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ABSTRACT Automatic recognition of human emotion has become an interesting topic among
brain-computer interface (BCI) researchers. Emotion is one of the most fundamental features of a human
subject. With proper analysis of emotion, the inner state of a human subject can be assessed directly. The
human brain response can be competently represented by electroencephalography (EEG). The selection of
potential features in EEG related to human emotion is a very important task for developing an effective
emotion recognition system. In this paper, the discriminative features computed from rhythmic components
of EEG are used to recognize human emotional states. The narrowband rhythmic components theta, alpha,
beta, and gamma are extracted from multichannel EEG signals using filter bank implementation. The
short-time entropy and energy features are extracted from each of the rhythmic components. The spatial
filtering has been performed on the entropy-energy space by using common spatial pattern (CSP). Thus
obtained spatial features are employed to recognize the emotion states using support vector machine (SVM)
classifier. The publicly available two datasets DEAP and SEED are used to evaluate the performance of
the proposed method. The experimental results reflect that higher recognition accuracy is obtained by using
higher frequency subbands (beta and gamma) than that of the lower frequency subbands (theta and alpha).
The combination of features from all subbands has better performance than the features obtained from
individual subband signals. The performance of the proposed method outperforms the recently developed
algorithms of emotion recognition.

INDEX TERMS Brain-computer interface (BCI), common spatial pattern (CSP), electroencephalography
(EEG), emotion recognition, subband decomposition.

I. INTRODUCTION
Brain-computer interface (BCI) provides an alternative
communication pathway between a brain and an external
device. The brain-generated command is interpreted by the
devices [1]. BCI has great significance in the biomedical
engineering research fields because it aims to help physically
disabled people like paralyzed patients [2]. Human emotion
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is effective for understanding the mental condition and it can
be studied with BCI [3]. Real-time emotional assessment
can make our life easier, enhance the interaction between
physically disabled people and machines. It can be used for
mental patients treatment.

Emotion is a complex psychological and physiological
process that is related to the subject’s moods, feelings,
thoughts, and behaviors. People express their inner emotions
verbally (emotional vocabulary) or non-verbally (intonation
of voice, gesture, or facial expression). Its duration is short.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 44019

https://orcid.org/0000-0002-4010-3915
https://orcid.org/0000-0002-7476-2468
https://orcid.org/0000-0002-8867-1954
https://orcid.org/0000-0002-2403-3347
https://orcid.org/0000-0002-4948-3870


I. Farhana et al.: Emotion Recognition Using Narrowband Spatial Features of EEG

Researchers from a neuropsychological background have
found a great relationship between emotions and the EEG
signals. Mainly two areas of the human brain are associated
with an emotional response. These are the pre-frontal cortex
that covers part of the frontal lobe and the frontal portion of
the temporal lobe (amygdala and hippocampus) [4]. Amyg-
dala and hippocampus perform their functions independently.
But when a human subject delivers emotional reactions to a
stimulus, these two regions of the brain interact with each
other for translating the emotion into a specific reaction.
Amygdala senses emotions and processes them. Hippocam-
pus is responsible for regulating episodic memory [5]. Emo-
tion can be represented theoretically in two ways: categorical
and dimensional emotion models. In the categorical model,
emotions are tagged separately. Ekman and Friesen proposed
six basic, universal, and distinct emotions [6]. These are
fear, joy, anger, sadness, disgust, and surprise. In the dimen-
sional model, emotions are mapped into the valence, arousal,
and dominance dimension. Valence goes from negative to
positive (unpleasant to pleasant), arousal goes from boring
to excited (deactivation to activation), and dominance goes
from submissive (being controlled) to a powerful (in control)
feeling. Plutchik’s emotion wheel [7] and Russell’s circum-
plex model [8] are the representations of the dimensional
model. Russell’s scale of valence-arousal is mostly used by
researchers and four categories of emotions are obtained from
this model. These are high valence high arousal (HVHA),
low valence low arousal (LVLA), high valence low arousal
(HVLA), and low valence high arousal (LVHA). When the
dataset for emotion recognition is prepared using a dimen-
sional model, self-assessment manikin (SAM) is used for
graphical representation [9]. SAM uses images for presenting
valence, arousal, and dominance. It uses a rating scale ranging
from 1 to 9 for each dimension. Subjects of any age can
understand this figure and their level of emotion easily.

Emotion is recognized from non-physiological signals
like speech, gesture, and facial expressions; physiological
signals like electromyography (EMG), electroencephalogra-
phy (EEG), galvanic skin response (GSR), electrocardiogra-
phy (ECG), respiration rate (RR), and blood volume pres-
sure [10]. Emotion detected from non-physiological signals
may be fake [11]. That’s why physiological signals par-
ticularly, EEG represents the brain’s electrical activity and
provide accurate information about the current emotional
state. EEG is non-invasive, easy to use, inexpensive, fast,
and portable. It consists of rhythmic components delta, theta,
alpha, beta, and gamma. It has high time resolution but low
spatial resolution [1]. EEG signal pattern varies from person
to person. The model generated for a particular EEG dataset
may not perform well while testing with another dataset.
Most of the methods for emotion recognition have been
developed using the standard dataset [4]. MAHNOB-HCI is
a publicly available multimodal dataset for emotion analy-
sis that includes both facial expressions and physiological
signals. In recent years, the database for emotion analysis

using physiological signals (DEAP) is mostly used [12] that
contains both EEG and peripheral physiological signals. The
Shanghai Jiao Tong University (SJTU) emotion EEG dataset
(SEED) is also used for emotion analysis that contains only
the EEG signals [13]. Finding appropriate features of EEG
related to human emotion is important for better classifica-
tion performance. Researchers have proposed time-domain,
frequency-domain, and joint time-frequency domain tech-
niques for this purpose. The joint time-frequency domain
technique is the most effective for analyzing non-stationary
signals like EEG [14].

Researchers have proposed several methods usingmachine
learning techniques for classification of human emotion.
Rhythmic component based features of EEG play important
role to emotion classification [12]. For extracting rhythmic
components of EEG discrete wavelet transform (DWT) [15],
empirical mode decomposition (EMD) [11], [16], and mul-
tivariate empirical mode decomposition (MEMD) [17] are
used. Besides, flexible analytic wavelet transform (FAWT)
with information potential (IP) feature [18] and multivari-
ate synchrosqueezing transform (MSST)-based methods [19]
have been also discussed for emotion recognition. Higher
frequency bands like gamma perform better for emotion clas-
sification and signal framing is also important for obtain-
ing better performance [15], [16]. Cross-subject emotion
recognition method was proposed with a combination of
different methods [20], [21], [22]. These methods include
transfer recursive feature elimination (TRFE) method [20],
finite impulse response (FIR) bandpass filter [21], signif-
icance test/sequential backward selection and the support
vector machine (ST-SBSSVM) using multiple features [22].
But there is difficulty in recognizing cross-subject emotions
using EEG because of its poor generalization of features.

Several deep learning-based systems were proposed by
the researchers for emotion recognition from EEG signals.
Both subject-independent and dependent approaches were
discussed in [23] using convolutional neural network (CNN).
Capsule network (CapsNet) with multiband feature matrix
(MFM) [24] for emotion recognition approach has been
discussed. Another method based on stack autoencoder
(SAE)with long short-termmemory recurrent neural network
(LSTM-RNN) was described in [25]. Asghar et al. [26]
proposed multi-modal emotion recognition approach using
AlexNet for extracting time and frequency domain fea-
tures and bag of deep features (BoDF) for feature reduc-
tion. Besides, attention-based convolutional recurrent neu-
ral network (ACRNN) [27], channel-fused dense convolu-
tional network (CDCN) [28], fusion model of long-short
term memories neural networks (LSTM) and graph convo-
lutional neural network (GCNN) named ECLGCNN [29],
cascaded and parallel hybrid convolution recurrent neu-
ral networks [30], dynamical graph convolutional neural
networks (DGCNN) [31], spatial-temporal recurrent neu-
ral network (STRNN) [32], deep convolutional neural net-
work [33], four-dimensional convolutional recurrent neural
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network (4D-CRNN) [34], graph convolutional broad
network (GCB-net) along with broad learning system
(BLS) [35], regularized graph neural network (RGNN) [36],
combination of convolutional neural network (CNN) and
deep neural network (DNN) [37], spiking neural networks
(SNNs) [38], optimized residual networks (ResNet) [39],
combined deep neural network (DNN) models [40], [41],
CNN-BiLSTM-MHSA model [42] consisting of a con-
volutional neural network (CNN), bi-directional long and
short-term memory network (BiLSTM), and multi-head self-
attention (MHSA) were also proposed by the researchers
for emotion recognition from EEG signals. Identifying EEG
features that are effective for proper emotion recognition
is very important. In the previous works, the extracted
features are not well discriminative for human emo-
tion classification. That is why the emotion classification
performance is not up to the mark for real-world application
development.

This study has focused on the derivation of potential fea-
tures closely related to represent human emotion. After pre-
processing of raw EEG data, bandpass filtering approach
is implemented on each channel of the trials to obtain the
rhythmic components. Each component is a narrowband sig-
nal. Each channel of the trials of a rhythmic component is
segmented into short-term frames. The entropy and energy
of each frame are calculated. The channels are expressed
as a sequence of short-term entropy and energy obtained
from individual frames. Thus the trials are characterized by
short time attribute (entropy-energy terms) instead of EEG
samples. The CSP is then applied to the newly defined trials to
generate spatial features. Further, the spatial features derived
from an individual rhythmic component are used for emo-
tion recognition using support vector machine (SVM). The
proposed CSP-based method generates highly discriminative
features that enhance the emotion recognition performance.
The experimental results are compared with the existing
methods.

The rest of this paper is organized as follows: Section II
describes the datasets used in this experiment and data pre-
processing, Section III describes the detailed methodology,
Section IV illustrates the experimental results, Section V
presents a general discussion of the proposed method, its
feasibility for real-time BCI application development in
comparison with the other recently developed algorithms,
and finally Section VI presents the conclusions of this
study.

II. DATASET DESCRIPTION AND DATA PREPROCESSING
A. DATASET DESCRIPTION
Two publicly available datasets termed as DEAP dataset [12]
and SEED dataset [13] have been used to evaluate the per-
formance of the proposed method. These datasets are con-
sidered as the benchmark datasets among the researchers for
EEG based emotion recognition. A short description of these
datasets is given below.

FIGURE 1. Russell’s 2D valence-arousal scale. Valence and arousal are
presented by the horizontal and vertical axis respectively. Valence ranges
from unpleasant to pleasant and arousal ranges from deactivation to
activation.

1) DEAP DATASET
The database for emotion analysis using physiological sig-
nals (DEAP) is a publicly accessible multimodal dataset for
emotion analysis [12]. This dataset was recorded in collabo-
ration with Queen Mary University of London, University of
Twente, and Universitè De Genève. In this dataset, 40 music
videos were used as stimuli for eliciting emotion from human
subjects and length of each video was 1 minute. A grading
scale ranging from 1 to 9 was associated with each music
video. The total number of subjects is 32 (50% female) and
each of them was shown 40 music videos in 40 trials. The
average age of the participants was 26.9 years. All of the
participants were requested to read about the details of the
experiment and the rules of self-assessment. They signed a
consent form before starting the signal recording. This dataset
is based on the valence, arousal, dominance, and liking
(level of preference) emotional model. It follows Russell’s
scale (Fig. 1).

The electroencephalogram (EEG) and peripheral physi-
ological signals of each participant were recorded. After
watching each music video all the participants were asked
to give ratings based on their self-assessment according to
the level of valence, arousal, dominance, and liking. They
could click on any value within the range of 1 to 9. Another
rating was given based on familiarity and its range was 1 to 5.
The original dataset was recorded with 512 Hz sampling
rate and 48 channels. Then the dataset was downsampled
to 128 Hz to prepare the preprocessed dataset with 40 chan-
nels. Among 40 channels, 32 channels are used for recording
EEG signals and the remaining 8 channels are for recording
physiological signals (galvanic skin response, blood volume
pressure, respiration rate, skin temperature, electromyogra-
phy, and electrooculography). Electrodeswere placed accord-
ing to the international standard 10-20 system. The prepro-
cessed dataset was bandpass filtered to the frequency range
of 4 Hz to 45 Hz. The electrooculography (EOG) artifacts
were removed and the values of the data were averaged to
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FIGURE 2. Comparison of normal EEG and emotion-induced EEG for the
DEAP dataset where the subplot (a) and subplot (b) represent the time
domain and frequency domain respectively.

TABLE 1. DEAP dataset description.

the common reference. The preprocessed dataset is used in
this experiment. The description of the DEAP dataset is given
in Table 1. Among 40 trials, some trials have high valence
and some trials have low valence. This categorization is the
same for the arousal dimension. For binary classification,
a threshold is used to categorize the labels into two classes for
a grading scale of 1 to 9. If the grading scale is grade >= 4.5,
then the label of valence/arousal is high and if it is grade <

4.5, the label of valence/arousal is considered low. The time
domain and frequency domain representation of normal EEG
and emotion-induced EEG has been illustrated in Fig. 2 for
the DEAP dataset.

2) SEED DATASET
The Shanghai Jiao Tong University (SJTU) emotion EEG
dataset (SEED) is a freely available emotion recognition
dataset [13]. While recording this dataset, 15 Chinese film
clips were used as stimuli for eliciting 3 types of emo-
tions (positive, neutral, and negative). The duration of each
video clip was 4 minutes long. Fifteen subjects (7 males
and 8 females) participated in the EEG data recording and
their average age was 23.27 years. All of the participants
were students from Shanghai Jiao Tong University. Initially,
this dataset was recorded using ESI NeuroScan System
with 1000 Hz sampling rate from a 62-channel electrode cap
according to the international standard 10-20 system. Then
the dataset was downsampled to 200 Hz. There is a 5 s hint
before each clip, 45 s for self-assessment, and 15 s for rest
after each clip in one session. The order of presentation is
arranged so that two film clips targeting the same emotion
are not shown consecutively. Each subject performed the

FIGURE 3. Comparison of normal EEG and emotion-induced EEG for the
SEED dataset where the subplot (a) and subplot (b) represent the time
domain and frequency domain respectively.

TABLE 2. SEED dataset description.

experiment three times with an interval of about one week.
Each experiment includes 15 trials. For each subject, the total
number of trials is 3× 15 = 45. Among the 45 trials, 15 trials
represent positive emotion experiments, 15 trials represent
neutral emotion experiments, and 15 trials represent negative
emotion experiments. In this experiment, the preprocessed
dataset is used. This dataset is bandpass filtered from 0 Hz
to 75 Hz. Positive, neutral, and negative emotions are labeled
by +1, 0, and -1. For this experiment, only positive and
negative emotions have been used for binary classification.
The details of the SEED dataset are given in Table 2. The
time domain and frequency domain representation of normal
EEG and emotion-induced EEG has been illustrated in Fig. 3
for the SEED dataset.

B. DATA PREPROCESSING
1) SELECTION OF CHANNELS AND TRIAL LENGTH
There are 40 channels (32-EEG and 8-physiological) used
in the recording of the DEAP dataset. The first 32 EEG
channels are used in this study [12]. The 60 s of trial length
produces 60 × 128 = 7680 data points for each trial
and hence the data dimension becomes 32 × 7680 × 40
(channels × data points × trials). Sixty-two (62) EEG chan-
nels are used in the SEED dataset. To maintain consis-
tency with the DEAP dataset, the EEG signals of 60 s are
extracted from the middle of 4 minutes long trial. Among
the three types of emotions, only positive and negative emo-
tions are considered for performing binary classification.
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The dimension of the SEED dataset used in this study is
62 × 7680 × 30 (channels × data points × trials).

2) DATA NORMALIZATION
Normalization is performed on samples to reduce individual
differences and computational complexity. The average mean
reference (AMR) method [15] is applied for data normaliza-
tion to remove the noises due to all external interference. The
mean value of all the data points is calculated for each channel
of a trial. The obtained mean value is subtracted from the data
points of i-th channel and j-th trial using the formula (1).

Di,j (m) = Oi,j (m) −
1
N

N∑
m=1

Oi,j (m) (1)

Here,O andD represent the original EEG data and the new
EEG data after applying the AMR method respectively, m is
the index of the number of data points where 1 ≤ m ≤ N .
N = 7680 for the DEAP dataset and N = 12000 for the
SEED dataset. The ranges of i and j are 1 ≤ i ≤ L (number
of channels) and 1 ≤ j ≤ T (number of trials) respectively.
Then themin-max normalization is performed on the resul-

tant data using equation (2). As a result, the values of all
the data points of i-th channel and j-th trial will have in the
range [0, 1].

Ei,j (m) =
Di,j (m) − min

(
Di,j

)
max

(
Di,j

)
− min

(
Di,j

) (2)

Here, E represents the normalized EEG data.

III. METHODOLOGY
A common spatial pattern (CSP)-based approach for emotion
recognition from EEG signals is implemented in this study
to enhance the classification accuracy of human emotion
recognition. A block diagram of the proposed method is
demonstrated in Fig. 4. In the block diagram of Fig. 4, the
basic theme of the proposed method has been represented
for the individual subband. According to the representation
of Fig. 4, the performance analysis of the proposed method
has been conducted on the individual subband. Besides, the
proposed method’s performance analysis has also been con-
ducted on combined CSP-generated features for all subbands
from which better performance has been obtained. Since
Fig. 4 represents the basic theme of the proposed method, the
process of combined features from all subbands has not been
shown in the block diagram. To clarify the block diagram of
Fig. 4, the algorithmic steps of the proposed method have
been described below.

Step 1: Perform preprocessing on EEG trials.
Step 2: Perform subband decomposition on the prepro-
cessed EEG signals.
Step 3: Representing each channel of subband Sbb with
short-time entropy (η) and energy (ε) features of EEG.
Step 4: Extracting CSP-based discriminative features
for individual subbands.
Step 5: Emotion classification by SVM classifier.

The channel representation technique mentioned in Step 3
with short time entropy and energy features is further
described into five sub-steps in the following.

Step 3.1: Extracting subband Sbb from all channels of a
single trial.
Step 3.2: Decomposing each channel into multiple
frames.
Step 3.3: Extracting entropy (η) and energy (ε) features
from each frame.
Step 3.4: Horizontal concatenation of entropy (η) and
energy (ε) features for individual frame.
Step 3.5: Finally, the concatenated entropy (η)-energy
(ε) features for all frames and all trials are again con-
catenated horizontally to represent a single channel. The
same procedure has been conducted for the representa-
tion of each channel.

The proposed method has been developed by implement-
ing the following major steps. They are, (A) subband decom-
position, (B) signal segmentation, (C) short-term characteris-
tics, (D) features filtering, and (E) classification. The details
of these steps are described in the following subsections.

FIGURE 4. Block diagram of the proposed common spatial pattern
(CSP)-based emotion recognition system, where Sb1, . . . Sbb, . . . SbB
represent the different subbands.

A. SUBBAND DECOMPOSITION
Subband decomposition represents a wide band signal into a
finite set of narrow band signals. The rhythmic components of
EEG signals are used in the proposed method. The bandpass
filters are used to extract rhythmic components from the
EEG signal [43], [44]. In motor imagery-based BCI, filter
bank in combination with common spatial pattern (CSP) is
used for improving classification accuracy [44]. The prepro-
cessed DEAP dataset has a frequency ranging from 4 Hz
to 45 Hz. This dataset demonstrates that the rhythmic com-
ponents theta, alpha, beta, and gamma are effective for emo-
tion analysis [12]. For obtaining these rhythmic components,
bandpass filtering is implemented. A 5th order Butterworth
bandpass filter has been applied to the preprocessed EEG data
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for rhythmic component extraction. For the SEED dataset,
rhythmic components have been extracted in a similar way.

B. SIGNAL SEGMENTATION
Emotion doesn’t stay for a long time, it changes rapidly. Its
duration is generally within the range of 0.5 s to 4 s [15]. From
the previous studies, it has been found that the researchers
used a sliding window of 1 s, 2 s, 4 s, 5 s, and so on [25]. The
nature of EEG is non-stationary and for this reason, the same
model fails to perform well for all subjects. Signal framing
with appropriate frame length is important during EEG signal
processing for emotion recognition [25]. A sliding window
of a few seconds is used for segmenting the EEG signal
into multiple numbers of frames. In this experiment, signal
framing has been performed on the preprocessed EEG data
of each subband signal. For the DEAP dataset, 4 s and 2 s
signals have been extracted from 60 s signal and 50% overlap
has been used for both of them. The 60 s signal has been
segmented into 29 frames and 59 frames for 4 s and 2 s frame
lengths respectively. The same procedure has been followed
for processing the SEED dataset.

C. SHORT-TERM CHARACTERISTICS
The short-term entropy and energy [15] have been calculated
as features from each frame for each subband (theta, alpha,
beta, gamma).

1) ENTROPY (η)
Entropy (η) is used to analyze EEG data. It can be computed
by the following formula (3).

ηbi,j = −

V∑
g=1

[{
Sbhb(g)

2
}
log

{
Sbhb(g)

2
}]

(3)

2) ENERGY (ε)
Energy (ε) is computed by the following formula (4).

εbi,j =

V∑
g=1

{
Sbhb(g)

2
}

(4)

Here, ηbi,j and εbi,j represents the entropy (η) and energy
(ε) features of each frame for i-th channel and j-th trial of
a specific subband b respectively. Sbhb represents the h-th
frame of the specific rhythmic or subband component for
frequency band b. Here, b = theta or alpha or beta or gamma.
In Fig. 4, B represents the total number of subbands where
B = 4. h represents the index of the number of frames where
1 ≤ h ≤ F . g is the index of the number of samples in each
frame where 1 ≤ g ≤ V . For DEAP dataset, F = 29 and
59, V = 512 and 256 (for 4 s and 2 s sliding windows
respectively) and for SEED dataset, F = 29, V = 800 (for
4 s sliding window). Finally, the features obtained from the
individual frame are horizontally concatenated for every trial
and for each subband to represent a channel. Spatial filtering
has been applied to this feature matrix for calculating spatial
features.

D. FEATURES FILTERING
Spatial filtering has been applied on short-time attribute data
using the common spatial pattern (CSP) to generate discrim-
inative spatial features. The features are extracted from each
frequency band. The dataset is first divided into the training
subset and test subset. The CSP algorithm is applied to the
training subset only for computing spatial filters. Then CSP
features are calculated from both the training subset and the
test subset by projecting the corresponding dataset onto the
computed spatial filters. For the final CSP feature extraction,
the log variance of the projected feature is calculated [45].

The CSP first proposed by H. Ramoser is a spatial filter-
ing technique that has been successfully implemented in the
EEG-based motor imagery classification [46]. This technique
finds optimal spatial filters that are effective in discriminating
EEG signals of two classes. Another potential use of CSP
is to reduce the dimensionality of high dimensional EEG
data. The output of the CSP is a projection matrix and its
row represents the weights for channels. The basic idea is to
project the multi-channel EEG data into a lower dimensional
spatial subspace with the resultant projection matrix and a
linear transformation. It maximizes the variance for one class
while minimizing the variance for the other class yielding
maximizing inter-class variance and minimizing intra-class
variance. The CSP algorithm focuses on the simultaneous
diagonalization of two covariance matrices. It is a supervised
algorithm trained on the labeled data [45], [47], [48].

In this study, CSP is implemented for emotion classifi-
cation using EEG data. It is used separately for the arousal
and valence dimensions of human emotion. Both arousal and
valence are divided into two classes - high and low. The
details of the CSP algorithm are explained here for the arousal
dimension. The same procedure is followed for the valence
dimension.

The training EEG data represented by short-time attribute
(entropy-energy terms) is denoted by Xq for class q. The
dimension of Xq is L×N , where L is the number of channels
and N is the number of samples per channel [46], [47]. The
process of generating Xq from initial training data has been
explained in the last paragraph of this subsection in detail.

For high and low arousal, a single trial EEG data is denoted
byXq∈ha,la.Xha andXla represent high arousal and low arousal
data respectively. The normalized spatial covariance of the
EEG data for high arousal, Cha and low arousal, Cla is calcu-
lated as follows,

Cha =
XhaX ′

ha

trace
(
XhaX ′

ha

) , Cla =
XlaX ′

la

trace
(
XlaX ′

la

) (5)

(.)′ is the transpose operator and trace (.) computes the sum
of the diagonal elements of a given matrix. The next step is
to calculate the composite spatial covariance, C . It can be
computed as,

C = Cha + Cla = U0λU ′

0 (6)

Cha andCla are the averaged normalized covariancematrix.
Cha and Cla are calculated by averaging over all the trials
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of each class. U0 is the matrix of eigenvectors and λ is
the diagonal matrix of eigenvalues. It is assumed that the
eigenvalues are sorted in descending order.

W = λ
−1
2 U ′

0 (7)

Here, W is the whitening transformation matrix. Cha and
Cla are transformed by theW as

Sha = WChaW ′, Sla = WClaW ′ (8)

The transformed terms Sha and Sla share common eigen-
vectors and the sum of the corresponding eigenvalues for the
two matrices will always be 1.

Sha = UλhaU ′, Sla = UλlaU ′, λha + λla = I

(9)

Here, I is the identity matrix. The eigenvector that has the
largest eigenvalue for Sha has the smallest eigenvalue for Sla
and vice versa because the sum of the corresponding eigen-
values is always 1. A high eigenvalue for Sha means a high
variance for EEG in high arousal and a low eigenvalue for Sla
means a low variance for EEG in low arousal and vice versa.
Classification is performed based on this property. The pro-
jection of whitened EEG onto the first and last eigenvectors
will give feature vectors that are optimal for discriminating
two classes of EEG data [46], [47]. The projection matrix is
calculated by

P = U ′W (10)

With the projection matrix P, the original EEG data can be
transformed into uncorrelated components Z according to,

Z = PX (11)

The original EEG data matrix can be reconstructed by

X = P−1Z (12)

P−1 is the inverse of P. The columns of P−1 are the spatial
patterns. These can be considered time-invariant EEG source
distribution vectors. The most discriminatory spatial patterns
are the first and last columns of P−1. It describes the highest
variance of one class and the lowest variance of the other
class.

Here, the initial training EEG data is represented by
short-time attribute (entropy-energy terms) which is denoted
by X for a specific subband. The dimension of X is
L × Nf × Ntr, where L is the number of channels,
Nf is the number of samples (Nf = 2) per channel, and Ntr
is the number of training trials. Then, Xq training EEG data
has been extracted from the initial training EEG data X for a
specific class q. Now, the dimension of Xq is L × Nf × N q

tr .
Here, N q

tr represents the training trials of class q. Each chan-
nel is constructed by horizontally placing the two features
(entropy and energy) in a single row for a specific class
q (high/low). This has been performed for all channels L
of each training trial. Then, the Xq three-dimensional (3D)
matrix has been reshaped into a two-dimensional (2D) matrix

by horizontally placing the features (entropy-energy) from
all trials into a single row of a specific channel. These have
been done for every channel L of each class q. Then CSP has
been performed on the training data Xq. Here, the dimension
of Xq is L ×

(
Nf × N q

tr
)

= L × N . After applying CSP,
L numbers of features are generated in 2D matrix format.
From L numbers of features, seven pairs (number of selected
features, Nsf = 7 pairs= 14) of features have been selected
for training the SVM classifier. For each band, a new pro-
jected training feature matrix has been generated from X
and Nsf numbers of CSP-generated features by considering
the log variance of the projected features. The dimension of
the projected feature matrix is Ntr × Nsf. Finally, the SVM
classifier has been trained with this data to show individual
subband performance. To show the final performance of the
proposed method, the feature matrix of all subbands has been
combined to produce the final feature matrix of dimension
Ntr × (Nsf × B) which has been used to train SVM classifier.
Here, B represents the total number of subbands.

E. CLASSIFICATION
The spatial feature vector of a single subband as well as the
combination of multiple subbands is used for emotion clas-
sification using support vector machine (SVM). The SVM
classifier is trained with the labeled training dataset and
binary classification is performed using the test dataset. The
polynomial kernel of order 3 is used with k (=5) fold cross-
validation technique.

IV. EXPERIMENTAL RESULTS
The well-known publicly available datasets named DEAP
and SEED are used to evaluate the performance of the pro-
posed method for emotion recognition. The binary classifica-
tion is considered here. For the DEAP dataset, classification
is performed on both the valence (high/low) and arousal
(high/low) dimensions. A threshold of 4.5 is used for dividing
the rating scale 1 to 9 into high and low. For the SEED
dataset, the positive and negative emotions are classified.
The preprocessed EEG data have been decomposed into
four subband signals using Butterworth bandpass filtering
technique. Then framing has been applied on each subband
signal for each channel and trial. The entropy and energy
of each frame are calculated for each subband signal. Each
subband is represented as a sequence of short-term entropy
and energy. The spatial features are calculated from the resul-
tant representation by applying CSP for each subband signal.
The spatial features of multiple subbands are also combined.
Then the obtained features are used for training the SVM
classifier with cubic polynomial kernel function, followed by
the evaluation of the classification performance with the test
data. The details of this procedure are described in section III.
Four different subbands (theta, alpha, beta, gamma) of a 4 s
window taken from a single channel and a single trial signal
of the subject ‘s01’ are shown in Fig. 5.

A k-fold (here, k = 5) cross-validation technique is used
to evaluate the performance of the proposed method on an
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FIGURE 5. Four different subbands (Theta 4-7 Hz, Alpha 8-13 Hz, Beta
14-29 Hz, and Gamma 30-47 Hz) of a window obtained from channel FC5
of subject ‘s01’ selected from DEAP dataset.

individual subject basis. The trials of each subject are divided
into k equal groups. Among the k groups, (k - 1) groups are
used for training and the remaining one is used for testing.
This process is repeated k times and each time the data are per-
muted differently. The results obtained from the k repetitions
are averaged to derive the classification accuracy. The clas-
sification performance is evaluated by accuracy calculated as
Accuracy = 100 ×( NC

NT
). Here, NT is the total number of

trials in the test dataset and NC is the total number of trials
correctly recognized out of NT .
In the proposed method, each EEG trial of 60 s is divided

into 29 frames using 4 s frame length with 2 s overlap
for the DEAP dataset. Then 40 trials produce the total of
29 × 40 = 1160 frames and each of the five folds contains
232 segments. The 2 s frame length with 1 s overlap is also
used. It produces 59 frames from each trial and obtained 59×

40 = 2360 for 40 trials. The results obtained from the five
folds are averaged to calculate the accuracy. This process is
followed for each subject and the average result is computed
over Nsub = 32 subjects. There are 30 trials in the SEED
dataset. The 4 s and 2 s frames are also implemented for
the SEED dataset and a five-fold cross-validation approach
is implemented using a similar process as implemented in the
DEAP dataset. The average accuracy is considered the final
accuracy. The accuracy of the individual subject is calculated
by using the formula (13).

Accuracysub =
1
k

k∑
i=1

Accuracy(i) (13)

The average accuracy of all subjects is calculated by using
the formula (14) for both datasets (DEAP and SEED).

Accuracymean =
1

Nsub

Nsub∑
j=1

Accuracysub (j) (14)

The performances of emotion recognition in the valence
and arousal dimensions with the DEAP dataset for frame

length of 4 s and 2 s are presented in Fig. 6 and Fig. 7
respectively. The features of different subbands (theta, alpha,
beta, gamma) for individual subjects are compared in these
figures. It is observed that the higher-frequency subbands
(gamma and beta) perform better than the lower-frequency
subbands (alpha and theta). The performance of the combined
features obtained from multiple subbands is higher than that
of the single subband. The emotion recognition accuracy of
the combined features extracted from all the subbands is also
presented. It is observed from these figures that accuracy is
gradually enhancing with the increasing number of subbands
from which the obtained features are combined. The effects
of frame length for emotion recognition are illustrated in
Fig. 8 considering 4 s and 2 s frame length for valence and
arousal dimensions. This figure shows that the 4 s frame
length has higher classification accuracy in both cases. The
frame length of 4 s is considered to evaluate the performances
of the proposed method with the SEED dataset. The clas-
sification of positive and negative emotions results for the
SEED dataset (with 4 s frame length) are presented in Fig. 9.
The average accuracy over the subjects for different subbands
with DEAP and SEED datasets are shown in Fig. 10 and
Fig. 11 respectively. The highest accuracy is obtained for the
combined features of all the subbands for both datasets. From
Fig. 6 and Fig. 7, it has been found that the contribution of
theta and alpha bands is lower than the others for the DEAP
dataset. On the other hand, the contribution of theta and alpha
bands for the SEED dataset is comparatively higher than the
DEAP dataset. But it is still lower than the other subbands
in the SEED dataset which is evident in Fig. 9 and Fig. 11.
We can see that the performance of the SEED dataset is higher
than the DEAP dataset. For the SEED dataset, the theta and
alpha bands contribute more than the theta and alpha bands
of the DEAP dataset. That is why the overall performance of
the SEED dataset is higher than the DEAP dataset. Besides,
the contribution of different subbands of EEG signals mostly
depends on the mental state of the subjects as well as the
signal acquisition environments. It could be that these effects
have been reflected in the SEED dataset for lower bands
(theta, alpha) whereas it has not been reflected in the lower
bands of the DEAP dataset. In addition to, it is clearly shown
that in some of the existing methods like differential entropy
spatial-temporal recurrent neural network (DE-STRNN) pro-
posed by Zhang et al. [32], the performance of the theta
and alpha bands is better than the other bands for the SEED
dataset.

It is observed that the spatial features extracted by CSP
from the short term energy-entropy representation of EEG
samples are very effective for the binary classification of
emotion. The results obtained from different pairs of spatial
features for the DEAP dataset are illustrated in Fig. 12 in
which the average accuracy over the subjects as a function
of the number of the selected spatial features are presented
for the valence and arousal dimensions. The classification
performance is enhancing with the increasing number of
spatial features gradually. After including a certain number
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FIGURE 6. Classification performance of individual subjects of the DEAP
dataset for different subband features for a) Valence dimension and b)
Arousal dimension for 4 s frame length with 2 s overlap.

of spatial features, the performance is decreased and then
increases again. The average accuracy becomes maximum
(96.15% ± 2.98 for valence and 96.47% ± 2.90 for arousal)
for seven pairs of spatial features resulting in fourteen spatial
features and it falls for sixteen spatial features (93.70% ±

4.07 for valence and 94.29% ± 4.26 for arousal). After that,
the performance increases and the resulting change is very
small from eighteen spatial features (96.39% ± 2.85 for
valence and 96.57% ± 2.98 for arousal) to thirty-two spatial
features (96.62% ± 2.95 for valence and 96.90% ± 2.76 for
arousal). For the SEED dataset, the average classification
performance of all subjects as a function of the number of
selected spatial features is presented in Fig. 13. The result
is maximum (99.98% ± 0.06) for six pairs of spatial fea-
tures. The accuracy for seven pairs of spatial features is
99.95%±0.10 which is very close to the maximum accuracy.
Considering the consistency, the result of seven pairs has been
taken for the SEED dataset.

V. DISCUSSION
Recently, emotion recognition from EEG signals has gained
much attention among researchers in the BCI field. The
reason is the use of emotion recognition result in medi-
cal application. From the previous studies, it is found that
recognition accuracy is not enough for real-world application
development. The researchers are still working to develop an
efficient method to improve classification accuracy. In exist-

FIGURE 7. Classification performance of individual subjects of the DEAP
dataset for different subband features for a) Valence dimension and b)
Arousal dimension for 2 s frame length with 1 s overlap.

FIGURE 8. Comparison of classification performance of individual
subjects of the DEAP dataset for a) Valence dimension and b) Arousal
dimension for 4 s and 2 s frame length with 50% overlap. 4 s frame
length gives better results.

ing methods, the time domain, frequency domain, and joint
time-frequency domain analysis were employed. The EEG
signals are decomposed to obtain different rhythmic com-
ponents. Several techniques such as empirical mode decom-
position (EMD), multivariate empirical mode decomposition
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FIGURE 9. Classification performance of individual subjects of the SEED
dataset for different subbands for classifying positive and negative
emotions for 4 s frame length with 2 s overlap.

FIGURE 10. Average classification performance across 32 subjects of the
DEAP dataset for 4 s frame length with 2 s overlap. Accuracy is increasing
from the lower frequency band to the higher frequency band. Combina-
tion of features from all subbands have the highest accuracy.

FIGURE 11. Average classification performance across 15 subjects of the
SEED dataset for 4 s frame length with 2 s overlap. Accuracy is increasing
from the lower frequency band to the higher frequency band. Combinat-
ion of features from all subbands have the highest accuracy.

FIGURE 12. Average classification performance of all subjects of the
DEAP dataset as a function of the number of selected spatial features for
valence and arousal dimensions.

(MEMD), flexible analytic wavelet transform (FAWT), and
discrete wavelet transform (DWT) were used for EEG signal

FIGURE 13. Average classification performance of all subjects of the
SEED dataset as a function of the number of selected spatial features for
positive and negative emotion classification.

decomposition. The classification accuracy was presented for
individual frequency bands. The higher frequency bands pro-
vide better accuracy than the lower frequency bands. Signal
framing has gained much attention for improving recognition
accuracy because of eliminating the non-stationary problem
of the EEG. It is assumed that the signal within this short time
frame behaves like a stationary signal [25]. The DWT-based
subband decomposition leading to extraction of entropy and
energy features for emotion classification was implemented
using KNN classifier with the DEAP dataset in [15]. The
recognition accuracies were 74%, 77%, 81%, and 86.75%
for the rhythmic components theta, alpha, beta, and gamma
band respectively for the valence dimension; 71%, 73%,
79%, and 84.05% using theta, alpha, beta, and gamma band
respectively for the arousal dimension. The classification
accuracy was maximum for 4 s frame length with 2 s overlap
with the gamma band in the valence and arousal dimen-
sions. In the proposed approach, the classification has been
performed for the individual rhythmic components theta,
alpha, beta, and gamma bands respectively. The combina-
tion of different subbands (combination of gamma and beta
subbands, combination of all subbands) has also been also
used to evaluate the classification performance. A better
classification performance has been achieved with the com-
bination of subbands rather than the individual subband.
Zhuang et al. [16] applied empirical mode decomposition
(EMD) for decomposing the EEG signals into intrinsic mode
functions (IMFs). The first IMF (IMF1) demonstrated max-
imum performance. They used frames of 5 s length with
the DEAP dataset. The emotion classification is performed
with SVM classifier using the features first difference of
time series, the first difference of phase, and the normalized
energy. The accuracy was 70.41% for valence and 72.10% for
arousal dimension. The multivariate empirical mode decom-
position (MEMD) was used for signal decomposition in [17].
The power ratio, power spectral density, entropy, Hjorth
parameters, and correlation of IMFs were used as features.
The independent component analysis (ICA) was employed
for dimensionality reduction. The classification accuracy was
67.00% for valence and 51.01% for arousal with K-NN clas-
sifier; whereas, 72.87% for valence and 75% for arousal with
artificial neural network (ANN) classifier. In the proposed
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method, the energy and entropy are extracted as features from
short-time EEG signals of length 2 s and 4 s of both datasets.
It performs better than the EMD-based methods [16], [17].
To improve the classification performance, various methods
are used to reduce the dimension of the feature matrix includ-
ing ICA. Different spatial filtering techniques are also used
for the reduction of feature dimension. The CSP-based spa-
tial filtering technique is employed here for dimensionality
reduction. It gives excellent performance compared to other
existing methods. Various deep learning-based approaches
are proposed to classify emotions along with ANN. For
instance, Chao et al. proposed a deep learning framework
where the multiband feature matrix (MFM) was constructed
by combining the features from frequency-domain, spatial
characteristics, and frequency band characteristics of the
multi-channel EEG signals [24]. A capsule network (Cap-
sNet) was introduced for classifying emotion states based on
the input of MFM. The classification accuracy was 67% for
the valence dimension and 69% for the arousal dimension
for 3 s frame length. Xing et al. proposed a novel frame-
work that contains a linear EEG mixing model built using
stack autoencoder (SAE) and the emotion timing model with
long short-term memory recurrent neural network (LSTM-
RNN) [25]. Short time frames were used for segmenting
the EEG signals. The maximum classification performance
was obtained using a 1 s frame length with 50% overlap.
Therefore, the power spectral density (PSD) with Welch’s
method was calculated as a feature from each frame and
classification was performed with LSTM. The accuracy
was 81.10% for valence and 74.38% for arousal. The same
framing concept has been used in our proposed approach.
However, 2 s and 4 s frame length have been used in this
proposed approach and the highest performance has been
achieved for 4 s frame length. The channel-wise attention and
self-attention based emotion recognition methods were also
introduced [27]. The attention-based convolutional recurrent
neural network (ACRNN) was used for enhancing emotion
recognition performance by extracting more discriminative
features from EEG signals. The channel-wise attention mech-
anism adaptively assigns the weights of different channels.
The spatial information was extracted from the EEG signals
by a CNN model. Then, the extended self-attention was inte-
grated into an RNN for exploring the temporal information
of EEG signals. The accuracy was 93.72% for the valence
dimension and 93.38% for the arousal dimension for the
DEAP dataset. Gao et al. [28] developed a deep architecture
named channel-fused dense convolutional network (CDCN)
for EEG-based emotion recognition using differential entropy
(DE) as a feature with frame length 1 s. Both DEAP and
SEED datasets were used for evaluating the performances
of the proposed method. The accuracy for the DEAP dataset
was 92.24% for the valence dimension and 92.92% for
the arousal dimension. The performance of SEED dataset
was 90.63% for classifying positive and negative emotions.
A deep learning fusion model of long-short term memories
neural networks (LSTM) and graph convolutional neural

network (GCNN) named ECLGCNN was used for
EEG-based emotion recognition with differential entropy
(DE) feature with frame length 6 s [29]. The accuracy
was 90.45% for the valence dimension and 90.60% for
the arousal dimension with the DEAP dataset in a subject-
dependent experiment. A spatial-temporal EEG data repre-
sentation model with both cascaded and parallel hybrid con-
volution recurrent neural networks were used for recognizing
emotional categories more accurately [30]. The maximum
classification accuracy was for cascaded convolution recur-
rent neural network (CASC-CNN-LSTM for short) with
93.64% for the valence dimension and 93.26% for the arousal
dimension with the DEAP dataset for 1 s frame length.
Zheng et. al. used different features such as differential
entropy (DE), power spectral density (PSD), differential
asymmetry (DASM), and rational asymmetry (RASM) for
EEG-based emotion classification [13]. The classification
was performed with support vector machine (SVM) and deep
belief networks (DBNs) on the SEED dataset. Accuracy
was presented for different frequency bands (delta, theta,
alpha, beta, gamma) with different features and classifiers.
The highest accuracy of 86.08% was obtained for DE fea-
tures with DBN. The dynamical graph convolutional neural
networks (DGCNN) with differential entropy (DE) feature
was proposed and 90.40% accuracy was obtained for the
SEED dataset [31]. The spatial-temporal recurrent neural
network (STRNN) was proposed for integrating the feature
learning from both spatial and temporal information for
EEG-based emotion recognition and 89.50% accuracy was
obtained for the SEED dataset for 1 s frame length [32].
A novel concept of electrode-frequency distribution maps
(EFDMs) with short-time Fourier transform (STFT) with
deep convolutional neural network (CNN) was proposed for
automatic feature extraction [33]. The accuracy was 90.59%
for the SEED dataset for 1 s frame length. A four-dimensional
convolutional recurrent neural network (4D-CRNN) was pro-
posed for emotion recognition from EEG signal in [34] using
DEAP and SEED datasets. The accuracy was 94.22% for
valence dimension and 94.58% arousal dimension for DEAP
dataset. The accuracy was 94.74% for SEED dataset. The
frame length was 2 s. Graph convolutional broad network
(GCB-net) along with broad learning system (BLS)-based
emotion recognition method was proposed in [35] using
SEED dataset. The accuracy was 94.24% for classifying
positive and negative emotions. Regularized graph neural
network (RGNN) was proposed for EEG-based emotion
recognition in [36] using SEED dataset and accuracy was
94.24% for classifying positive and negative emotions for
1 s frame length. A novel deep neural network was pro-
posed for emotion classification using EEG systems in [37],
which combines the convolutional neural network (CNN),
sparse autoencoder (SAE), and deep neural network (DNN)
together. By using pearson correlation coefficient (PCC)-
based features accuracy was 96.77% for SEED dataset. The
accuracy was 89.49% and 92.86% for valence and arousal
dimensions respectively for DEAP dataset. The frame length

VOLUME 11, 2023 44029



I. Farhana et al.: Emotion Recognition Using Narrowband Spatial Features of EEG

was 8 s. A model based on spiking neural networks (SNNs)
architecture named NeuCube was used to classify emo-
tions with the variance feature extraction method in [38].
The accuracy was 96.67% for SEED dataset for 3 s frame
length. Optimized residual networks (ResNet) was used
for emotion classification in [39] and the accuracy was
93.42% for SEED dataset for 2 s frame length. A multi-
model intensive multivariate empirical mode decomposition
(iMEMD)-based emotion recognition approach with spatial
feature selection method was proposed in [40]. The accuracy
was 96.30% for SEED dataset. A combined deep neural
network (DNN) model for EEG-based emotion recognition
was proposed in [41] where characteristics of multiple neural
networks were combined by using deep feature clustering
(DFC) method for selecting top EEG features. The accuracy
was 97.50% for SEED dataset. The CNN-BiLSTM-MHSA
model [42] was proposed for emotion recognition. Here,
‘The proposed study 1’ which did not use CSP-generated
features has 95.12% and 94.62% accuracy for valence and
arousal dimensions respectively. ‘The proposed study 2’ used
CSP-generated features but it showed the average perfor-
mance (binary classification) of valence, arousal, dominance,
and liking dimensions.

The emotion classification performance of the proposed
method is 96.15% and 96.47% for valence and arousal dimen-
sions respectively with the DEAP dataset. The accuracy with
the SEED dataset is 99.95%. The performance of the pro-
posed method is better than other existing methods with both
DEAP and SEED datasets.

In the proposed method, the Butterworth bandpass filter
has been implemented to preprocess EEG data for extracting
different subbands (theta, alpha, beta, and gamma). Then
framing has been performed on the individual subbands.
Further spatial features have been extracted by applying CSP
after calculating entropy and energy-based features from each
subband. All the spatial features from each of the subbands
have been used for generating the final feature matrix. The
inclusion of all subband features has a vital role in the
discrimination of emotion tasks. Finally, the support vector
machine (SVM) has been used for classifying emotions.

The CSP has been performed on the short-time entropy-
energy feature space. Then SVM classifier has been applied
on the CSP-generated feature space. It has been found that
the emotional state can be recognized from the energy distri-
bution of different subbands of EEG [16]. Besides, entropy
features represent the amount of information that is carried
by an individual subband [17]. Moreover, the CSP-generated
features are more discriminative for emotion classification.
That is why the performance of the proposed method is better
than the other existing methods.

For this experiment linear, 2nd, 3rd, 4th order polynomial
kernels, as well as RBF kernels of SVM have been tried for
classification of emotions for the DEAP dataset. The perfor-
mance comparison of these kernels is exhibited in Fig. 14.
The performance is higher for 3rd and 4th order polynomial
kernel functions which are almost the same for valence and

TABLE 3. Performance comparison of the proposed method with other
recently developed algorithms based on DEAP dataset.

TABLE 4. Performance comparison of the proposed method with other
recently developed algorithms based on SEED dataset.

TABLE 5. Performance comparison of the proposed method with other
recently developed algorithms for individual subbands (theta, alpha,
beta, and gamma) based on SEED dataset.

arousal dimensions (valence dimension: 96.15% (order 3)
and 96.36% (order 4); arousal dimension: 96.47% (order 3)
and 96.45% (order 4)). Here, the use of the order 4 polyno-
mial kernel is computationally more costly than the order 3
polynomial kernel but contributes a little. In this proposed
work, the 3rd order polynomial kernel of SVM has been
used for the final performance demonstration. For similarity
with the DEAP dataset, the same kernel function has been
used for the SEED dataset. The classification performance
improves because of generating more discriminative features
after applying spatial filtering with CSP. The discrimination
performance of the proposed method for the topmost two
(one pair) CSP-generated features of gamma (30-47 Hz)
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FIGURE 14. The performance comparison of the proposed method with
different kernels of SVM classifier conducted on DEAP dataset.

FIGURE 15. Discrimination performance of topmost two (one pair)
CSP-generated features of gamma (30-47 Hz) subband of subject ‘s06’
selected from DEAP dataset. Here, the leftmost figure represents the
discrimination performance between high and low class in valence
dimension whereas the rightmost figure represents the discrimination
performance between high and low class in arousal dimension.

subband of subject ‘s06’ selected arbitrarily from the DEAP
dataset has been plotted in Fig. 15. Here, the discrimina-
tion performance has been represented between high and
low classes both for the valence dimension as well as the
arousal dimension. The optimal number of spatial features
has been selected for generating the final result. For both
of the datasets, seven pairs of spatial features resulting in
fourteen features have been selected from each subband. The
CSP features obtained from each of the four bands have been
combined to comprise the final feature vector for each trial.
The result of the proposed method has been compared with
the result of the other existing methods based on the DEAP
dataset and SEED dataset as illustrated in Table 3 and Table 4
respectively. From the comparative study, it is visible that
the proposed method gives better classification accuracy than
the other methods. The experimental results of the individual
subbands obtained from the proposed method have been also

compared with the other existing methods in Table 5 for the
SEED dataset.

In the proposed method, only high or positive(+) and low
or negative(−) emotions (binary classification) are classified
in terms of valence and arousal dimensions for the DEAP
dataset. On the other hand, in the case of the SEED dataset,
the high or positive(+) and low or negative(−) emotions
(binary classification) are classified in terms of the valence
dimension only. These impressive results have been achieved
for the proposed method only for the binary classification
(high/low) of a single dimension (valence/arousal). The result
would be decreased for the multiclass classification in the
combined valence-arousal dimension (++, +−, −+, −−

cases), which is not studied in this current study. In the future,
it is planned to extend the proposed method to classify more
than two classes of emotions that are generated by taking dif-
ferent combinations of valence and arousal values. Besides,
different feature selection algorithms will be incorporated in
the future works to train the classifier with more discrimi-
nating features for higher performance which has not been
studied in this current study.

VI. CONCLUSION
The CSP-based feature extraction method has been imple-
mented in this study for emotion classification using
short-term EEG signals from multiple subbands. The exper-
imental evaluation has been performed by publicly avail-
able DEAP and SEED datasets. In DEAP dataset, 32 EEG
channels are used to present two-class (high arousal and low
arousal/ high valence and low valence). The second dataset
SEED contains 62 EEG channels to present two-class (pos-
itive and negative emotions) EEG-based emotion classifica-
tion in the BCI paradigm. The bandpass filtering has been
implemented on the preprocessed EEG data for extracting
rhythmic components theta, alpha, beta, and gamma within
the frequency range of 4 Hz to 45 Hz. Afterwards signal
framing (4 s and 2 s with 50% overlap) has been performed on
each subband. Every trial of each subband are represented by
short-time attributes (energy-entropy terms) in place of whole
EEG samples. The spatial features have been extracted by
using CSP technique on the feature matrix of each subband.
The features generated by CSP spatial filtering technique are
more discriminative for emotion classification. The spatial
features of individual subband and the combination of mul-
tiple subbands have been used for classification by SVM
with cubic polynomial kernel function. The experimental
analysis have been also performed for different number of
spatial features. The CSP generates discriminative features
that enhance the classification performance. The selection of
the optimal number of CSP features gives better classifica-
tion accuracy. The CSP-based emotion recognition approach
has given higher performance that outperforms other exist-
ing methods. The subject independent emotion classification
from EEG signal has been considered as the future extension
of this study.
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