of both gaze points
and head orientation. The eye trackerwas placed at the bottom
of a computer display and hold firmly using its magnetic

flat mount. The Tobii eye tracker 5 has extended features
such as 40 × 40 degrees in its field of view, head tracking
with six degrees of freedom (6DoF), 133Hz image sampling
rate, and continuous gaze recovery. Hence, the participants’
eye gaze and head orientation features can be directly mea-
sured remotely. TobiiPro.SDKwas used to build an algorithm
on.Net 4.5 framework of Microsoft visual studio software for
data recording on a host computer. Tobii experience software
is used to visualize the interaction of the participants on the
host computer. The algorithm stored the estimated sequence
of gazes and head orientation angle changes in .csv files
extension. The complete experimental setup was shown in
Figure 3 and their specification was given in table 3.

TABLE 3. Materials specification.

Before the beginning of the experiment, each participant
passed through a short calibration eye test with the Tobii eye
tracker 5. This is to authenticate each participant and confirm
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FIGURE 3. Experimental Setup.

the reliability of the data collection. Ten (10) participants
between the age of 28-45 years were recruited and were asked
to sit on a non-rotary chair. The participants were trained on
how to face the eye tracker to have a direct line of sight within
a trackable distance of its operation as shown in Figure 3.
Two participants have prior experience of interaction with
an eye tracker. The participants were allowed to move their
heads freely for comfort but must be within the tracking box
of the eye tracker. The participants were trained to perform
the selected complex gaze gestures by moving their eyes
to mimic the designed target gesture T on a display. The
estimated input features G and O of each participant were
recorded on the host computer in pixels and radians respec-
tively. Each participant performed at least three (3) times for
every nine (9) selected classes C of complex gaze gestures.
We considered a total sample S of 270 complex gaze gestures.
From input features considered, G contained the gaze points
in horizontal gx and vertical gy directions respectively. Sim-
ilarly, head orientation angles consists pitch op and yaw gy
angles of the head respectively. There is variation in the time
taken to complete a particular target T with the experience
of each participant. Hence 4-5 seconds was utilized to extract
250 timestamps in each input features.

2) GAZE AND HEAD ORIENTATION SEQUENCE
For every single complex gaze gesture recorded, it contains
several eye gaze points and head orientations angle changes
of the participants. The gaze point sequence contains the
corresponding pair of horizontal gx(gx1 , gx2 , . . . , gxn ), and
vertical gy(gy1 , gy2 , . . . , gyn ) sequences. Similarly, for the
head orientation angles, it contains pair of head pitch angle

op(op1 , op2 , . . . , opn ), and yaw angle oy(oy1 , oy2 , . . . , oyn )
sequences. However, some eye gaze points clustered in each
subunit of eye fixation and then sparsely separated due to
eye saccade or head orientation changes. Small change due
to eye saccades or head orientation angles causes a wide
variation between successive gaze points and changes their
directions. Nevertheless, both sequences of gaze points and
head orientation angles play a vital role in the recognition of
gaze gestures. Hence a transformation of eye gaze points and
head orientation angle features are needed.

B. EXTRACTION AND TRANSFORMATION OF GAZE
POINTS AND HEAD ORIENTATION ANGLES
Head orientation plays an important role in linking with an
eye to focus and form T correctly, by stabilizing line of
sight (LOS) to keep gaze and head shift in balance [30].
Failure to link the two may lead to poor performance of
T . Hence, head orientation is vital in stabilizing complex
gaze information during T positioning and selection [31].
The work measured gaze points and head orientation angle
features using an algorithm built on the .Net framework of
Microsoft visual studio. Themeasured sequence of horizontal
gaze points gx , vertical gaze points gy, head pitch angle op,
and head yaw angle oy(oy1 , oy2 , . . . , oyn ) were saved on a
host computer. Due to the rapid jumping of the eye which
appears in the extracted gaze sequencesG(gx , gy), thus trans-
formation using simple moving average (SMA) is utilized.
The SMA denoise the sequence of G(gx , gy) and create more
gaze points that interpolates the gaps between successive f .
The transformations of extracted sequences λi(gx , gy, op, oy)
is performed in the following sections.
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1) DENOISING
For each window w selected, the SMA select i = 1 to w,
sum the pixel coordinates of the gaze points in the selected
i to w, and compute average gaze point. The window moves
forward to the next frame and evaluated on i+ 1 to w+ 1,
until it reaches the last frame n. Similarly, SMA perform
the same moving averaging by taking each frame of head
orientation angles in radian. The SMA returned the averaged
and aligned sequences of gaze points and head orientation in
each frame of the sequence. We selected the window size of
10 frames and Figure 4 depicted each input sequence and it
corresponding output of the SMA. The function of denoising
the extracted gaze pointsG(gx , gy) and head orientation angle
features O is given in eq. (1) [32].

λavg =
1
w

∑w

i
λi (1)

where λavg is the denoised input signal, λi is the extracted
input signal gx , gy, op and oy evaluated on selected window
size w of the selected frames on each feature, for i < w ⩽ n.

FIGURE 4. Simple moving average of: (a) Gaze points and (b) Head
orientation angles.

2) OPTICAL FLOW FEATURE DECOMPOSITION
We further utilized the closed-eyes HideMyGaze camera
dataset in [33] to evaluate the performance of the proposed
method. The dataset contains clustered gaze points obtained
from optical flow approximations of simple gaze gestures.
The dataset was collected using Pupil-Lab’s eye tracking
glass. There are nine gesture classes C of T . Gesture ‘‘left’’
and ‘‘right’’ is performed in a horizontal direction. ‘‘Up’’
and ‘‘down’’ gestures are performed in a vertical direc-
tion. ‘‘One’’, ‘‘three’’, ‘‘seven’’, and ‘‘nine’’ gestures are
performed in diagonal directions, and ‘‘squint’’ gesture is

performed by blinking an eye at the center. The dataset con-
tained a total of 835 gesture samples, each sample has mean
optical flow information with 60 frames. However, the optical
flow is not constant for the eyes gaze points as described
in section II. To overcome the variation, the flow features
must be decomposed into new gaze points. The new gaze
points supplement the lost eye gazes and then transformed
the features as in sections III-B. This is achieved by summing
flow changes of a given n successive frames as:

∑n
1 dg =

g1+ τ1. Where, dg, g1, τ1, and n represent mean optical flow,
transformed eye gaze points, constant that represent the initial
eye gaze points, and the number of frames’ window selected
respectively. This new gaze points g1 gives more details of
G in forming T than its corresponding approximated feature
dg. To obtain subsequent gaze points of gk , we shifted the
window to start from the second frame and end at n +1

as
n+1∑
2
dg = g2 + τ2, (1 ≤ k ≤ n). The constant term τk is

ignored because it is initial eye gaze points and uniformly
added to all frames, they can only shift the position of each
gaze point’s frame but do not affect the pattern throughout.
In general, we evaluated all corresponding k gaze points
contained in each frame of all horizontal dgx and vertical dgy
directions as adopted in [34]:∑n

1
dg = gk + τk (2)

The first few frames of gk appeared to be higher in magnitude
because, it represents the integral components of dg, and
keep reducing to approach zero as the number of optical
flows keeps reducing across the components of dg. These first
few and last frames gk mark a precise decision boundary of
the beginning and end of the gaze gesture, unlike its corre-
sponding dg features. The sequence ofO(op, oy) features used
in this work is the estimated head orientation from the eye
tracker which is measured in radians and is found to corre-
spond with computed head orientation angles in equation (3).
In addition, gaze orientation angles from the dataset in [33]
were computed as given in [30]:

O = atan2(gx , gy) (3)

where O is the computed gaze orientation angle, gx , and
gy are the corresponding transformed optical flow pair gaze
points obtained from eq. (2). These features computed the
gaze orientation angle at each frame in radians which lies
between −π < O ⩽ π . This computed O corresponds to a
similar estimated sequence of head orientation angles from
the eye tracker. Thus, the dataset obtained from section-A
was processed to learn the sequence of complex gaze gesture.
The corresponding dataset in [33] was utilized to evaluate the
performance of the method for similar models of simple gaze
gestures set using ML algorithms.

C. MODELS OF COMPLEX GAZE GESTURES
The processed sequence of gaze points and head orientation
angles were used to form three different models of com-
plex gaze gestures. The models are utilized to train machine
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learning algorithms for complex gaze gesture recognition.
Model 1 (λ g), is formed from the sequence of processed
gaze points Gavg(gxavg , gyavg) as input sequence to the ML
algorithms. Model 2 (λ o), consists of head orientation angles
Oavg(op, oy). Model 3 is formed by combining the processed
gaze points λ g, and head orientation angle features λ o,
to form λ(Gavg,Oavg) as follows:

λ = concate[gxavg , gyavg , opavg , oyavg ] (4)

D. SEQUENCE MACHINE LEARNING
The state-of-the-art ML classifiers is used for the sequential
learning of λ are as follows:

1) RANDOM FOREST
Random forest (RF) is the combination of many decisions
trees DT. The more randomly assorted trees in the forest, the
more robust it becomes and yield more accurate results [31].
In this work, we used bagging scheme by randomly choose
L sub-samples, to set up sub-samples Stl , from the training
samples St . Hence, forming RF involves having equal number
of DT. Training Stl , involved randomly choosing attributes
for splitting the nodes and choose certain features

√
λ out

of the λ . The testing samples was used to test each tree
and obtained their respective prediction by performing voting
among the result of each tree and then select the most vote
as output result. These made it immune from the problem of
overfitting [35]. The results of this classifier can be found in
Table 5 and Table 8 for the conventional and our datasets.

2) BIDIRECTIONAL LONG SHORT-TERM MEMORY (BI-LSTM)
Long short-term memory (LSTM) is a sequence learning
algorithm capable of learning long-term dependency in the
sequence. The major limitation of the LSTM is learning the
sequence only in forward direction [36]. Thus, bidirectional
LSTM correlate sequence at any given timestep in both for-
ward and backward. This is due to forward and backward
operations of hidden states in hidden layer [37]. The BiLSTM
is constructed from five layers. Input sequence layer, hidden
states layer, Fully Connected FC layers, a Softmax layer, and
a Classification layer. The specification of this network layers
is summarized in Table 4.

TABLE 4. Materials specification.

The input sequence layer of the Bi-LSTM network is fed
with the new set of sequences of complex gaze gesture λ as

explained in section III-B. Each sequence of the complex ges-
ture has four dimensions composing gaze and head orienta-
tion angle features with n length. The hidden layer received λ

from the input layer and the hidden states split each λ to learn
from each new set of gaze points and head orientation angles.
The hidden states memorize the previous and future recurring
set of gaze points and head orientation angles association.
It memorizes all sequences until all sets in the last λ are
bidirectionally learned. The prediction probabilities of each
sequence are obtained by assigning weight and adding a bias
in the hidden layer as given in equation (5) as follows [37].

D =Wh⃗λ
h⃗+W←

hλ

←

h+bλ (5)

where D,W,h⃗,
←

h and bλ is the predicted probability, sum of
the weight, forward hidden states, backward hidden states,
and bias of the Bi-LSTM layer respectively. This output
prediction is concatenated in the FC layer. The FC layer con-
catenated all new set in λ to recognize each gesture sequence
by multiplying the sequence with weight matrix. The output
of the FC layer is fed to the softmax layer. The activation
function in the softmax layer normalized the output of FC
layer into a prediction probabilities value between [01]. For
training the network, we choose thirty minibatch size, Adam
optimizer and trained on a single GPU. The Bi-LSTM net-
work was trained with one iteration per epoch for a maximum
epoch of one hundred and twenty. We choose an initial learn-
ing rate of 0.001 for the Adam optimizer and the learning rate
remains constant. Themaximumnumber of epochs is set to be
the maximum number of iterations and stopping criteria. The
network training stops as the number of iterations reached the
maximum number of epochs. Finally, the classification layer
utilized the values from softmax layer and estimate cross-
entropy loss for the recognition of complex gestures CM . The
final output of this model is formulated in equation (6) [38].

Dt = P(CM |λ ) =
eDC∑C−1
i=0 eD

,C = 1,2,. . . ,CM (6)

where C, and DC are the classes of complex gaze patterns
and predicted probability classes CM when gesture features
λ from the previous layers are given respectively. This model
network is summarized in Algorithm 1.

3) THE RANDOM SUBSPACE METHOD (RSM) OF
BOOSTING HMM
HMM γt has the ability to learn stochastic process by split-
ting the sequence into distinct number of states [39]. For
input sequence λM

= (λ1, λ2, . . . , λM ) as described in
section III-B, λt is the t th input features which is assumed
to be emitted in N hidden states ψN

= {ψ1, ψ2, . . . , ψN }

where ψiϵΨN and ΨN
= Ψ1,Ψ2, . . . ,ΨN represent the state

collection of the γt . Theψ hold a probability density function
(pdf) to shows the possibility of emitting certain gesture. Each
ψ is interacted with one another by transition coefficients.
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Algorithm 1 Bi-LSTM
1: start
2: Inputs λ ,Clabels{sequence of complex gaze, labels}
3: load λ , and C labels
4: Output accuracy, and precision
5: set n as length of λ

6: get n of each λ

7: sort λ by n
8: split λ into (λtrain,Ctrain) : (λtest ,Ctest )
9: set minibatch = 30
10: set λclasess as classes of complex gaze
11: initialize no. of input features = 4, h = 64, and λclasess = 9
12: configure sequenceinputlayer = no. of input features
13: configure bilstmlayer = no. of h
14: configure FC = no. of λclasess
15: configure softmax = yes
16: configure classification layer = crossentropyex
17: set max. epoch = 120
18: select Adamoptimizer,Gpu, and longest n.
19: set no. of iter = max. epoch
20: for no. of iter = 1,do
21: train with (λ train,Ctrain)
22: repeat until no. of iter = max.epoch
23: end for
24: predict (λ test ,Ctest ) using eq. (6)
25: return evaluate metrics
26: end

Finally, γt = (π,A,B) and its parameters can be the finite
classes of the gesture C = {c1, c2, . . . , cM } in the dataset,
havingM -gestures and N -states as follows [39].

i. π represent the initial state pdf, π = [πi]1xN =
[P(ψ1 = Ψi)]1xN (1 ⩽ i ⩽ N ), where ψ1 is the first
state in the chain.

ii. A represent the matrix of the state transition, A =
[ai,j]NxN = [P(ψt+1 = Ψj|ψt = Ψi)]NxN (1 ⩽ i, j ⩽
N , 1 ⩽ t ⩽ k), where ψt and ψt+1are the states at
t th and t + 1thframes.

iii. B represent the gesture emission matrix, B =

[bi,j]NxM = [P(λj at t|ψt = Ψ j)]NxN (1 ⩽ i ⩽ N , 1 ⩽
j ⩽ M ). It shows the conditioned probability of the
gesture λk on the state Ψj at t thframe.

For λt , our aim is to verify the gesture and obtain the decision
by estimating the likelihood betweenC with the target gesture
model γ (T ) and wrong gesture model γ (W ). The likelihood
can be estimated for a participant when the gestures are
conditionally independent of each other as:

P(CΨ |γi) =
∏kψ

t=1
P(Cψt |γi), γiϵ{γ (T ), γ (W )} (7)

Generally, scores of the likelihood P(Cψt |γi) is calculated
through forward-backward process [39]. HMM-based gaze
gesture recognition is a binary problem, either closed-set or
open-set. In the closed-set case, T is recorded to be known,
and both the γ (T ) and γ (W ) can be learned in the training
phase. For CΨ = {c1, c2, . . . , ckΨ }, this kind of recognition

is carried out based on log likelihood ratio (LLR):

LLR(CΨ ) =
kΨ∑
t=1

[
log

P(Ct |γ (T ))
P(Ct |γ (W ))

]
If LLR(CΨ ) ⩾ µ : accepted,Otherwise : reject. (8)

In the open-set case, wrong gestures W , are the unknown,
and γ (W ) may not possibly be determined. For a given λ

of test observation from W , recognition determines whether
the sample belongs to the T in S or not. The length of the
frames l may differ thus, this kind of recognition carried out
on normalized log likelihood (NLL):

NLL (CΨ ) =
1
kΨ

kΨ∑
t=1

logP(Ct |γ (T ))

If NLL(CΨ ) ⩾ µ : accepted,Otherwise : reject. (9)

As explained in section B, the λt composed of many dis-
tinguishable uneven units in sequence. Thus, by combining
the dominance of SMAmethod and boosting learning power,
the whole of gesture sequence can be recognized via boosted
HMMs, bywhich its discrimination ability on sequence learn-
ing is robust than single HMM. Since the problem is treated as
binary problem, let the positive and negative value represent
the T and W respectively. Based on eq. (8) and (9), the
decision from each weak learner in the boosted HMMs can
be formulated as:

v (CΨ ) =

{
+1, if LLR(CΨ ) or NLL (CΨ )⩾ µ

−1, otherwise.
(10)

The Random subspace method was utilized in this work
because it can train on randomly selected features of λt
instead of the entire features to reduce the low correlation
among the sequence. Baum-Welch algorithms is utilized to
determine the models’ parameters because of its fewer com-
putation and converge easily [40]. For γ = (π,A,B) with
M -gestures and N -states, the training set having U observa-
tion is donated as:

C = {C1,C2, . . . ,CU } (11)

where CU = {ck1, c
k
2, . . . , c

k
k} is the u

th sequence having k
observation frames with independent observation each. The
Baum-Welch algorithms focus on fine-tuning and maximiz-
ing the parameters of γ as follows:

P(C|γi) =
∏u

u=1
P(Cu|γi) =

∏u

u=1
Pu (12)

For observation CU , we defined the forward and backward
variables are defined as αut (i) = P(cu1, c

u
2, . . . , c

u
t |ψt = Ψi, γ

and βut (i) = P(cut+1, c
u
t+2, . . . , c

u
k |ψt = Ψi, γ respectively.

The parameters of γ are approximated as follows:

āi,j =

∑u
u=1

1
Pu

∑nku−1
t=1 αut (i)ai,j(C

u
t+1)β

u
t+1(j)∑u

u=1
1
Pu

∑ku−1
t=1 αut (i)β

u
t (j)

(13)

b̄j(n) =

∑u
u=1

1
Pu

∑ku−1
t=1
s.tcn

αut (i)β
u
t (j)∑u

u=1
1
Pu

∑nku−1
t=1 αut (i)β

u
t (j)

(14)
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where cn is the nth (1 ≤ n ≤ M). All samples in this scheme
are treated equally. The weight obtained in boosting learning
scheme is employed in the biased Baum-Welch algorithms
[40]. For the T includes T samples, the St is equal to

U (U−1)
2 .

Let zTi,j(1 ≤ i < j ≤ U ) be the weight of the pair of
training samples Sti, Stj, the normalized weight for target
sample Cu(1 ≤ u ≤ U ) is evaluated as:

zu =

∑
i=uorj=u z

T
i,j

2 ·
∑

i,j z
T
i,j

(15)

The parameters can be approximated again by assigning the
weight to the sample Cu.

āi,j =

∑u
u=1

zu
Pu

∑nku−1
t=1 αut (i)ai,j(C

u
t+1)β

u
t+1(j)∑u

u=1
zu
Pu

∑ku−1
t=1 αut (i)β

u
t (j)

(16)

b̄j(n) =

∑u
u=1

zu
Pu

∑ku−1
t=1
s.tcn

αut (i)β
u
t (j)∑u

u=1
zu
Pu

∑nku−1
t=1 αut (i)β

u
t (j)

(17)

From eq. (16) and (17), the approximated parameters can
discriminatively model the sequence to the extent that com-
plex gesture samples can be proved. We merged the HMMs
with RSM boosting learning scheme as summarized in
algorithm 2. The model is trained with the following param-
eter settings: 30 boosting round, 3 states, and 2 continuous
density Gaussian mixtures with diagonal covariance matrix
output which delivers the best performance.

Algorithm 2 Boosted-HMM with RSM
1: start
2: set λM ,A,B, γ (T ), γ (W ){input}
3: Output āi,j and b̄j(n){γt parameters}
4: set ΨN {N hidden states}
5: initialized γt and its variables π,A,B
6: estimate eq. (7) {forward likelihood between γ (T ), γ (W )}
7: estimate eq. (8) {closed-set case}
8: estimate eq. (9) {opened-set case}
9: modify eq. (8) and (9) to get eq. (10) {boostedHMMs inweak

learners}
10: donate training set eq. (11)
11: adjust γt parameters eq. (12)
12: define αut (i) and β

u
t (i) {forward and backward variables]

13: estimate āi,j eq. (13) and b̄j(n) (14) {γt parameters}
14: set U (U−1)

2 {positive training data set}
15: let zTi,j(1 ≤ i < j ≤ U ) {weight of training}
16: estimate eq. (15) {normalized weight}
17: assign eq. (15) in eq. (13) and eq. (14)
18: re-estimate āi,j eq. (16) and b̄j(n) (17) {γt parameters}
19: end

E. MODELS TRAINING
The sequence of the complex gesture was split into the train-
ing and testing ratio of 0.9:01. The weak learners in RF
classifiers were trained with a bagging scheme for 100 itera-
tions. The RF learns from the randomly selected features and
performs voting for the testing samples to form the results of

each DT. For training the Bi-LSTM network, thirty minibatch
sizes were chosen, and an initial learning rate of 0.001. The
network trained for a maximum epoch of one hundred and
twenty with one iteration per epoch. The maximum number
of epochs is set to be the maximum number of iterations.
Figure 5 shows the training performance of the Bi-LSTM.
The Boosted-HMMmodel is trained with 30 boosting round,
3 states, and 2 continuous density Gaussian mixtures with
diagonal covariance matrix output. The boosted HMMs were
tested with 5-fold cross-validation.

F. EVALUATION
For the evaluation of the proposed method, the confusion
matrix was decomposed to form the numerical result. The
correctly classified gaze gesture is known as True positive
(Pt ). The false negative (Nf ) is the target gaze gestures classes
that the model predicted as wrong gaze gestures while are
target gaze gestures. The false positive (Pf ) identify gaze
gestures that the model predicts belong to a wrong gaze
gesture that does not. True negative (Nt ) are gaze gestures that
the model correctly identified as wrong gaze gestures. Thus,
we adopted from [38] to obtained the true-positive rate, false-
positive rate, precision, recall, and f1-score for each gaze
gesture and an average accuracy.

IV. RESULTS
In this section, we report the quantitative recognition per-
formance results of RF, Bi-LSTM, and boosted-HMM algo-
rithms. These algorithms are trained using the dataset from
experiment in Section III as well as the HideMyGaze dataset
[33]. From the experimental result, we obtained the following
results: Table 5 depicts performance results of RF for each
complex gaze gesture. The ‘‘circle’’, ‘‘infinity’’ and ‘‘zigzag’’
gestures has the highest recognition performance in RF clas-
sifiers while the ‘‘hover’ and ‘‘question_mark’’ gestures have
the lowest recognition performance. Table 6 depicted the
evaluated performance results of Bi-LSTM for each complex
gaze gestures. The Bi-LSTM recognition performance rate
of the gestures significantly increased as shown in Table 6,
except for the ‘‘circle’’ and ‘‘infinity’’ gesture which dropped
by 33% and 4.17% respectively compared to the performance
of RF classifier in Table 5. However, the average performance
result of Bi-LSTM is better than the results of the RF reported.
Additionally, the performance results of boosted-HMM for
complex gaze gesture were quantitatively reported in Table 7.
We obtained the highest recognition rate in gesture ‘‘Z’’ while
‘‘circle’’, ‘‘infinity’’, ‘‘triangle’’ and ‘‘zigzag’’ gestures have
lowest and similar recognition rates of 92.5%. Nevertheless,
the boosted-HMMaveragely outperformed the results of both
RF and Bi-LSTM by 1.67% and 14.12% respectively.

Similarly, we further use HideMyGaze datasets in [33]
to evaluate our method on simple gaze gesture. Table 8
reported the performance results of RF for simple gaze ges-
ture. We found gesture ‘‘one’’ has the lowest recognition
performance, followed by the gesture ‘‘down’’. Furthermore,
Tables 9 depicted performance results of Bi-LSTM for each
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simple gaze gestures. The recognition performance of ges-
ture ‘‘one’’ significantly improved by 25% compared to the
result in RF of Table 8 though, it is still among the poorly
recognized gestures. The general performance of each gesture
learned with Bi-LSTM in Table 9, is better than RF in Table 8
except for gesture ‘‘up’’ and ‘‘three’’ which were excellently
learned with RF. Boosted-HMM performance results of sim-
ple gaze gestures were reported in Table 10. Gesture ‘‘three’’
and ‘‘up’’ have similar and lowest recognition rate except in
precision and recall.Moreover, boostedHMMaverage results
in Table 10 are better than the results of both RF and Bi-
LSTM. In general, the evaluation results show that an average
performance of boosted-HMM outperforms all algorithms,
followed by Bi-LSTM and RF.

FIGURE 5. Training performance of Bi-LSTM networks on complex
gestures.

TABLE 5. Scores per recognition of complex gestures using RF.

Moreover, the average recognition performance of RF,
Bi-LSTM, and Boosted-HMMs of Tables 8-10 was shown
in Figure 6. We obtained accuracies of 83%, 87.5% and
98.1% for the RF classifier, BiLSTM, and Boosted-HMMs
respectively. The BiLSTM yields an increment of 4.5% accu-
racy over the RF while Boosted-HMMs achieved 15.1% and
10.6% increment over both RF and Bi-LSTM respectively.
The average precision results of RF are 85.8% while the
Bi-LSTM achieved precision of 91.67% which is 5.87%
less than the precision of the Bi-LSTM. Boosted-HMMs

TABLE 6. Scores per recognition of complex gestures using Bi-LSTM.

TABLE 7. Scores per recognition of complex gestures using
boosted-HMM.

TABLE 8. Scores per recognition using RF with transformed motion
features.

achieved a precision of 100% which is a 14.2% and 8.33%
increment over RF and Bi-LSTM respectively. The average
recall performance of RF is 78.0% and Bi-LSTM is 95.83%
respectively which means RF achieved 17.83% less than the
recall of the Bi-LSTM. Boosted-HMMs achieved a recall
performance of 98% which is a 20% and 2.17% increment
over the recall of RF and Bi-LSTM respectively. The RF, Bi-
LSTM, and Boosted-HMMs achieved average F1-scores per-
formance of 88.2%, 92.54%, and 100% respectively. Thus,
Bi-LSTM achieved 4.34% F1-scores higher than RF but
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TABLE 9. Scores per recognition using Bi-LSTM with transformed motion
features.

TABLE 10. Scores per recognition using Boosted-HMM with transformed
motion features.

7.46% less than Boosted-HMMs and the Boosted-HMMs
achieved 11.8% higher than RF.

FIGURE 6. Performance comparison results of the ML algorithms of
simple gaze gestures using HideMyGaze datasets [33].

In general, the performance of Bi-LSTM and RF is lower
than the performance of Boosted HMM. This is due to
inherited multicollinearity in the transformed motion feature
approximation in the HideMyGaze datasets [33]. However,
the combination ability of RSM to automatically select the
desired features out of the decomposed motion features and
the boosting learning capacity of HMM. Thus, Boosted-
HMMswas able to learn all sequences of simple gaze gestures

with at least a 94% recognition rate and 98% average perfor-
mance of all gestures in the HideMyGaze datasets [33].

1) COMPARISON WITH BASELINE METHOD
Table 11 depicts the performance comparison of our adopted
method and method Shi et al. [7]. The table 11 also depict the
average performance recognition of boosted HMM.

TABLE 11. Performance comparison with baseline method.

The average recognition performance of the RF classi-
fier [7] is 88.1%, 90.77%, and 85.03% for accuracy, pre-
cision, and recall respectively. However, the performance
results of boosted-HMM with the same dataset are shown
in orange color in figure 7. The proposed method achieved

FIGURE 7. Performance comparison between boosted HMMs and GCN
in [7].

FIGURE 8. Performance comparison between boosted HMMs and ML
algorithms in [7].
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98.1%, 100%, and 98% for accuracy, precision, and recall
respectively. Thus, boostedHMMs outperformed the RF clas-
sifier with 10%, 9.23%, and 12.97% in terms of accuracy, pre-
cision, and recall respectively. Additionally, the conventional
GCN achieved 97.62%, 97.18%, and 98.46% for accuracy,
precision, and recall respectively as shown in blue color
in figure 7. This means that, boosted HMMs outperformed
the GCN with 0.48% and 2.825% in terms of accuracy and
precision respectively. Hence, boosted HMMs with 5-fold
cross-validation displayed superiority to handle the sequence
recognition gaze gestures.

TABLE 12. Performance comparison of three different models of complex
gaze gesture with Boosted-HMMs.

2) ABLATION STUDIES
Table 12 analyzed the performance of three different model
combinations with Boosted-HMM. Model 1 consists of gaze
points sequence as input sequence to the Boosted-HMMs
which achieved 59.2%, 61.41%, 59.2%, and 59.25% for
the accuracy, precision, recall, and F1-score respectively.
Model 2 consists of head orientation angles as input sequence
and achieved 29.2%, 28.1%, 29.2%, and 28.2% for the accu-
racy, precision, recall, and F1-score respectively. By compar-
ing the performance of model 1 and model 2, the boosted
HMMs recognized complex gaze gestures with gaze points
better than with head orientation angles. The recognition
performance with gaze points is at least 30% better than
with head orientation angles in terms of accuracy, precision,
recall, and F1 score. Model 3 was formed by combining
the gaze points and head orientation angle features. Model
3 achieved 94.72%, 97.75%, 97.46%, and 97.55% for the
accuracy, precision, recall, and F1-score respectively. This
means that the combinations of gaze point and head ori-
entation angles in model 3 improved the learning of both
model 1 and model 2. The Head orientation angles improved
the learning of model 1 by 35.52%, 36.34%, 38.26%, and
38.3% in terms of accuracy, precision, recall, and F1-score
respectively. Similarly, the gaze points improve the learning
of model 2 by 65.52%, 69.65%, 68.26%, and 69.35% in
terms of accuracy, precision, recall, and F1-score respec-
tively. Hence, model 3 is the best model which combines
the gaze points and the head orientation angles. The per-
formance of these three models were shown in Figure 9.
Model 1 is represented with blue color, model 2 is repre-
sented with orange color, and model 3 is represented with ash
color.

FIGURE 9. Comparison performance of boosted HMMs with three
different combinations of complex gesture models.

V. DISCUSSION
The average recognition performance of each classifier
for the complex gaze gestures in our dataset is shown in
Figure 10. The curves in blue, orange, and ash color repre-
sented the average recognition performance of RF, Bi-LSTM
and Boosted HMMs respectively. RF classifier and Bi-
LSTM achieved recognition accuracy of 80.6% and 93.06%
respectively. This means that the BiLSTM yields an incre-
ment of 12.46% accuracy over the RF classifier. Boosted-
HMMs achieved an accuracy of 94.72% which is a 14.12%
and 1.66% increment over RF and Bi-LSTM respectively.
The average precision performance of RF is 83.2% while
Bi-LSTM achieved a precision of 95.33% thus, RF is 12.13%
less than the precision of the Bi-LSTM. Boosted-HMMs
achieved a precision of 97.75%which is a 14.55% and 2.42%
increment over RF and Bi-LSTM respectively. The average
recall result of Bi-LSTM is 98.08% while RF and Boosted
HMM achieved a recall of 79.6% and 97.46% respectively.
The Bi-LSTM recognition in terms of recall performance
is higher than both RF and Boosted HMM by 18.48% and
0.62% respectively. The RF, Bi-LSTM, and Boosted-HMMs
achieved average F1-scores performance of 79.8%, 96.33%,
and 97.55% respectively. Thus, the precision of Bi-LSTM
is 16.53% higher than the precision of RF but 1.22% less
than Boosted-HMMs. And the precision of Boosted-HMMs
is 17.75% higher than the precision of RF. Hence, Boosted-
HMMs is suitable to learn all sequences of complex gaze
gestures and achieve a recognition rate of at least 92% for
each gesture. The high recognition performance is achieved
due to the automatic feature selection ability in each sequence

FIGURE 10. Comparison results of the ML performance of complex gaze
gestures.
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via RSM and the boosting power of the model. However, the
RF classifier has the lowest recognition performance of less
than 85% in terms of accuracy, precision, recall, and F1-score.

Figure 11 depict gestures with low recognition perfor-
mance from the results of RF, Bi-LSTM, and the boosted-
HMM in Table 5, 6, and 7. The gaze gestures are mostly curvy
except ‘‘triangle’’. Most of this was due to bad performance
by the participants. Circle gaze gesture is badly recognized by
Bi-LSTM having a recognition rate of 66.67% and the least
recognition rate in Boosted HMMs with 92.5%. The ‘‘circle’’
gesture achieves low recognition performance due to the mis-
classification of the circle with a triangle gesture. we obtained
the least recognition performance of 50% in the RF classifier
on hover gestures while boosted HMMs achieved up to 95%
for its recognition. Infinity gesture was least recognized by
the Boosted HMMs with a recognition rate of 92.5% due
to some bad samples from the participants. Question mark
gesture was poorly recognized by RF with a recognition rate
of 62.5% but is well recognized by both LSTM and Boosted
HMMsmodels. The samples of triangle gestureweremisclas-
sified with circle gesture and hover, thus the low recognition
rate in RF, Bi-LSTM, and Boosted HMMs.

FIGURE 11. Five (5) selected complex gaze gestures: (a) Target gaze
gestures (b) Good gaze patterns (c) Processed gaze patterns (d) Bad gaze
patterns.

VI. CONCLUSION
In this work, we proposed a new sets of gaze points and
head orientation angles to recognize complex gaze gestures.
We observed the effect of clustering in the neighborhood
frames caused by eye fixations in motion features. An effec-
tive decomposition and transformation of SMA approxima-
tion were utilized for aligning the clustered sets. We integrate
and improve HMMs with RSM boosting learning due to its
featuring high discrimination learning ability. Finally, the
complex and simple gaze gestures are recognized based on
the subunit learning results of the boosted HMMs. Hence, our
method may be used in developing gaze interfaces regardless
of the types of gaze gestures which extended the applications.
However, boosted HMM took long time to boost the learning
of weak classifiers. Further research should investigate an
effective method of decomposing and restoring the original
eye position values from the motion features.
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