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ABSTRACT In order to solve the resource allocation problem in scenarios of centralized wireless cellular
communication with multiple cells, users and channels, a novel resource allocation algorithm based on joint
Deep Deterministic Policy Gradient (DDPG) reinforcement learning and unsupervised learning is proposed.
Firstly, the proposed algorithm constructs a channel allocation deep neural network based on DDPG to
provide an optimized channel allocation scheme. Secondly, the proposed algorithm constructs a power
control deep neural network based on unsupervised learning to provide an optimized power control scheme.
In order to make the unsupervised learning have perceptions on dynamic wireless environments, the double
experience replay is executed to train the channel allocation deep neural network with the DDPG reinforce-
ment learning and the power control deep neural network with the unsupervised learning, respectively. Since
the proposed joint algorithm combines the dynamic perception ability of the DDPG reinforcement learning
and the continuous optimization ability of unsupervised learning, the energy efficiency can be effectively
maximized. Simulation results show that the proposed algorithm outperforms other algorithms in terms of
energy efficiency and transmit rate in time-varying dynamic environments. Furthermore, we discuss the
implications of our results and possible future research directions. Our work contributes to the advancement
of resource allocation techniques in multi-cell cellular networks to meet the increasing demands of modern
wireless communication systems.

INDEX TERMS Deep reinforcement learning, DDPG, unsupervised learning, double experience replay,
channel allocation, power control, wireless cellular networks.

I. INTRODUCTION
The proliferation of wireless communication devices and data
throughput is growing exponentially with the advent of 5G
technology. According to the statistics from the China Inter-
net Network Information Center (CNNIC), from December
2018 to December 2022, the number of Chinese netizens
increased from 828 million to 1.067 billion. Among them,
the number of mobile netizens was 1.065 billion, with an
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increase of 36.36 million compared with December 2021.
The proportion of netizens who use mobile phones to access
the Internet is 99.8%. This has brought the issue of limited
spectrum resources and increasing communication demands
to the forefront [1], [2], [3], [4]. Therefore, improving the
utilization of spectrum and power resources has become a key
issue to be explored.

Traditional methods for resource allocation in wireless
cellular networks mainly include iterative algorithms [5], [6],
heuristic algorithms [7], [8], [9], and so on. These meth-
ods tend to have relatively high computational burden and
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computation time [10], and are not feasible to handle the time-
varying wireless environments in real time. Therefore, these
methods are no longer applicable in the new generation of
wireless networks.

It is well known that deep reinforcement learning
has excellent capabilities in environmental interaction and
dynamic perception. In the context of deep reinforcement
learning, perception is the ability of an agent to interpret and
understand its environment through sensory input, such as
images or sensor data. It involves the ability of the agent
to recognize patterns, identify objects, and make sense of
the sensory information it receives. Perception is a critical
aspect of deep reinforcement learning because it enables
the agent to accurately perceive and respond to changes
in the environment in real time. The agent can also learn
by interacting with the dynamic wireless network environ-
ments [11], [12]. Currently, the Deep Q Network (DQN),
as a research hotspot in deep reinforcement learning, has
been widely used for resource allocation in wireless commu-
nications. For example, considering the discreteness of the
action space in channel allocation, the algorithm [13] used the
DQN for the channel allocation in the D2D wireless network.
In power allocation, a power control algorithm based on
the DQN [11] is used to train micro base stations (MBS)
so that the MBS can learn the optimal strategy and help
cognitive users (CUs) communicate with appropriate power.
Based on globally centralized information processing, the
algorithm [14] used the DQN to allocate power to maximize
the energy efficiency of the system. In [15], the DQN is
used for joint channel allocation and power control in D2D
communication to maximize the total transmit rate of the
system under the premise of ensuring interference. However,
since only one state is mapped from the largest Q value by
DQN and the action space for DQN increases exponentially
with the number of channels, the above algorithms related to
DQN cannot be applied to the resource allocation problem
in scenarios of centralized wireless cellular communication
with multiple cells, users, and channels.

In addition to deep reinforcement learning, deep unsu-
pervised learning has also attracted a lot of attention from
researchers because of the following characteristics. On the
one hand, labels are not required in deep unsupervised learn-
ing, thus avoiding that the performance of deep learning
networks is limited by inappropriate labels [4], [16], [17].
On the other hand, deep unsupervised learning can show bet-
ter optimization performance than deep reinforcement learn-
ing [4], [10], [16], [17], [18]. For example, Sun et al. [10]
proposed a centralized cellular network resource allocation
method based on two-stage deep unsupervised learning,
which improves system energy efficiency by separately opti-
mizing channel allocation and power control; Lee et al. [18]
proposed a distributed power control framework based
on unsupervised learning that maximizes spectrum effi-
ciency or energy efficiency. However, the above unsuper-
vised learning algorithms cannot promptly detect dynamic

changes in the mobile communication environment and
often require frequent retraining to cope with dynamic
changes in the mobile communication environment, resulting
in increased prediction time delay and reduced real-time
performance.

According to the above, both DQN deep reinforcement
learning and unsupervised learning have their advantages and
disadvantages in channel and power allocation in scenarios
of centralized wireless cellular communication with multiple
cells, users, and channels. Since Deep Deterministic Policy
Gradient (DDPG) uses a deterministic policy gradient to
learn an optimal policy [3], DDPG is more suitable than
DQN to solve the resource allocation problem in scenarios
of centralized wireless cellular communication with multiple
cells, users, and channels. At the same time, unsupervised
learning is capable of mining hidden resource utilization
patterns and rules from a large amount of unlabeled data, so as
to better meet the actual needs of resource allocation [18].
In addition, unsupervised learning is more efficient in opti-
mizing the continuous power control problem [12]. There-
fore, organically combining the environmental interaction
and perception capabilities of deep reinforcement learning
with the optimization capabilities of unsupervised learning is
expected to overcome the shortcomings of previous research
in [13], [14], [16], and [19] and improve the performance
of deep learning in channel and power allocation. Motivated
by this, we propose a resource allocation algorithm for cen-
tralized cellular networks by combining power control based
on unsupervised learning and channel allocation based on
DDPG deep reinforcement learning. To make the unsuper-
vised learning have perceptions on dynamic wireless envi-
ronments, the double experience replay is executed to train
the channel allocation deep neural network with the DDPG
reinforcement learning and the power control deep neural
network with the unsupervised learning, respectively. Specif-
ically, the proposed algorithm in this paper uses the DDPG
reinforcement learning for channel allocation, and uses the
experience replay information from the DDPG to train the
unsupervised learning, thereby achieving power control.

The rest of the paper is as follows. In the next section,
a system model in a downlink centralized multi-cell cellu-
lar network is formulated. In Section III, the joint DDPG
reinforcement learning and unsupervised learning are pro-
posed for resource allocation in the downlink centralized
multi-cell cellular network. Simulations and analysis are per-
formed in Section IV. Conclusions are drawn in the last
section.

II. SYSTEM MODEL
A multi-cell cellular network is a type of wireless communi-
cation system that consists of multiple cells, each of which
is served by a base station. A base station, also known as
a cell site or cell tower, is a fixed communication station
that serves as the central hub for transmitting and receiving
wireless signals within a specific geographic area, known as
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a cell. Base stations are typically equipped with antennas
and other communication equipment and are responsible for
providing wireless coverage and facilitating communication
between mobile devices, such as smartphones, and the core
network infrastructure.

A downlink centralized multi-cell cellular network system
considered in this paper is shown in Fig. 1.

FIGURE 1. Downlink centralized multi-cell cellular network.

In the system model shown in Fig. 1, there are K mobile
users randomly distributed inM cells. Each cell has one base
station. In addition, all base stations and users are single
antenna systems. All N orthogonal frequency channels are
reused in each cell, and each channel is assigned to a single
user. In wireless communications, channel gain plays a criti-
cal role in determining the quality of communication links.
Channel gain is influenced by various factors such as dis-
tance, obstructions, fading, and interference, and is inherently
highly dynamic. It is assumed that the channel gain of the
system can be expressed by equation (1) [20]:

Hn
m,k = 10−(PLm,k+Xα)/10

∣∣hnm,k ∣∣2 (1)

where PLm,k represents the log-distance path loss model
as base station m communicates with user k; Xα is a ran-
dom variable subject to a normal distribution with a mean
of 0 and a variance of α; hnm,k represents the Rayleigh
fading as base station m communicates with user k over
channel n.
When user k communicates over channel n in cell m, the

interference from other cells for user k can be expressed as
follows [10]:

Inm,k =

M∑
i = 1
i ̸= m

K∑
j=1

Dni,jp
n
i,jH

n
i,j (2)

where Dnm,k represents the allocation of channel n in base
station m; Dnm,k = 1 means that base station m allocates
channel n to user k , otherwise, Dnm,k = 0; This indicates
that channel n is occupied by user k and that communication

between base stationm and user k is on channel n. The value 1
has no specific meaning here and only indicates whether the
channel is occupied by the user. If a user is occupying the
channel, the corresponding user index is set to 1, otherwise it
is set to 0. pnm,k denotes the transmit power emitted by base
station m when communicating with user k on channel n;
Hn
m,k represents the channel gain when base station m com-

municates with user k on channel n.
The total transmit rate R and the total energy efficiency E

of the system can be expressed as follows [10]:

R =

M∑
m=1

N∑
n=1

K∑
k=1

log2

(
1 +

Dnm,kp
n
m,kH

n
m,k

(N0B+ Inm,k )0

)
(3)

E =

M∑
m=1

N∑
n=1

K∑
k=1

B log2
(
1 +

Dnm,kp
n
m,kH

n
m,k

(N0B+Inm,k )0

)
106 · pnm,k

(4)

whereN0 is the power spectral density of additivewhite Gaus-
sian noise; B is the bandwidth; 0 = − ln(5 ·BER)/1.6 where
BER is the bit error rate.

In this paper, the optimization problem is formulated as
maximizing the expectation of energy efficiency, as shown
below:

max{
Dnm,k ,p

n
m,k

}EHn
m,k

[E]

s.t. C1 :

K∑
k=1

Dnm,k = 1,Dnm,k ∈ {0, 1}

C2 : pnm,k ≥ 0

C3 : pnm ≥ pm,min, pnm =

∑K

k=1
Dnm,kp

n
m,k

C4 :

N∑
n=1

K∑
k=1

Dnm,kp
n
m,k ≤ pm,max (5)

where E is the expectation; E is the energy efficiency;
C1 means that base m allocates channel n to one and only
one user in the cell; The C1 constraint ensures that each
channel has only one user, so that the channels are orthogonal
to each other and interference can be reduced; C2 indicates
that the transmit power that base station m communicates
with user k on channel n is non-negative; The C2 constraint
ensures that the power allocated by the base station to each
channel for each user is non-negative because it is consistent
with the actual application scenario that the allocated power
of the base station cannot be negative. C3 indicates that the
transmit power that base station m communicates on channel
n should be greater than or equal to the minimum transmit
power;C4 indicates that the total transmit power that base
station m transmits on all channels must not exceed the
maximum transmit power pm,max. The C3 and C4 constraints
are to limit the maximum and minimum transmission power
in consideration of user fairness, which can ensure that the
power allocated between each channel in a multi-cell system
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is within a reasonable range, and thus the power allocated to
the users can also be guaranteed.

III. PROPOSED JOINT DDPG REINFORCEMENT LEARNING
AND UNSUPERVISED LEARNING FOR
RESOURCE ALLOCATION
The DDPG reinforcement learning is a type of machine
learning where an agent learns to make decisions through
trial-and-error interactions with an environment, while unsu-
pervised learning is a type of machine learning where the
algorithm learns from unlabeled data. Unsupervised learning
tends to have higher optimization efficiency than the DDPG
reinforcement learning [12], but has few capabilities of inter-
action with an environment.

In this section, we present a novel resource allocation
algorithm based on joint DDPG reinforcement learning and
deep unsupervised learning for the optimization problem (5).
Specifically, the proposed algorithmmainly uses DDPG rein-
forcement learning to obtain the channel allocation scheme
and deep unsupervised learning to obtain the channel power
control scheme for the optimization problem (5). The pro-
posed algorithm is based on the joint between the DDPG
reinforcement learning and the environment and consists of
the following parts:

(1) Building a channel allocation deep neural network
(DNN) and a power control DNN.

(2) Using the channel allocation DNN with the DDPG
reinforcement learning to obtain the channel allocation
scheme. During the process, the obtained channel allo-
cation scheme and information of the wireless envi-
ronment, such as the channel gain information and the
interference information, are stored in the experience
pool.

(3) The double experience replay is used to obtain differ-
ent information for the training of the channel allo-
cation DNN and the power control DNN, as shown
below:
(3.1) The first experience replay is performed to train
the power control DNN with unsupervised learning.
Specifically, the channel allocation scheme, channel
gain information and interference information from the
experience replay are used to train the power control
DNN with unsupervised learning, and the optimized
channel power control scheme is obtained by the well-
trained power control DNN.
(3.2) The second experience replay is performed to
train the channel allocation DNN with the DDPG
reinforcement learning. Specifically, the channel gain
information and interference information from the
experience replay are used to train the channel alloca-
tion DNN with DDPG reinforcement learning.

In the following, the above parts of the proposed joint
DDPG reinforcement learning and unsupervised learning for
resource allocation are presented in detail.

A. DDPG REINFORCEMENT LEARNING FOR
CHANNEL ALLOCATION
1) BASIC FRAMEWORK OF THE DDPG ALGORITHM
The DDPG reinforcement learning consists of the envi-
ronment, experience replay, and the DDPG networks. The
DDPG networks consist of a main actor network, a target
actor network, a main critic network, and a target critic
network.

The main actor network is updated by maximizing the
function LA. The function LA and the policy gradient ∇θALA
can be expressed as follows:

LA =
1

|Ns|

∑
st∈Ns

Q
(
st , π

(
st |θA

)
|θC

)
(6)

∇θALA =
1

|Ns|

∑
st∈Ns

{
∇πQ

(
st , π |θC

)
∇θAπ

(
st |θA

)}
(7)

where θA represents parameters of the main actor network;
θC stands for parameters of the main critic network; Ns is
the set of the mini-batch sampling data in the experience
replay, Ns = {(st , a, r, st+1)}, and |Ns| is the size of the set;
st is the state of the environment at the time t , st+1 is the
state of the environment at the time t + 1 after the state st
executes the action a; r is the reward received for performing
the action a; π is the policy output from the main actor
network;Q is the Q value output from themain critic network.
θA is updated according to equation (8), where ηA is the
learning rate.

θA = θA + ηA∇θALA (8)

The main critic network is updated by minimizing a loss
function LC . The loss function LC and the gradient ∇θCLC
can be expressed as follows:

LC =
1

|Ns|

∑
(st ,a,r,st+1)∈Ns

×

[
r + γQ′

(
st+1, π

′

(
st+1|θ

A′
)

|θC
′
)

−Q
(
st , a|θC

)]2
(9)

∇θCLC =
2

|Ns|

∑
(st ,a,r,st+1)∈Ns

{
r − Q

(
st , a|θC

)
+γQ′

(
st+1, π

′

(
st+1|θ

A′
)

|θC
′
)}

∇θCQ
(
st , a|θC

)
(10)

where θA
′

are parameters of the target actor network; θC
′

are
parameters of the target critic network; π ′ is the policy output
from the target actor network; Q′ is the Q value output from
the target critic network; γ is the discount factor, γ ∈ [0, 1].
θC is updated according to Equation (11), where ηC is the
learning rate.

θC = θC − ηC∇θCLC (11)
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FIGURE 2. The DDPG reinforcement learning framework for channel allocation.

The target actor network and the target critic network are
updated by the soft update method shown in equation (12):{

θA
′

= τθA + (1 − τ )θA
′

θC
′

= τθC + (1 − τ )θC
′ (12)

where τ ≪ 1.
The DDPG reinforcement learning framework for channel

allocation is shown in Fig. 2.

2) DEFINITIONS OF STATE, ACTION, AND REWARD
In the DDPG reinforcement learning for channel allocation,
the definitions of state st , action a, and reward r are described
as follows:

(1) State st : st = {H , Ĥ , Î }t . Namely, the channel gain
H , the normalized interference Î , and the normalized channel
gain Ĥ at time t are taken as the state st . Ĥ and Î are shown
in equations (13) and (14).

Ĥ =

log10(H̃ ) − min
[
log10(H̃ )

]
max

[
log10(H̃ )

]
− min

[
log10(H̃ )

] (13)

Î =

log10(Ĩ ) − min
[
log10(Ĩ )

]
max

[
log10(Ĩ )

]
− min

[
log10(Ĩ )

] (14)

where H̃ and Ĩ are flattening vectors of the channel gain
H , H = [Hn

m,k ], and the interference signal I , I = [Inm,k ].
Logarithmic normalization is used to compress the range of
values and reduce the influence of outliers. Logarithmic nor-
malization transforms the data by taking the logarithm of each
value, which can make the range of values more manageable
and suitable for further analysis. Additionally, logarithmic
normalization can also help to stabilize the variance and

improve the normality of the data, which can be beneficial
in certain types of statistical analyses.

(2) Action a: The channel allocation scheme is taken as an
action, i.e., a = [Dnm,k ].
(3) Reward r : The optimization objective of this paper

is the expectation of energy efficiency, which is the direct
response to the action. Therefore, the reward adopted in this
paper is shown as follows:

r =

M∑
m=1

N∑
n=1

K∑
k=1

B log2
(
1 +

Dnm,kp
n
m,kH

n
m,k

(N0B+Inm,k )0

)
106 · pnm,k

(15)

where pnm,k is provided by the power control DNN shown in
Section III-B.

3) PROPOSED ACTOR NETWORK
In this paper, the channel allocation scheme is taken as the
output policy π of the proposed actor network. Note that the
channel allocation scheme is generated for the centralized
wireless system including multiple cells, channels, and users.
Suppose cell m has km users that satisfies

∑M
m=1 km = K .

Then there will be
∏M

m=1 (km)
N kinds of channel allocation

schemes. This means that it is difficult to use DQN with the
Q-value mechanism as an actor network because the action
space for DQN increases exponentially with the number of
channels. Hence, we propose a channel allocation DNN with
a softmax output layer to act as an actor network. The struc-
ture of the proposed channel allocation DNN is shown in
Fig. 3. As shown in Fig. 3, the normalized interference Î and
the normalized channel gain Ĥ are inputs to the channel allo-
cation DNN. They are first passed through a fully connected
(FC) layer and a batch normalization (BN) layer, respectively,
and then summed and fed into a linear rectifier unit (ReLU)
layer. They are then fed into another FC layer, where noise
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FIGURE 3. Structure of the proposed channel allocation DNN (actor
network).

FIGURE 4. Schematic diagram of the softmax layer of the proposed
channel allocation DNN (actor network).

is added to them, and then they are fed into a softmax layer.
The output is a channel allocation policy of sizeN×K , which
is eventually transformed into a channel allocation policy of
size M × N × K .

Each channel is assigned to the users in the cell accord-
ing to the probability of each user from the softmax layer.
For clarity, a schematic diagram of the softmax layer with
3 cells, 7 users, and 4 channels is shown in Fig. 4. Fig. 4
is explained as follows. In cell 1, users 1 and 2 occupy
channel 1 with probabilities of 0.21 and 0.79, respectively,
and occupy channel 4 with probabilities of 0.34 and 0.66.
In cell 2, users 3 and 4 occupy channel 1 with probabilities
of 0.08 and 0.92, respectively, and occupy channel 4 with
probabilities of 0.15 and 0.85, respectively. In cell 3, users 5,
6, and 7 occupy channel 1 with probabilities of 0.13, 0.24, and
0.63, respectively, and occupy channel 4 with probabilities of
0.56, 0.21, and 0.23, respectively.

The channel allocation DNN explores and exploits through
the product of noiseψ and noise intensity µ. The noiseψ is a
random number with a standard normal distribution. And the
noise intensity µ is set to be a positive value for exploration,
while a zero value for exploitation.

Through the probabilistic occupancy of channels by users,
exploration and exploitation based on noise and noise

intensity, the proposed channel allocation DNN can prevent
the performance degradation caused by the channel space is
too large.

B. UNSUPERVISED LEARNING FOR POWER CONTROL
1) PROPOSED POWER CONTROL DNN
This paper proposes a DNN based on unsupervised learning
for power control to obtain power pnm,k . The proposed power
control DNN is shown in Fig. 5. The proposed power con-
trol DNN takes normalized interference, channel allocation
scheme, and normalized channel gain as input. After com-
putation through several FC layers, BN layers, and ReLU
layers, the power pnm,k is output through a power constraint
processing.

FIGURE 5. Proposed power control DNN.

To enable the power control DNN to meet the requirements
of the dynamic wireless environment, the normalized inter-
ference Î , the channel allocation a, the normalized channel
gain Ĥ , and the normalized channel gainH are extracted from
the experience replay of DDPG. Note that the power control
DNN shown in Fig. 5 is trained in an unsupervised man-
ner, and no labels are required in the unsupervised learning.
Hence, the extracted data is fully used in the following ways.
On the one hand, the extracted normalized interference Î ,
the flattened channel allocation vector a, and the normalized
channel gain Ĥ are used as inputs to the power control DNN.
On the other hand, the extracted channel allocation a and the
channel gain H are used to construct the loss function of the
unsupervised learning to train the power control DNN.

2) POWER CONSTRAINT PROCESSING
The power constraint processing is as follows: Let Y be
the output vector of the final ReLU layer in Fig. 5, with
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size M × N as shown below:

Y =

[
y11, . . . , y

N
1 , . . . , y

n
m, . . . , y

1
M , . . . , y

N
M

]T
(16)

The element ynm can be viewed as the transmit power for
channel n in cell m. However, it is not guaranteed to meet
the transmit power constraints.

To satisfy the transmit power constraints, the power con-
straint processing first performs min and max operations as
shown below:

ŷnm = max
(
min

(
ynm, pm,max

)
, pm,min

)
(17)

By means of the operations in (17), pm,max ≥ ŷnm ≥ pm,min
comes into existence.

The operations in (17) are mainly used to determine
whether the power of base stations is fully allocated to the
channels or not. For this purpose, we use a sum value of (17),
i.e. Sm shown in (18), to control the power allocation of the
channels.

Sm =

∑N

n=1
ŷnm (18)

Using the sum value Sm, the power allocation of the chan-
nels can be expressed as shown in (19).

ˆ̂ynm =


(pmax−N ·pmin) exp(ŷnm)

N∑
i=1

exp(ŷim)
+ pmin, if Sm ≥ pm,max

ŷnm, otherwise

(19)

As shown in equation (19), if the sum value Sm is greater
than or equal to the maximum power of the base stations, i.e.,
Sm ≥ pm,max, it satisfies that

∑N
n=1

ˆ̂ynm = pm,max, which
means that the power of base stations is fully allocated to the
channels. If the sum value Sm is smaller than the maximum
power of the base stations, i.e., Sm < pm,max, it satisfies that∑N

n=1
ˆ̂ynm < pm,max, which means that the power of the base

stations is partially allocated to the channels.
Finally, the power pnm,k can be determined as follows:

pnm,k =

{
ˆ̂ynm, if Dnm,k = 1
0, if Dnm,k = 0

(20)

where Dnm,k comes from the action a of the DDPG reinforce-
ment learning.

After the power constraint processing, the output power
pnm,k can satisfy the constraints of C2, C3, and C4 in the
constraint optimization problem (5). The detailed flowchart
described above is shown in Fig. 6.

3) LOSS FUNCTION IN UNSUPERVISED LEARNING
In this paper, the power control DNN is trained using unsu-
pervised learning. Since no labels are required in unsuper-
vised learning, the loss function can be constructed by the
optimization objective of the optimization problem (5) shown

FIGURE 6. Flowchart of power constraint processing.

in equation (21):

LPC = −E{H ,a|H ,a∈Ns}

×

 M∑
m=1

N∑
n=1

K∑
k=1

B log2
(
1 +

Dnm,kp
n
m,kH

n
m,k

(N0B+Inm,k )0

)
106 · pnm,k

 (21)

where E is the expectation; pnm,k is obtained from the power
constraint processing.

C. TRAINING WITH INFORMATION FROM DOUBLE
EXPERIENCE REPLAY
To make the unsupervised learning have perceptions on the
dynamic wireless environments, information from the expe-
rience pool of reinforcement learning is used not only to
train the channel allocation DNN with DDPG reinforcement
learning, but also to train the power control DNN with unsu-
pervised learning. Furthermore, to reduce the correlations
between the channel allocation DNN and the power control
DNN, we use a double experience replay to obtain different
information to train the channel allocation DNN and the
power control DNN, respectively. The double experience
replay involves performing two separate experience replays.
Detailed steps for training the channel allocation DNN and
the power control DNN with information from the double
experience replay are provided below:
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Step 1. Initialize the cellular network system environ-
ment, the main actor network, the target actor network, the
main critic network, the target critic network, the power
control DNN, the total episodes (φ), the total iterations per
episode (κ), the episode recorder (i = 1), and the iteration
recorder (j = 1).

Step 2. Obtain the initial interference I of the cellular
network and the state st = {H , Ĥ , Î }t at time t .

Step 3. Use the main actor network to generate the channel
allocation scheme a, and use the power control DNN to gener-
ate power pnm,k . Apply channel and power allocation schemes
to the cellular network system environment to obtain the
interference I , the reward r , and the state st+1 = {H , Ĥ , Î }t+1
at time t + 1.

Step 4. Store (st , a, r, st+1) in the experience pool, and set
st = st+1.
Step 5. If the experience pool is not full, i = i + 1 and

return to Step 3; otherwise, go to Step 6.
Step 6. Use equation (12) to perform a soft update of the

parameters of the target actor network and the target critic
network.

Step 7. Replay the experience and use the replay state st =

{H , Ĥ , Î }t and the channel allocation scheme a to train the
power control DNN with unsupervised learning.

Step 8. Replay the experience again, and use the replay
states st = {H , Ĥ , Î }t and st+1 = {H , Ĥ , Î }t+1, the channel
allocation scheme a, and the reward r to train the main actor
network and the main critic network with DDPG reinforce-
ment learning.

Step 9. i = i+1, and perform the corresponding operation
according to the following judgment: if i ≤ κ , return to
Step 3; if i > κ , then j = j + 1; if j ≤ φ, then i = 1 and
return to Step 2; if j > φ, the training ends.

IV. SIMULATION AND ANALYSES
In this section, we present simulation results to evaluate the
performance of our joint DDPG reinforcement learning and
unsupervised learning algorithm in resource allocation for
a centralized multi-cell cellular network. We compare the
proposed algorithm with other algorithms in various perfor-
mance indicators such as energy efficiency, transmit rate,
and computation time, and evaluate the performance of the
algorithm in terms of energy efficiency and transmission
rate in time-varying dynamic environments. The parame-
ters of the centralized multi-cell cellular network are shown
in Table 1.

The proposed algorithm for the centralized multi-cell
resource allocation in this paper consists of two parts, i.e.,
DDPG reinforcement learning for channel allocation and
unsupervised learning for power control. The DDPG rein-
forcement learning for the channel allocation is simulated by
the actor neural network and the critic neural network (i.e., the
channel allocation DNN), while the unsupervised learning for
the power control is simulated by the power control DNN.

In the simulations, the sizes of FC layers, BN layers, and
ReLU layers are set to 50 for both the proposed channel

TABLE 1. Parameters of the centralized multi-cell cellular network.

allocation DNN and the power control DNN. For fairness, all
neural network algorithms were set to have the same order
of magnitude of training parameters, and offline training
was performed using NVIDIA GeForce RTX 3070 8G GPU,
AMD core (TM) R7-5800H 3.80GHz, and 32G memory.
In addition, only the CPU was used for online inference of
all deep learning algorithms and comparisons.

In order to effectively train the neural networks, the
learning rate for the power control DNN is set to 0.001,
and the learning rate for the channel allocation DNN is
set to 0.0003. In the simulations, if the energy efficiency
obtained by the neural network does not increase, the training
is then terminated. Based on the observations in simula-
tions, we set the training episode to 250. After the neural
networks are well trained, the proposed algorithm in this
paper is compared with other methods, such as the Artifi-
cial Bee Colony (ABC) algorithm [9], the joint DQN and
DDPG (DQN+DDPG) algorithm [19], the channel alloca-
tion and power control algorithm based on unsupervised
learning (Unsupervised channel power control) [10], the
centralized random/greedy channel allocation and WMMSE
channel power control (Greedy/Random+ WMMSE power
control) [6]. At the same time, the channel allocation
and power control algorithm (unsupervised channel power
control) of unsupervised learning proposed in previous
research [10] is also simulated and compared with the joint
DDPG reinforcement learning and unsupervised learning
resource allocation method proposed in this paper. The
artificial bee colony algorithm [9] that is used for the com-
parisons is an improved version of the bee colony algo-
rithm. The traditional artificial bee colony algorithm has the
problem of unbalanced local and global search. The authors
improved the traditional bee colony algorithm by introducing
six different update rules. As for the DQN+DDPG algo-
rithm [19], theDQNnetwork is used for the channel selection,
while the DDPG algorithm is used for the power control.
In the greedy/random+WMMSE power control algorithm,
the channel allocation is performed by the greedy/random
algorithm, while the power control is performed by the
WMMSE algorithm. The unsupervised channel power con-
trol algorithm [10] uses a channel allocation network based
on unsupervised learning to output an optimized channel allo-
cation scheme, while using a previously well-trained power
control neural network to adjust the optimized channel power
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to minimize the negative expectations on energy efficiency.
To reduce the impact of errors on the performance of the
algorithm, the average of 500 Monte Carlo calculations is
used as the result of the comparisons.

In order to verify the feasibility of the proposed algorithm,
we conducted simulation experiments from several aspects,
such as the number of channels, the transmit power of the
base station, the minimum transmit power of the channels,
the number of users, and the number of iterations.

A. EFFECTS OF THE NUMBER OF CHANNELS
As the number of channels, N is taken as 4, 6, 8, 10 and 12.
The proposed algorithm is compared with other algorithms
in terms of energy efficiency, transmission rate and compu-
tation time. The results of energy efficiency, transmission
rate, and computation time of different algorithms are shown
in Figs. 7, 8, and 9.

FIGURE 7. Average energy efficiency results obtained by different
algorithms.

FIGURE 8. Average transmit rate results obtained by different algorithms.

As can be seen from Figs. 7, 8 and 9, the results of
the proposed algorithm in terms of both energy efficiency
and transmit rate increase as the number of channels in

FIGURE 9. Average computation time of different algorithms.

the cell increases. At the same time, as the number of
channels varies from 4 to 12, the minimum computation
time of the proposed algorithm can reach 10−3(s) order
of magnitude, which is not only lower than the com-
putation time of other deep learning algorithms such as
DQN+DDPG algorithm [19], Unsupervised channel power
control algorithm [10], but also significantly lower than the
computation time of other traditional resource allocation
algorithms such as ABC [9], Greedy+WMMSE power con-
trol algorithm [6], and Random+WMMSE power control
algorithm [6]. This indicates that the proposed algorithm not
only always achieves higher energy efficiency and transmit
rate than other algorithms, but also has lower computation
time and delay than other algorithms. It shows that the pro-
posed algorithm has strong optimization ability and effec-
tively improves the utilization rate of wireless resources.

B. EFFECTS OF THE TRANSMIT POWER
Note that both the minimum allocated power of the channels
and the maximum transmit power of the base station have
impacts on energy efficiency. From the perspective of con-
straining the minimum allocated power of the channels and
the maximum transmit power of the base station, we con-
ducted simulation experiments to comprehensively evaluate
the performance of our proposed algorithm. In simulations
of constraining the minimum allocated power of channels,
the minimum allocated power of channels pm,min varies from
0.1W to 1.0W, the results of the average energy efficiency
obtained by different algorithms are shown in Fig. 10. As can
be seen in Fig. 10, the system energy efficiency of all algo-
rithms decreases as the minimum channel power increases.
This is because increasing the minimum power of channels
easily causes the interference among users to increase and the
system transmission rate to decrease, which reduces the over-
all energy efficiency of the system. However, the proposed
algorithm still achieves higher energy efficiency results than
other algorithms.
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FIGURE 10. Results of energy efficiency obtained by different algorithms
as the minimum power varies from 0.1W to 1.0W.

FIGURE 11. Energy efficiency results obtained by different algorithms.

In simulations of limiting the maximum to transmit power
of base stations, themaximum transmit power of base stations
pm,max takes 35, 39, and 44 dBm, respectively, results of
the average energy efficiency obtained by different algo-
rithms are shown in Fig. 11. As shown in Fig. 11, as the
maximum transmit power of the base stations increases, the
system energy efficiency obtained by the proposed algorithm
remains relatively stable at about 35 [Mbit/(s·W)]. In contrast,
the system energy efficiency obtained by other algorithms
shows greater variation. This indicates that the proposed algo-
rithm in this paper has a relatively stable energy efficiency
performance as the maximum transmit power of the base
stations increases. Although the system energy efficiency
obtained by the Greedy/Random + WMMSE power control
algorithm [6] is also relatively stable, its value always remains
at a relatively low level.

C. EFFECTS OF THE NUMBER OF USERS
In the following simulations, we illustrate the impact of the
number of users on energy efficiency. When pm,min = 0.1,
pm,max = 38, and N = 10 remain unchanged, simulation

results of energy efficiency are shown in Fig. 12 with the
number of users at 10, 15, 20, 25, 30, 35, and 40. From
Fig. 12, it can be seen that the system energy efficiency
of the proposed algorithm has a slight fluctuation with the
increase in the number of users. Except for the cases where
the number of users is 15 and 25, the energy efficiency of the
proposed algorithm is higher than that of other algorithms.
Besides, the simulation results of transmit rate are shown in
Fig. 13 with the number of users taking 10, 15, 20, 25, 30,
35, and 40. As shown in Fig. 13, the transmit rate obtained
by the proposed joint resource allocation algorithm increases
with the number of users and is higher than that of the other
algorithms.

Comparisons of the computation time of different algo-
rithms for different numbers of users are shown in Fig. 14.
It can be seen that the computation time of the proposed
algorithm in this paper is in the order of 10−3 seconds,
which is about 100 times shorter than the random/greedy
channel+WMMSE power control method [6], and about
6 times shorter than the DQN+DDPG algorithm [19] based
on deep reinforcement learning. The computation time of
the random/greedy channel+WMMSE power control algo-
rithm [6] is caused by multiple iterations and inverse matrix
operations in each iteration, which leads to the increase of
the computation time cost. On the other hand, due to itera-
tions of heuristic algorithms, the ABC algorithm [9] has a
computation time in the order of 100 seconds. By combining
Figs. 12 and 13, it can be seen that the proposed algorithm can
achieve higher energy efficiency and transmit rate by ensur-
ing low computation time. This verifies the effectiveness of
the proposed algorithm.

FIGURE 12. Results of energy efficiency obtained by different algorithms
with the number of users taking 10, 15, 20, 25, 30, 35, 40.

D. COMPARISONS UNDER TIME-VARYING
DYNAMIC ENVIRONMENT
In the following, we consider the performance of the pro-
posed algorithm in a time-varying dynamic environment. The
simulationmethod for the time-varying dynamic environment
is described as follows:
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TABLE 2. Summary of average energy efficiency and average transmit rate of different algorithms.

FIGURE 13. Results of transmit rate obtained by different algorithms with
the number of users taking 10, 15, 20, 25, 30, 35, 40.

FIGURE 14. Computation time of different algorithms with the number of
users taking 10, 15, 20, 25, 30, 35, 40.

In this dynamic environment, we set up a memory M to
store the data in the dynamic environment and use T to
represent the time slot index. Firstly, the data collected from
the first 50 time slots are filled into the memory M, and T
is initialized to zero. Then, the data from 40-time slots are

FIGURE 15. Energy efficiency results of different algorithms in the
time-varying dynamic wireless environment.

randomly selected from the memory and are used to train the
neural network, while the remaining data from 10-time slots
are used to test the dynamic performance of the proposed
algorithm. After that, the time slot index T is updated by
T = T + 1. When the next time slot arrives, the memory
M is updated on a first-in-first-out basis. In addition, we set
the hyperparameters T1 and T2 to control the training of the
DNN. If T ≤ T1, it means that the training of the DNN is not
finished; If T > T1, it means that the training of the DNN
is finished. At the same time, if T ≤ T2, the trained DNN is
used for testing; if T > T2, the simulation ends.

With the above simulationmethod, the results of the energy
efficiency and the transmit rate obtained by different algo-
rithms are plotted in Figs. 15 and 16. It can be seen from
Figs. 15 and 16 that the proposed algorithm outperforms the
DQN+DDPG algorithm and the unsupervised channel power
control algorithm in terms of both energy efficiency and
transmit rate. The comparison results verify the efficiency of
the proposed algorithm in the time-varying dynamic wireless
environment.

The average energy efficiency and average transmit rate of
different algorithms at pm,min = 0.1 and pm,max = 38 are
summarized in Table 2. As shown in Table 2, it is evident
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FIGURE 16. Transmit rate results of different algorithms in the
time-varying dynamic wireless environment.

that our proposed joint DDPG reinforcement learning and
unsupervised learning outperforms other algorithms in terms
of energy efficiency and transmit rate, which is consistent
with the optimization goal of maximizing energy efficiency.

Through the results of the above simulation experiments,
we verified the effectiveness of the proposed algorithm from
various aspects, including the number of channels, the num-
ber of users, the minimum transmit power of channels, the
maximum transmit power of base stations, and the optimiza-
tion performance in time-varying dynamic environments.
This proves the superiority of our proposed joint DDPG rein-
forcement learning and unsupervised learning for resource
allocation problems in scenarios of centralized wireless cel-
lular communication with multiple cells, users, and channels.

V. CONCLUSION
In response to the wireless communication requirements
posed by the new era of smart and green networks, this
paper proposes a resource allocation algorithm for multi-cell
cellular networks based on the joint of deep reinforcement
learning and deep unsupervised learning. By making full use
of information from the double experience replay to train the
channel allocation and the power control DNN, the proposed
algorithm fully exploits the dynamic perception of the DDPG
reinforcement learning in unknown environments and the
performance optimization advantages of unsupervised learn-
ing. Our simulation results show that the proposed algorithm
is superior to other baseline algorithms. On average, the
proposed algorithm achieves up to 432.4% improvement in
energy efficiency and up to 75.9% improvement in trans-
mit rate compared to the random/greedy channel allocation
+WMMSE power control algorithm. In terms of energy
efficiency, it is also better than the ABC, the DQN+DDPG
algorithm, and the unsupervised channel power control by
up to 74.4%, 64.2%, and 172.2%, respectively. The transmit
rate is also up to 78.6%, 64.1%, and 69.2%, respectively.
In conclusion, the proposed algorithm demonstrates superior
performance in terms of energy efficiency and transmit rate,

making it a promising solution for resource allocation in time-
varying dynamic environments. Further research can be con-
ducted to explore additional enhancements and optimizations
to the proposed algorithm and to investigate its applicability
in practical wireless network deployments.
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