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ABSTRACT Web server access log files are text files containing important data about server activities,
client requests addressed to a server, server responses, etc. Large-scale analysis of these data can contribute
to various improvements in different areas of interest. The main problem lies in storing these files in their
raw form, over long time, to allow analysis processes to be run at any time enabling information to be
extracted as foundation for high quality decisions. Our research focuses on offering an economical, secure,
and high-performance solution for the storage of large amount of raw log files. Proposed system implements a
Data Lake (DL) architecture in cloud using Azure Data Lake Storage Gen2 (ADLS Gen2) for extract-load—
transform (ELT) pipelines. This architecture allows large volumes of data to be stored in their raw form.
Afterwards they can be subjected to transformation and advanced analysis processes without the need of a
structured writing scheme. The main contribution of this paper is to provide a solution that is affordable and
more accessible to perform web server access log data ingestion, storage and transformation over the newest
technology, Data Lake. As derivative contribution, we proposed the use of Azure Blob Trigger Function
to implement the algorithm of transforming log files into parquet files leading to 90% reduction in storage
space compared to their original size. That means much lower storage costs than if they had been stored as
log files. A hierarchical data storage model has also been proposed for shared access to data over different
layers in the DL architecture, on top of which Data Lifecycle Management (DLM) rules have been proposed
for storage cost efficiency. We proposed ingesting log files into a Data Lake deployed in cloud due to ease
of deployment and low storage costs. The aim is to maintain this data in the long term, to be used in future
advanced analytics processes by cross-referencing with other organizational or external data. That could
bring important benefits. While the proposed solution is explicitly based on ADLS Gen2, it represents an
important benchmark in approaching a cloud DL solution offered by any other vendor.

INDEX TERMS Cloud data lake, ADLS Gen2, data lake architecture, web server access log data, Azure
function Blob trigger.

I. INTRODUCTION

The Internet of Things (IoT) paradigm become a revolution-
ary transformative element in our knowledge and interaction
with our environment. It involves the development of diverse
applications and solutions in different domains such as smart
homes, smart cities, digital health surveillance, industrial
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processes, etc. that need to be constantly monitored and
analyzed. A good indicator of the performances of a system
are log files from the network, servers, security devices,
services, applications etc. Large-scale analysis of these logs
brings a great deal of added insight into the different business
domain. In [1] the authors have provided a systematic review
of recent literature on the different types of log files that
are used in research area. The importance of these log
files is proven in all fields of activity, thus, nowadays,
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identifying a powerful storage and analysis environment is
imperative.

Web server log files store all events that occur as a result
of requests issued by online users accessing information
available on a server. Recording these events can lead to
the identification of user visiting behavior [2] over certain
periods of time, which can lead to a better understanding
of customer requests. Companies can then make smart,
personalized decisions to improve user experience.

Servers keep these records in different log files, namely,
web server access log files, which we hereafter refer to as
Web Server Access Logs (WSAL) files. By analyzing these
log files, it is possible to discover ‘‘visiting behaviors”,
which can lead to major improvements and allow the services
offered to users to be perfectly customized.

Existing problems such as WSALSs are difficult to store,
process and analyze at large scale, so we proposed storing
them in a DL architecture. The analysis of WSAL files
together with the DL design methodology, respectively the
procedure of transforming WSAL files into parquet files
using the azure blob trigger function written in python are
a novelty in the field and are the main contribution of
this paper. The derivative contributions resulting from this
research are both theoretical and practical, since the processes
of data ingestion, transformation and data preparation for
the next analysis step are implemented and well described.
Also, based on the theoretical considerations we described
in paper [3], in the present paper we are proposing also a
hierarchical structuring model for the organization of WSAL
data in order to serve the ELT pipelines, specific to the DL
architecture.

The emergence of new types of data, both unstructured
and semi-structured, from web environments, social media,
comments, servers, sensors and various devices has made
traditional storage methods obsolete. An example might be
that 15 to 20 years ago it was not foreseeable that in the near
future the record of ‘likes’ on different social media would
be so important although they can provide vital information
as they are direct feedback from users in the virtual
environment.

Another example is web server access logs, which we will
refer to throughout the paper as WSAL. Web servers are
accessed by millions of users every day. Users leave behind
their visiting behavior by recording their activities online in
log files. Servers keep these records in different files, such
as access logs, error logs, piped logs, script logs, etc. Log
files are often automatically deleted from servers due to their
constant increase in volume. There are various techniques
for analyzing WSAL files on the market [4], [5], but the
main problem lies in storing them in their raw form in order
to allow various analysis processes to be run in the future
enabling information to be extracted for different purposes.
Transforming this logs into structured data for later storage,
using traditional methods, would involve high storage costs.
As a consequence, in recent years, the explosion of these new
data types has led to the emergence and development of new
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concepts, technologies and techniques for data management.
Data Lake (DL) is a revolutionary concept that has been in
the spotlight recently. DL, as the name suggests, can be seen
as a structure where absolutely all data can be stored in its
raw form [6].

The research gap could be filled by implementing a
generally valid model of hierarchical data storage with
distribution of data to different areas. DLM techniques for
cost optimization, data security mechanisms, data redun-
dancy aspects, built-in DL data processing techniques are
presented. Several important technical aspects have been also
highlighted and should be considered when building a data
lake in the cloud. Thus, in this article we presented the
design and implementation of a DL architecture in cloud for
WSAL files long-term storage. WSAL files, contain large
volumes of unstructured data for which a self-scalable storage
environment is required.

The research motivation behind this project is the
implementation of a DL architecture in cloud using the
technology made available by Microsoft, namely Azure Data
Lake Storage Gen2. ADLS Gen?2 is based on Apache Hadoop
and Apache YARN and is a solution that does not require
the installation of any hardware or software systems on
the user’s side. It is a cost-effective cloud service where
you pay only for the used storage space. These costs can
be optimized as needed through data lifecycle management
(DLM). Our paper presents an ADLS Gen2 architecture
with different levels of data processing. Important technical
aspects underlying the implementation of a DL in Azure are
also covered, technical aspects defining each level within the
DL architecture.

This paper, is a scientific and practical contribution to
the field. An ADLS Gen?2 architecture with different levels
of data processing is presented. Important technical aspects
defining each level within the DL architecture are presented.
A generally valid model of hierarchical data storage is
proposed and presented, with distribution of data across
different areas. These issues aim to highlight some important
features in the process of implementing a DL. Even if they are
explicitly presented for the ADLS Gen2 environment, they
are an important benchmark in approaching a cloud solution
provided by any other vendor.

Most servers generate WSAL files that can be stored in
different formats, such as Common Log Format or Combined
Log Format. A study on the content of these files has led to the
identification of the following categories of data [7], [8], [9]:

« Requested resource file location, name, and size;

« Request time and date;

« Request method;

« Identity of client device that made the request to the

server;

o Client browser information;

o Page from which the client left the site;

« Server response to client request;

« Number of pages visited by client;

« What search engine was used and search terms used;
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o Whether it was a direct access by a user or a redirect
from another site, or part of an advertising campaign.

WSAL files are raw data files that are difficult to
understand without a proper log parsing tool. Another major
problem is storing these files, because they need a lot of
storage space. In a short period of time, depending on
the frequency with which the servers are accessed, huge
numbers of data can be generated and stored on them,
which is why they are automatically deleted after a period
or after they exceed a certain size [10]. It is estimated that
80% [11] of all companies’ data is lost, because organizations
cannot keep up with the volume, speed, and variety of data.
Inside companies’ it is being estimated that 80% of data is
unstructured. On average, between 60% and 73% of all this
data is never analyzed [12]. This is so-called auxiliary data
or dark data, collected from various sources like data from
sensors, statistics on processes, social media, monitoring
services, log files, raw survey data, audio, and video, etc. [13].
There is a large percentage of lost unstructured data not being
analyzed inside a corporation, data from which valuable
information, that could lead to multi-level improvements
through advanced analysis processes, could be extracted.

The main advantages of the long-term analysis of WSAL
files are the following:

« Improved website security and structure;

o Improved web server performance;

o Increased website traffic;

« Elimination of navigation errors on website;

o« SEO improvement and increased search engine
rankings;

o High-quality marketing strategies based on customer
preferences.

Thus, it becomes a necessity for most large companies
to be able to store and analyze these log files to ensure
reliability, security, and performance, especially for the
financial benefits. For small sites, there are already a variety
of online or open-source services on the market [14] that
can extract various reports based on standard analyzing
techniques, but with several limitations, either related to file
size or to the type of analyzing processes, which usually
return specific reports and statistics. As mentioned above, the
major problem lies in storing the log files on long term. One
ideal candidate for storing and analyzing large volumes of
unstructured data in their raw form is the latest technology:
a DL with unlimited storage space with auto scaling at low
costs.

In [3] a conceptual model of hierarchical structuring
was developed; the process of ingestion was also discussed
extensively but the process of transformation was only
mentioned. The results obtained by extending the mentioned
research, presented in this paper, have been materialized in
the following contributions in the area of DLs and WSAL
files:

o We designed and implemented a DL architecture to

efficiently support storing and transforming WSAL
files;
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o We designed an effective hierarchical structuring model
of WSAL data in the storage layer of the DL architec-
ture. Serving in ELT processes, this model can improve
the performance of data storage and access;

o« We implemented a serverless Azure Function Blob
trigger, written in Python, for automatically converting
log files into Parquet files once a new file is uploaded to
the raw DL area.

This paper begins with a brief introduction; in section II,
we present the most important advantages of saving WSAL
files in DLs for further performant analytics processes.
Section III presents the proposed DL architecture and its
physical implementation in the cloud using ADLS Gen2
technology. A hierarchical structuring of the data within
the DL is also proposed to provide structured data for
consumption that feed the different processes within the
DL. Section IV describes the experimental results, and
Section V reviews recent research in the DL domain.
Section VI presents the conclusions and future research
directions.

Il. ADVANTAGES OF SAVING WEB SERVER ACCESS

LOG FILES IN DLS

The ability to examine log files even after long periods of
time becomes a necessity. Companies’ do not store these logs
for reasons related to hardware resources, which can grow
unreasonably large and require significant storage capacities.
Therefore, an optimal solution for archiving these log files
for long periods of time may be to use on-premise or
cloud DLs.

We identified and summarized the main advantages of
saving log files in a DL, among which the following are worth
highlighting:

o Since WSAL files are locally stored on servers for
limited periods of time, the use of a DL offers maximum
flexibility in storing data for long periods of time at
affordable costs;

o Control over hierarchically structured data within the
DL storage layer can be successfully managed by
assigning different access roles to each area;

« Existing web analytics tools rely on Java script codes
or cookies, which can cause delays in loading a web
page and are more susceptible to various technical
problems. If the user has scripts and cookies blocked
in their personal browser, then reports from services
such as Google Analytics may not be conclusive.
Thus, storing log files in a DL offers the possibility
to implement dedicated analysis processes to extract
customized information and reports without influencing
the loading of a web page and without depending on the
client browser settings.

In terms of applications, the implementation proposed in
this paper, based on DL technology in the cloud, is a low-cost
solution with remarkable performance in terms of storing and
analyzing WSAL data to obtain valuable information from
web servers.
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FIGURE 1. Proposed DL architecture and various ELT processes serving WSAL files.

1Il. DESIGNING AND IMPLEMENTING A DL FOR WEB
SERVER LOG FILE ANALYSIS BASED ON ADLS GEN2
ARCHITECTURE
This paper addresses the technique of cloud DL storage of
WSAL data, a technique that is more accessible without the
need for hardware, software or engineering resources that are
not always affordable and available to everyone and can be
expensive as time consuming to implement. DL in the Cloud
is a leading technology for managing large data sets with
advanced real-time data analytics. With this new technology,
the huge potential of previously unanalyzed data is revealed.

We present and validate an original project implemented in
Azure Cloud for storing WSAL files without storage limits at
low costs, so that they can then undergo advanced analysis
processes. Thus, we propose a solution using ADLS Gen2
cloud storage, a service provided by Microsoft that allows the
customer to create and own a DL where large volumes of data
can be stored, transformed, and analyzed.

ADLS Gen2, is a hyper-scalable system which relies on
archiving service to keep the cost of storing unstructured Big

Data as low as possible. It includes the following capabilities.
o Hadoop-compatible access (relies heavily on the

Hadoop and YARN framework)

« Hierarchical directory structure (the hierarchical names-
pace is a key feature that enables ADLS Gen?2 to provide
high-performance data access at object storage scale and
price)

« Ideal for big data analytics workloads

o Optimized cost and performance (ADLS Gen2 comes
with the same storage price as blob storage, which is
already known to be the most economical storage system
for large data volumes)

o Storage Tiers (Different Blob tiers Hot, Cool, Archive
have been created to provide an efficient storage option)

« Finer grain security model
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« Massive scalability (ADLS Gen 2 doesn’t impose any
limits on storage size)

o Azure Portal is user friendly (Azure Portal is a graphical
user interface that is used to manage Azure services)

o Allows the design of Hybrid systems.
A strength of the ADLS Gen?2 concept is that it allows data

to be organized in a hierarchy of directories and subdirecto-
ries for efficient data access (hierarchical namespace). Until
ADLS Gen2, data was stored in flat namespace mode, this
hierarchy is new and comes with multiple advantages. As data
volumes grow, the hierarchy allows data to be maintained in a
more organized way and provides better performance for data
analysis tasks.

We are proposing a DL architecture for the implementation
of different processes within the ELT pipeline, storage of
WSAL files, transformation and preparation of data for
consumption, once they have been submitted to different
analysis processes. As a result of our research, we were
able to design and propose a stable, reliable and economical
architecture shown in Figure 1.

As we can see, the proposed architecture consists of
5 different layers. The Store layer is the core level of the entire
architecture. Above this layer there are the Explore, Prep
& Train, and Model & Serve layers, which serve different
transformation, enrichment, and processing steps that data
undergo for valuable information to be extracted with
different advanced analysis processes. Over the ingestion
layer, fast processes are running to load different types of
raw data from various external sources into the DL. There
is no data alteration within this layer. Raw data can be
ingested in real time or in batch mode. Following ingestion,
the data are saved into the DL storage layer to a dedicated
raw data area. Thus, the data are stored in their natural
form within this area of the DL. In the exploration layer,
transformation processes are performed over the stored data,
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FIGURE 2. ADLS Gen2 hierarchical structuring of web server log data.

thus the data are cleaned and standardized into proper data
types. This is where raw data are being transformed into more
structured datasets that are being placed into well-organized
directories and subdirectories into a different area in the
storage layer. The Prep & Train layer of the architecture is
where previously transformed data are prepared and modelled
using advanced analytics engines. A new area within the DL
storage layer is dedicated to the data derived out of these
processes. At the Model & Serve layer, data are accessed by
users who know the data and the needs of an organization.
New modelling processes are carried out using appropriate
analysis techniques in order to obtain information to be
used for final statistics and reports. Each of these layers is
served by different processes that can be implemented using
either integrated technologies provided by Microsoft, such as
Azure DF, Azure Databricks or through ad-hoc developed
processes written in different programming languages that
can be easily integrated using Azure Logics or Azure
Functions.

This research focuses mainly on the ingestion layer, the
storage layer and the data transformation process, within
the Explore layer, leading to standardization and preparation
of data for further advanced analysis processes. The data
ingestion process in ADSL Gen2 consists in uploading the
log files holding the raw data into the DL by implementing
a batch process on the server that automatically uploads the
log files to the DL at regular intervals or using various built-
in technologies provided by Microsoft [15]. Once data are
saved in their raw form in the cloud DL, they undergo a
transformation and standardization process that transforms
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log files into Parquet files. This process is fully automated
with the use of Azure Blob Trigger, which automatically
launches into execution a Python function that transforms
log files into Parquet files. Once transformed, data can be
subjected to various cleaning and enrichment processes to be
prepared for the final analysis process that serves the ultimate
interests.

A. HIERARCHICAL DATA STRUCTURING IN THE DL

The data that are ingested into the DL must be stored in a
well-organized way so that they can be easily managed. The
data should not be randomly thrown into the DL Store layer,
but should be organized in a structured way. Each area of this
structure serves different processing layers.

In Figure 2, we show the design of a data structuring
model to serve the entire ADLS Gen2 architecture throughout
the various layers. Thus, into the Store layer, we have the
following areas:

o The Raw area is the area where raw data are loaded
directly from the server source, with restricted access.
This area provides storage for raw data obtained during
the ingestion process. This area can be organized using
a hierarchy of directories, such as yyyy/mm/dd, based
on the frequency with which log files are generated.
In our case, we use a rough hierarchy. All ingestion
processes dedicated to different data sources, in case
the data comes from different servers, have write-only
access to the directory associated with the data source.
In our case we have only one source so we designed
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under Raw folder only one dedicated directory, labeled
weblog.

o The Enriched area stores data that have undergone a
transformation and standardization process and have
subsequently been saved in Enriched area as Parquet
files. Thus, original raw data remain in the Raw area,
which, to minimize storage costs, can be transferred
to a cooler or archive tier for long-term archiving.
In addition, in the Enriched area, there is a folder named
logerrparsing, where text files containing error log lines
that could not be successfully transformed are uploaded.
This is the area serving the Explore layer within the
proposed DL architecture.

o The Curated area stores data from the enriched area that
have been cleaned to make them ready for exploration.
This area serves the processes running on Prep &
Train layer in the proposed architecture. Different
cleaning methods can be applied to the same dataset
to serve different analysis techniques, depending on
the purpose. In this area, data undergo a change
in the storage hierarchy, which can serve different
purposes. In our case study we move from a hierarchy
organized according to the date on which the logs were
generated to a hierarchy dedicated to different segments
of interest, like clients, search engine scans, system
errors, etc.

The Workspace area is the data exploration area serving
the Model & Serve layer of the proposed architecture. The
data in this area are organized by project and can be accessed
by data engineers, data scientists, and data analysts who
understand the data and business needs. Here, the data are
structured into projects with dedicated access for different
teams.

Data organized hierarchically into directories and sub-
directories are given different access rights as needed to
maintain their integrity as recommended in Figure 2.

The innovative solution proposed in this paper, as well
as the contributions of the theoretical and practical research
related to it, exists at the conceptual approach level; therefore,
it should be specified that the resources used are limited but
validate the proposal of implementing a DL based on ADLS
Gen?2. It is obvious that in a production level approach, the
raw area holds log data uploaded from a web server to the
DL at regular intervals. Thus, it is necessary to achieve a more
granular hierarchy in the raw area by creating directories and
subdirectories that group the logs coming from the server
based on the yyyy/mm/dd format, according to the frequency
with which they are generated. To avoid bottlenecks in the
ELT transformation process, it is ideal that log files are
uploaded to the server once they have reached a maximum
size of 1 + 1.5 GBytes.

B. LOG DATA TRANSFORMATION PROCESS

After loading the data into the DL, a process of transforming
raw, unstructured data into structured data is automatically
triggered. Thus, log files, once loaded into the DL, undergo
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an automatic process of transformation into Parquet files.
We achieved this transformation process by developing
an Azure Function Blob Trigger written in Python using
the Visual Studio Code development environment. Azure
Function is a serverless compute service that enables user
to build and debug functions locally, deploy and operate at
scale in the cloud, and integrate services using triggers and
bindings. Functions can be written in different programming
languages, such as compiled C#, C# script®, JavaScript, Java,
PowerShell or Python. For the related research, Python was
chosen to implement the transformation process from log
files to parquet files due to the fact that Python libraries
facilitate this process at the procedural level. We have chosen
VS Code as the development environment, which enables
the automatic generation of a new project to implement
the Blob Trigger function using a template. A collection of
directories and files are automatically generated locally. The
files generated by the template can be edited and adapted
to the needs of the project, as we explain below. Before
creating a new project, it is important that in VS Code the
connection to the Azure account to be already established,
so that when the files for the new project are being generated,
the Azure storage connection parameters are automatically
inherited and therefore the access to the cloud resources
will be granted. The project has a local.settings.json file
containing the Azure account connection strings that include
the Shared Key access keys associated to the owned storage
account.

The function.json file defines the inputs and outputs for
the main function that performs the data transformation
process, therefore there are defined an input blobTrigger
and two output blobs. The configuration of the input/output
parameters for the Blob Trigger Function is shown in Table 1.
The main function expects three parameters: one input
blobTrigger and two output blobs.

TABLE 1. Defining the input/output parameters of the blob trigger
transformation function.

Blob trigger
transformation Input/output parameters
function

Binding 1 myblob // one blob in
"name": "myblob"
"type": "blobTrigger"
"direction": "in"
"path": "raw/{name}.log"
"connection": "adlswebserver2 STORAGE"

Binding 2 myblobout // first blob out
"name": "myblobout"
"type": "blob",
"direction": "out"
"path": "enriched/{name}.parquet"
"connection": "adlswebserver2 STORAGE"

Binding 3 errmyblobout // second blob out

"name": "errmyblobout"

"type“: Ilblob"’

"direction": "out"

"path": "enriched/logerrparsing/{name} .txt"

"connection": "adlswebserver2 STORAGE
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Algorithm 1 Blob Trigger Function to Transform Log Files Into.Parquet Files

Input: myblob
Output: myblobout,
errmyblobout

I Begin main function

2 regex =<define regular expression>

3 columns =<define parquet columns>

4 myblob =<read myblob bytes>

5 mytxt_obj =<convert bytes to Unicode object in order to perform line by line reading>
6 array_log_lines =<initialize array containing valid log lines>

7:

8: (Check each line in the log file if it follows the format defined in the regex)
9: For each log line

10: begin

11: If(check for regex format)

12: Append valid log lines to array_log_lines

13: else

14: Append non valid log lines into ASCII text error file

15: end for

16: df_log_line=<put array_log_lines into a data frame>

17: call to_parquet function to convert data frame into parquet file

18:

19: (Pushing the transformed data to the output blobs)

20: myblobout =<set myblobout with the new parquet file>

21: errmyblobout =<set errmyblobout with the text file containing the transformation errors>
22: end main function

The blobs in Table 1 are defined by the following:

« ‘“name”’, which represents the name of the blob to which
the main function refers;

« “path”, which represents the address to the directory in
the DL that serves the blob. If it is an input blob, then it
represents the address to read the data from the DL; if it
is an output blob, then it represents the address to write
the data returned by the main function to the DL. One
can also specify the type of the input or output data by
specifying the log, parquet, or txt file type. For the input
blob, it is important to specify the type of data expected
by the main function as a.log file, in order to avoid
launching the main function for files other than.log,
which would lead to execution errors;

o ‘‘direction”, where “‘in/out” defines the direction of the
blob within the function, either input or output;

e ‘“‘connection”, where ‘“adlswebserver2_STORAGE”
represents the SK connection data to the Azure account
that is saved in the local.settings.json file.

In the __init__.py file we wrote the main transformation
function that automatically runs when a new file is uploaded
to DL in the raw/ directory which is being monitored by the
trigger. This function performs the transformation of log files
into Parquet files.

Algorithm 1 conceptually shows how to transform log files
into.parquet files.
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logline_regex = 'A(2p<ClientIP>\S+) (?P<RemoteLogName>\S+) (?P<Au-
thuserName>\S+) \[(?P<TimeStamp>[~\]]+)\] "(?P<AccessMethod>[A-Z]+)
(?P<AccessRequest>.+)? HTTP/[@-9.]+" (?P<ResultStatus>[0-9]{3})
(?P<SizeBytes>[0-9]+|-) "(?P<ReferrerURL>[A"]*)"
"(?P<UserAgent>[~"]*)"

columns = ['clientip®, 'remotelogname’, ‘authusername', 'timestamp’,
'accessmethod’, 'accessrequest', ‘resultstatus’', ‘sizebytes', 're-
ferrerurl', 'useragent']

FIGURE 3. Regex parser to extract fields and contents from log files.

The blobTrigger file is initially unformatted, therefore it
must be decoded in UTF-8 format in order to be parsed line
by line during the transformation process. First we read the
bytes triggered by the blob until the EOF is reached, then
we decode the UTF-8 bytes read and assign them to a string
object. Python bytes decode() function is used to convert
bytes to string object. Once we have the string object, by using
the python splitlines() function, we can now split the string
into lines to check each line if it matches the regex format
(Figure 3).

The lines that meet the transformation criteria are passed
into a Panda DataFrame to which we subsequently apply the
parquet() transformation function: df_log.to_parquet(buffer).
The python to_parquet() function performs the transforma-
tion of the DataFrame into a binary Parquet format, which
will be allocated to the i0.BytesIO buffer in order to be pushed
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into the first output blob myblobout and uploaded to Cloud
DL in the enriched/ folder.

The lines that do not follow the formatting in the regex are
ultimately saved in an ASCII encoded.txt file and transferred
into the second output blob errmyblobout. Thus, myblobout
loads the new Parquet file into the enriched/ folder, and
errmyblobout loads the.txt file containing the error lines into
enriched/logerrparsing/ folder in DL.

IV. EXPERIMENTAL RESULTS

Once the trigger function is created, one can proceed to
run it locally, and then upload a new log file to the Azure
DL in the folder monitored by the trigger. In this research,
the data subjected to ELT processes were downloaded from
Harvard University Datasets ‘“Harvard Dataverse”, “Online
Shopping Store - Web Server Logs” [16], coming from an
ecommerce website. A log file of about 3.42 GB was used
for testing. We split this file into smaller chunks of 1.0G
in order to reduce the waiting time in the transformation
process. This resizing step will not be necessary in a real
environment. Loading files from the server into DL will
be a batch process that will start automatically at regular
intervals when a log file reaches a certain size. Upload
times were relatively long for a log file of 1.00 GB, from
10 min up to 30 min. In practice, these loading times may
vary depending on the ingestion technology used, the type
of Azure account chosen, the communication speed in the
WAN, etc.

Once the upload to the server is successfully completed,
a sequence of messages appears in the VS Code terminal
confirming that the trigger has detected a new file that has
successfully uploaded to the DL, which triggers the execution
of the function that performs the transformation process.
Figure 4 shows the results obtained. We can see that after
loading the file access-weblogs1.log in raw/ DL, the logging
info of the main transformation function reports that a blob
of 1048576000 bytes = 1GB is to be transformed. The log
file underwent a line-by-line read process for a regex check
on each line. In total, 3,170,024 processed log lines were
identified. Following the transformation process from a file
log of 1000 MiB (1048576000 bytes) we obtained a parquet
file of only 108.2 MiB (113455923.2 bytes).

The conversion time varies greatly depending on the
machine on which the process is performed. In this case,
for a 1.0 GB log file, the transformation time was about
76s from the time the trigger found a load at the selected
directory level. In the transformation process, a delay time of
about 8 — 10 min can be encountered from the moment the
upload finishes until the trigger confirms that a successfully
uploaded file has been detected, because trigger functions
rely on logs to scan for new/changed blobs; this can cause
delays, which can be improved, according to [17]. It is
important to emphasize that this research was performed
using a student account in Azure; therefore, we had limited
resources. After the transformation process, a 108.39 MiB
access-weblogl.parquet Parquet file and a 102.02 KiB error
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access-weblogl.txt text file was obtained from the 1.0 GB
log file. The file was reduced from 1.0 GB to 108.39 MiB,
that is, 10.8 % of its initial size. Following the tests carried
out, in Azure Portal (Figure 5), we obtained in each of the
two areas, raw and enriched, the four files corresponding to
each area. Based on different laboratory tests, we obtained the
dataset below (Table 2).

The Parquet files containing the data transformed and
saved in columnar format were greatly reduced in size
compared with the initial size. In the text files, we captured
log lines that could not be transformed because they did not
respect the constraints imposed by the regex.

The nature of the errors should be evaluated, and the regex
should be adapted in order to obtain as few error lines as
possible. At a first analysis of the lines returned as errors
by the regex process, they appear to be lines that, from
an analytics point of view, are irrelevant and can easily be
ignored. If, however, they are still of interest and must exist
in the Parquet files for further analysis, then the regex in the
main function must be adjusted. Thus, in this paper, the results
of the Blob Trigger Function and the related results of the DL
transformation are presented.

In the Figure 6, we can see by how much the data
storage space can be reduced by transforming log files
into Parquet files. The graph was obtained based on the
values derived from the various tests, which are also reported
in Table 2.

Once the log files from the raw area have been converted to
Parquet files, one can then move the log files to a cooler tier
for long-term archiving and for significantly reducing storage
costs.

During the creation phase of a standard Azure account, one
can choose between the three different types of tiers in order
to minimize the costs applied to data storage, processing, and
consumption. Hot tier is optimised for storing data that are
accessed or changed frequently. It has the highest storage
costs but the lowest access costs. Cool tier is optimised
for storing data that are accessed or changed infrequently.
Structuring implies lower storage costs and higher access
costs than hot tier. Data in cool tier should be stored for
at least 30 days. Archive tier is optimised for storing data
that are rarely accessed. Data in archive tier should be stored
for at least 180 days. This tier type cannot be selected as
the default storage type for an Azure account. Archive tier
data cannot be read unless they are first rehydrated, which
is a time-consuming and potentially costly process in data
management.

DL datasets have different lifecycles. For example, at the
beginning of the data lifecycle, the data are accessed
frequently, but the need for access often decreases drastically
as the data age. Some data are accessed frequently (these are
usually the most recently saved data that are at the beginning
of their lifecycle), while other data remain inactive in the
cloud and are rarely accessed. Some datasets expire within
days or months of creation, while other datasets are actively
read and modified throughout their lifetime.
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EXPLORER @ _init_py X @ regex_testp
 FADL-BLOBTRIGGER-WEBSERVER2 fapp-blobtrigger-webserver2 > ® _init_py > @ ma
Shastire 4 import io
St veny 5 from tqdm import q
6 import azure.functions as func
v .vscode : 2
2 7 import time
G 8  from datetime import datetime

fadl-blobtrigger-webserver2_s...
' 65cae35a84e)
host.json

local.settings.json
@ regex_test.py

Name: webserver2/raw/access-weblogsi.log

Fequlistuents e Blob Size: 1048576000 bytes
[2022-10-10T18:45:40.031Z
[2022-10-10T18:45:40.034Z

i_line=3170024

End transformation time:21:45:38
Elapsed time:76.95905256271362

[2022-10-10T18:45:40.039Z
[2022-10-10T18:45:40.048Z
LZ@ZZ—lO— 10T18:45:57.665Z

launch.json 9
settings.json 10 def main(myblob: func.InputStream,
tasks.json 11 myblobout: func.Out[func.InputStream],
N data 12 errmyblobout: func.out[func.InputStream]):
3 ing.i "py i i rocess b \n"
s R 13 Logging. info(f"Python blob trigger function processed blob \n
e 14 f"Name: {myblob.name}\n
Secess sstig o9 15 f"Blob Size: {myblob.length} bytes")

> Downloads 16 try:

v fapp-blobtrigger-webserver2 17 logline_regex = 'A(?P<ClientIP>\S+) (?P<RemoteLogName>\S+) (?P<AuthUserName>\S+) \[(?P<TimeStamp>[~\]]+)\] "(?P<AccessMethod>[A-Z]+)
> _pycache_ 18 columns = ['clientip’, 'remotelogname', ‘authusername', 'timestamp', 'accessmethod', 'accessrequest', 'resultstatus’, 'sizebytes', 'r
> data 19
@ _init_py 22 L

funcions 21 start = time.time()
§ HDEHRnISONn 22 now = datetime.now()
@ readme.md 23 current_time = now.strftime("%H:%M:%S")
sample.dat =
. TERMINAL  AZURE: ACTIVITY LOG E Y t start - Tas| =i
funcignore R host stat - Task /
® gitignore [2022-10-10T18:19:29.0997] Executed 'Functions.fapp-blobtrigger-webserver2® (Succeeded, Id=de@33961-4ed6-40f9-986a-97138606b921, Duration=209847ms)

[2022-10-10T18:43:43.4627] Executing 'Functions.fapp-blobtrigger-webserver2' (Reason='New blob detected: webserver2/raw/access-weblogsi.log', Id=61e9e7b3-8ell
[2022-10-10T18:43:43.4667] Trigger Details: MessageId: 100d101d-1e99-4f03-9030-4c8aelaeedcb, DequeueCount: 1, InsertionTime: 2022-10-10T18:34:48.000+00:00, Bl
022-10-10T18:34:40.000+00:00, BlobLastModified: 2022-10-10T18:34:40.000+00:00

[2022-10-10T18:44:21.735Z] Python blob trigger function processed blob

webserver2-cli-prj.azcli [2022-10-10T18:45:40.027Z] Strat Transformation time:21:44:21

msg: Parquet Blob out after the transformation from log file!

]
1
[2022-10-10T18:45:40.036Z] msg: Blob out with transformations errors!
]
1
]

Executed ‘Functions.fapp-blobtrigger-webserver2® (Succeeded, Id=61e9e7b3-8e11-4f42-ba60-c65cae35a84e, Duration=668999ms)

FIGURE 4. Serverless blob trigger function running in vs code.

TABLE 2. Log file transformation process based on blob trigger function.

Log File (Name) LOG (BYTES) LOG LINES Transformation DL log (MiB) DL parquet (MiB) DL err txt (KiB)
(NUMBER OF Time (s)
LINES)

access-weblogl.log 1048576000 3170024 76.95 1000.00 108.39 102.02
access-weblog2.log 1048576000 3037405 75.51 1000.00 111.2 21.99
access-weblog3.log 1048576000 3203638 107.60 1000.00 116.06 18.78
access-weblogd.log 356712823 954088 17.86 340.19 31.26 8.35

Total 3502440823 10365155 277.92 3340.19 366.91 151.14

ADLS Gen?2 is a cost-effective storage environment with
no upfront costs. It is a pay-per-use service, allowing users to
pay only for the number of gigabytes stored and the number
of transactions (reads and writes) that take place on the data.
The costs differ according to the type of subscription, the
type of data redundancy LRS, ZRS, GRS, RA-GRS, the
selected region. Azure also provides an online calculator for
the price estimation. As a guideline, for a standard account
with active hierarchical and redundant LRS storage costs
can start from €0.01699/GB hot tier, €0.00924/GB cool
tier, €0.00092/GB archive tier for the first 50 terabytes
(TB) / month. As costs per transaction for write operations
(every 4MB, per 10,000): hot tier €0.06002, cool tier
€0.12003, archive tier €0.12003 and read operations hot tier
- €0.00481, cool tier - €0.01201, archive tier €6.00130.
More about these costs can be found in [18]. Data lifecycle
management in the cloud is an important process that can be
achieved using Data Lifecycle Management (DLM) policies.
Azure storage offers rules-based management policies that
can be used to manage the right types of data access.
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In [19] and [20], more information regarding DLM-based
rules and how costs can be optimized through automated data
lifecycle management, respectively, can be found.

The overall objective of this scientific paper is to conduct
research on DL, with a focus on the level of WSAL ingestion
and storage. In order to achieve this objective, the following
specific objectives have been achieved:

« Deepen the current state of research on DL architec-
tures, this new concept emerging due to technological
evolution, the speed at which data is generated and its
variety.

o After identifying different implementation methodolo-
gies by conducting a comparative study in terms of costs
and resources required to implement a storage system,
a solution for implementing a DL architecture in the
Cloud was identified, which comes with a number of
advantages that were specifically highlighted during this
work.

« We have designed and implemented a DL architecture
in ADLS Gen?2 for long-term WSAL file storage.
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Authentication method: Access key (Switch to Azure AD User Account)
Location: webserver2 / raw

Search blobs by prefix (case-sensitive)

(®@ ) Show deleted ot

Name Modified
O mw
D B3 access-weblogs1.log 10/10/2022, 9:34:40 ...
D B3 access-weblogs2.log 10/10/2022, 10:00:08...
D : access-weblogs3.log 10/10/2022, 10:38:32...
D B access-weblogs4.log 10/10/2022, 9:15:53 ...

Authentication method: Access key (Switch to Azure AD User Account)
|Location: webserver2 / enriched

Search blobs by prefix (case-sensitive)

Access tier Archive status Blob type Size
Hot (Inferred) Block blob 1000 MiB  =—
Hot (Inferred) Block blob 1000 MiB
Hot (Inferred) Block blob 1000 MiB
Hot (Inferred) Block blob 340.19 MiB
a )

(@ ) Show deleted ot

Name Modified Access tier Archive status Blob type Size

() e

‘:] logerrparsing

D B access-weblogs1.parquet 10/10/2022, 9:45:58 ... Hot (Inferred) Block blob 108.39 MiB =—

D B access-weblogs2.parquet 10/10/2022, 10:11:22... Hot (Inferred) Block blob 111.2 MiB

D : access-weblogs3.parquet 10/10/2022, 10:52:53... Hot (Inferred) Block blob 116.06 MiB

D ; access-weblogs4.parquet 10/10/2022, 9:19:29 ... Hot (Inferred) Block blob 31.26 MiB
Authentication method: Access key (Switch to Azure AD User Account)
lLocation: webserver2 / enriched / logerrparsing l

Search blobs by prefix (case-sensitive) [ (.__> Show deleted ok

Name Modified Access tier Archive status Blob type Size
0 e
D : access-weblogs1.txt 10/10/2022, 9:45:57 ... Hot (Inferred) Block blob 102.02 KiB =—
D : access-weblogs2.txt 10/10/2022, 10:11:22... Hot (Inferred) Block blob 21.99 KiB
E] _“ access-weblogs3.txt 10/10/2022, 10:52:53... Hot (Inferred) Block blob 18.78 KiB
D ; access-weblogs4.txt 10/10/2022, 9:19:28 ... Hot (Inferred) Block blob 8.35KiB
FIGURE 5. Experimental data based on blob trigger function in azure portal.

o We proposed a hierarchical storage model to serve the
different levels within the DL architecture. Thus, the
raw data area, following the ingestion process, stores
the data in its raw form. The enriched data area stores
data from the raw area that has undergone an automatic
transformation and standardization process, whereby the
raw unstructured data is transformed into structured data
and stored in parquet files. In this area are also stored
in a separate directory called logerrparsing the log lines
that could not be transformed according to the required
criteria. The curated data area stores preprocessed data
ready for consumption according to purpose. On the
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last level we have the workspace data area with fully
transformed and aggregated data that can be accessed
by the various work teams who understand the needs of
the organization.

« Following the ingestion process the data is stored in its
raw form without transformation. Since WSAL in its
raw form is data that is difficult to analyze and interpret,
it was proposed to transform it into parquet files.

« To automatically transform data from log files to parquet
files, we made an Azure Blob Trigger function written
in Python. This trigger function monitors the raw area
of the data lake. When it detects that a new log file
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FIGURE 6. Storage space reduction achieved by transforming log files into parquet files.

has been successfully loaded, the trigger launches the
transform function into execution. Various tests have
been performed on loading the raw data into the DL
with the aim of adjusting the transformation criteria
so that we have as few non-conforming log lines as
possible ending up in the logerrparsing directory. After
transforming the log files to parquet files, a reduction in
storage space of about 90% from the original size was
observed. This transformation thus comes with 2 major
advantages: a significant reduction in storage costs and
the transformation of the data into structured data that is
easy to retrieve.

By achieving the objectives, we have demonstrated the
capability and performance of a DL [21], which in the near
future will become one of the most widely used storage
media for diverse data types. DLs can store all types of data
within an organization, in one central location, without the
need to impose a schema upfront as with Data Warehouses.
Unlike most databases and data warehouses, DLs can process
all types of data that are essential for advanced analysis
processes [22], [23]. The main purpose of a DL is to make all
organizational data, from different sources, accessible to end
users: Business Analysts, Data Engineers, Data Scientists,
Product Managers, Executives, etc. Their access to these
varied sources of data can maximize the information gained
from them in a cost-effective way in order to improve an
organization’s performance [24], [25].

V. RELATED WORKS

Log files provide relevant information about events related
to client activities, server activities, etc. In the paper [26],
algorithms are proposed to analyze the content of the
information hidden in log files and to discover patterns
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of users identified together with their browsing behaviors,
followed by grouping similar users based on different
interesting contents of log files for many websites hosted on
the web server. Finding statistics for each part of the log file
command line that are not present in many log file analysis
tools is supported here, with the final aim of discovering
frequent websites, users, and user activities on those websites.
The process of discovering hidden information in a WSAL
file is called web mining. Its purpose is to gain insight
into browsing behavior and retrieve useful information from
very large raw datasets, which can be represented by several
million event records in the log file. WSAL data contain
different types of information, including web documents, web
structure, and user profiles. Web mining can be classified into
three categories depending on which part of the web needs to
be extracted.

In DLs, typical challenges with Big Data, such as the
variety, velocity, and volume of data, need to be solved. Since
there are atypical challenges for this type of project and the
processed data, current research suggests that it is normal to
define several levels in the design stage of a DL. For example,
in [27], the authors introduce a DL composed of three
layers, i.e., assimilation, maintenance, and query. However,
we noticed in this architecture a lack of consideration for
access management control, which is important when dealing
with heterogeneous data sources and especially with data
that have sensitive information. Furthermore, we noted in the
literature that it is common practice to define different areas
for data storage in a DL [28].

One of the most effective ways to efficiently manage
the growing edge cloud is to store each of the distributed
edge cloud data in the cloud. The DL is a single domain
model that can represent the most important data to the
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entire business by accurately representing the data; this is
performed by converting the information into enterprise data
by efficiently processing large numbers of data. Typical
DL models provide data capture, processing, analysis, and
consumption systems for users or data. In the paper [29], the
authors successfully propose a new concept of a connected
data system. The authors implemented a connected DL
system based on distributed micro cloud storage. The DL
implementation delivers data stored in multiple edge clouds
to be stored in the micro cloud. Additionally, the proposed
design facilitates real-time error detection, i.e., the transferred
data can be restored when an error occurs in the transmission
process.

In the paper [30], the authors present the design and
implementation of a production DL in Hadoop consisting
of front-end production data; they also explain how the
data are used to provide business values through advanced
analytics. Thus, a DL is characterized by three key attributes,
i.e., “collect everything”’: a DL contains all the data, both
raw sources over long periods of time and any processed
data; “dive in anywhere”: a DL allows users across multiple
business units to perfect, explore, and enrich the data on
their terms; “flexible access”: a DL enables multiple data
access models in a shared infrastructure (batch, interactive,
online, search, in-memory, and other processing engines).
While storing and processing data at low costs on Hadoop
enables large numbers of data to be collected, the use of these
data requires the development of appropriate data formats,
schemas, and query engines that allow semiconductor
manufacturers to take advantage of them. Big Data have
reached a crossroads that is expected to give companies
more intelligence to make the right decisions at the right
time.

The experiments presented in [31] illustrate the usefulness
of implementing a DL as a unified data management and
analysis platform. The main idea of a DL is to ingest raw
data without processing and process the data upon usage. The
proposed solution supports multi-level analysis involving the
ingestion, transformation, and storage of Big Data in different
formats from a variety of sources. The basic idea of a DL
is simple: all data collected by an organization are stored in
a single data warehouse in the lake in their original format.
As such, the complex pre-processing and transformation of
the loaded data into a warehouse are eliminated. In addition,
the upfront costs of data ingestion are reduced. The major
benefit of a DL is the centralization of content from disparate
sources. A DL can have tens of thousands of tables or
files and billions of records, requiring scalable data storage,
management, and analysis [32], [33]. Once gathered in the
DL, data from multiple sources can be correlated, integrated,
and processed using state-of-the-art Big Data search and
analysis techniques that would otherwise be impossible.
A DL often contains proprietary or sensitive information that
requires appropriate security measures. Security measures
in a DL can be implemented to only allow individuals to
have partial access to selected information and anonymize or
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encrypt data for users in a variety of roles who do not have
access to the original data [34]. The lake should also allow one
to have ubiquitous access to data from anywhere at any time.
This feature could increase data reuse and help organizations
to more easily collect, and process data as needed to drive
business decisions [35].

An increase in IoT (Internet of Things) devices is a factor
that is explosively accelerating data growth. In other words,
the data generated by the IoT [36] and various devices are
growing by the day, and edge clouds for effectively managing
these data are increasing. This trend has increased the need
to reliably and flexibly manage massive data stored in edge
cloud storage. There is a growing interest in integrating the
edge cloud and the cloud to efficiently manage growing
data in the edge cloud. However, it is difficult to efficiently
integrate large amounts of data between the edge cloud and
the cloud. To solve this problem, research is needed for
scalability, high availability, fault tolerance, high throughput,
low latency, fast recovery, rescaling, end-to-end consistency,
and transactional integration. One concept of connected data
architectures is an interconnected data pool that can connect
to pools in cloud data centers. All data are connected and
flowing all the time. The connected DL in this paper limits
the data connection between the edge cloud and micro cloud
storage. The micro cloud storage in this paper is private cloud
storage.

The paper [32] suggests a DL approach built based on
Big Data technologies to gather all the data for further
analysis. The platform described in this paper allows data
collection, storage, integration, and analysis, and subsequent
visualization of the results to be performed. Data generated
from different sources, such as environmental sensors, social
media platforms, and traffic counters, are leveraged to
achieve these end goals. However, collecting, integrating,
and analyzing all available heterogeneous data sources from
cities is challenging. DLs, as opposed to data warehouses, are
databases that contain data from different sources in struc-
tured, unstructured, and semi-structured formats, along with
batch and real-time flow management capabilities [37], [38].
DLs also have some limitations. For example, implementing
a DL requires a lot of technical effort, regardless of the
availability of different frameworks that address the overall
requirements. Integrating different data sources imposes
requirements for metadata management [39], [40].

VI. CONCLUSION AND FUTURE WORK
This research project demonstrates the importance of using
the new DL technology in the cloud to store large volumes
of unstructured data. The new trend is to move and deploy
a DL in the cloud, which offers comprehensive services for
the entire process of data ingestion, storage, processing, and
analysis with a high level of security—services that are being
constantly improved by cloud service providers.

In this paper, we present a detailed theoretical description
of the new cloud technology—ADLS Gen2—and at the same
time, we propose and report the practical implementation of
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an economical and reliable cloud DL architecture in order
to provide an optimal implementation for storing WSAL
data that can then be subjected to various advanced analysis
processes. A major advantage of storing in ADLS Gen?2 is that
it enables hierarchical data storage. ADLS Gen2, through its
hierarchical namespace system, supports atomic operations
which eliminates the risk of data loss encountered with flat
storage. There are a number of important differences between
flat storage and hierarchical storage in terms of performance
and security, among which we can list:

o query performance, with a hierarchical file system it is
possible to scan only certain partitions to obtain the data
searched that improves the data query processes.

« performance moving data, in a hierarchical system
renaming or moving files from one directory to another
is done almost instantaneously.

« data consistency and atomic operations, ADLS Gen2,
through its hierarchical system, supports atomic oper-
ations which implicitly eliminates the risk of data loss
if an error occurs during a move or rename operation,
as with object-based storage.

« granular directory and/or file level security, directories
and files can be given granular access permissions,
which provides more flexibility in assigning and man-
aging security on data.

Based on the studies and practical work performed so
far, we intend to improve the transformation process to
eliminate the errors produced by the transformation process
as much as possible and to deepen various data enrichment
and analysis processes in the cleansed data area. The goal is
to demonstrate the ease with which data stored in a Cloud
DL environment can be queried using the built-in services
provided by Microsoft. Analysis techniques can be greatly
varied, from the simplest to the most complex, based on built-
in technologies or technologies built ad hoc depending on the
final purpose.
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