
Received 29 March 2023, accepted 20 April 2023, date of publication 24 April 2023, date of current version 27 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269793

Accelerating Parallel Applications Based on
Graph Reordering for Random
Network Topologies
YAO HU , (Member, IEEE)
Research Institute for Digital Media and Content, Keio University, Hiyoshi Campus, Yokohama, Kanagawa 223-8523, Japan

e-mail: huyao0107@gmail.com

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 21K11859.

ABSTRACT The Message Passing Interface (MPI) is a crucial programming tool for enabling communica-
tion between processes in parallel applications. The goal of MPI users is to allocate tasks to processors in
a way that maximizes both spatial and temporal locality in the network. However, this can be challenging,
especially in large-scale networks where maximizing processor locality may not be feasible at runtime.
To address this issue, we propose the use ofHamorder, an offline node reassignment approach that takes into
account physical processor locations based on graph reordering for Random network topologies. Hamorder
aims to optimize task mapping for improved performance in parallel applications, whether for multiple tasks
or within a single task. Additionally, we investigate the potential of improving MPI applications through
runtime parameter tuning based onHamorder. Our evaluation results show thatHamorder provides a 27.3%
improvement in performance compared to the Gorder algorithm on Random topologies, which is a state-of-
the-art solution designed with the aim of enhancing cache locality and achieves this goal by rearranging the
vertices of a graph in a way that places the vertices that are typically accessed together in close proximity.
Moreover, our autotuning framework using Hamorder results in an average speedup of 1.38× for targeted
MPI applications by searching through various runtime parameter combinations.

INDEX TERMS Autotuning, graph reordering, message passing interface (MPI), parallel application.

I. INTRODUCTION
In parallel applications that rely heavily on communica-
tion, a substantial portion of the execution time is dedi-
cated to exchanging numerical data between processes, which
becomes the primary factor affecting message transfer. The
Message Passing Interface (MPI) [1] is a standardized library
specification designed for communication between processes
in a parallel computing environment. MPI enables processes
running on separate processors to interact with each other, for
example, by exchanging intermediate results or sending data
to other processes for additional processing and analysis.

In MPI-based parallel applications, there is a need for
rapid transfer of large amounts of numerical data over a
network. The placement of MPI processes, also known as

The associate editor coordinating the review of this manuscript and

approving it for publication was Tomas F. Pena .

ranks, on processors is optimized to align the communi-
cation patterns with the underlying hardware architecture.
Task mapping plays a crucial role in ensuring efficient
inter-processor communication during application execution.
However, the task mapping problem is known to be NP-
complete [2], meaning that there is no computationally fea-
sible algorithm for evaluating all possible communication
patterns, as different mapping methods bring their own
challenges, such as long path length and heavy network
congestion. Nevertheless, much research has been done on
specialized strategies and heuristics [3], [4], [5], [6]. In gen-
eral, an effective and efficient task mapping is achieved by
optimizing the locality of the communication. A mapping
with high locality results in communication between pro-
cessors that are close to each other, while a mapping with
low locality results in communication between processors
that are dispersed throughout the network. The objective is

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

40373

https://orcid.org/0000-0002-6358-0570
https://orcid.org/0000-0002-7622-4698

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

to map tasks in a manner that minimizes inter-processor
communication.

Previous studies have introduced node reordering methods
that take advantage of graph characteristics, such as ver-
tex neighborhood and vertex degree distribution, to enhance
cache block utilization [7], [8], [9], [10]. The basic idea
behind these methods is to rearrange vertices in memory so
that frequently accessed vertices are located together in a
contiguous memory region. This increases the likelihood that
memory blocks comprised of frequently accessed vertices
will remain in the cache, resulting in higher cache utiliza-
tion. In this study, we introduce an offline graph reordering
algorithm named Hamorder. The term ‘‘offline’’ is used to
indicate that theHamorder algorithm operates independently
of the task execution, resulting in little impact on application
performance with regards to its time complexity. Our focus in
this research is on Random network topologies made possible
by wireless optical communication, such as free space optical
(FSO) technology [11]. In our earlier studies, we have also
developed FSO link designs for the deployment of high-
performance computing (HPC) clusters [12] and demon-
strated the use of FSO for task scheduling in datacenters [13].
To simulate the number of FSO terminals per node, we assign
the network degree in a Random topology.Hamorder renum-
bers nodes in Random network topologies to improve process
embedding locality for parallel application execution. There
are two important differences between Hamorder and exist-
ing graph reordering techniques. Firstly, Hamorder aims to
optimize parallel application performance instead of increas-
ing cache hit rate. Secondly, Hamorder enhances locality
for both inter-task and intra-task processor number ordering,
whereas existing graph reordering techniques often ignore
vertex reordering within a node group or community.

Figure 1 illustrates the impact of the Hamorder algorithm
on a sample Random network topology. The performance
of graph reordering algorithms based on BFS (Breadth First
Search) or DFS (Depth First Search) may vary depending
on the choice of the root node, leading to different level
assignments and node ordering performance. To simplify our
illustration of the effect of the Hamorder algorithm, we use a
random node ordering as a baseline. We consider two parallel
tasks, one with 4 ranks and the other with 5 ranks. We use
a default by-order task mapping approach [3], which maps
ranks to available processors in ascending order, i.e., rank-n
is deployed on processor-n, for example, rank-0 on processor-
0, rank-1 on processor-1, rank-2 on processor-2, etc. After
applying the Hamorder algorithm to renumber the processor
IDs, the topology embeddings for the two tasks appear to have
better locality, with a lower ASPL (Average Shortest Path
Length) for each topology embedding. This demonstrates
that Hamorder enhances the closeness of communication
distances among node pairs in a topology embedding for a
dispatched task without changing the overall network topol-
ogy or improving the task mapping algorithm.

The performance of the MPI runtime is influenced by
both the computation power of compute nodes and the

FIGURE 1. The Hamorder algorithm performs graph reordering on
Random network topologies. The matrix An represents the adjacency
matrix of the topology embedding for task n, which shows the distance
between any source and destination node. The ASPL (Average Shortest
Path Length) represents the average distance between all node pairs and
indicates the locality of the topology embedding.

communication between them. The communication, in turn,
is influenced by the way tasks are mapped. One way to
improve task mapping is to reorder the node IDs, which can
reduce the distance (i.e., path hops) between communicat-
ing compute nodes and minimize the chances of interfer-
ence among multiple running tasks. In this study, we aim to
enhance the performance of parallel applications using the
Hamorder algorithm. However, while programming in par-
allel, the maximum improvement of performance is limited
by the impact of non-parallelizable parts and parallelization
overhead. Hence, we strive to optimize communication capa-
bility through a well-designed implementation and config-
uration of Hamorder on Random network topologies. Our
solution involves using an autotuning method to search for
the optimal environment for a specific target application from
a vast search space. As a result, the performance of the
target parallel application is significantly enhanced within a
reasonable amount of time.

Our main contributions in this work are summarized as
follows:

• We demonstrate that Random network topologies are
more suitable for most of the evaluatedMPI applications
compared to conventional regular topologies, based on
better execution performance.

• We introduce a new light-weight graph reordering algo-
rithm, Hamorder, to improve parallel application per-
formance on Random network topologies. Evaluation
results show that Hamorder outperforms the state-of-
the-art Gorder algorithm by up to 27.3%.

• To further optimize the performance of parallel appli-
cations, we propose an autotuning framework based
on Hamorder using OpenTuner. Evaluation results
show that the framework provides an average execu-
tion speedup of 1.38× for target MPI applications,
using a search space of various runtime parameter
combinations.

The structure of this paper is as follows. In Section II,
background information and related works are discussed.
Section III presents the Hamorder algorithm and the

40374 VOLUME 11, 2023

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

Hamorder-based autotuning framework. Section IV show-
cases the evaluation methodology and results. Finally, in
Section V, we conclude this paper with a summary of our
findings.

II. BACKGROUND AND RELATED WORKS
A. TASK MAPPING PROBLEM
The task mapping and its related concepts can be seen as
similar to topology embedding in graph theory, hence we
adopt a notation that expands upon the notation used for graph
embedding [14].

The communication pattern between processes is repre-
sented by a graphC = (Vc,Ec), where Vc is a set of processes
and Ec(u, v) denotes the volume of communication from pro-
cess u ∈ Vc to process v ∈ Vc. If there is no communication
between process u and process v, the value of Ec(u, v) is set
to zero. The graph C may contain disconnected components,
and isolated vertices represent concurrent execution of unre-
lated tasks.

Similarly, the physical interconnection network between
processors is depicted by a graph G = (Vg,Eg), where Vg
is the set of physical compute nodes and Eg(m, n) is the
bandwidth capacity of the link between node m ∈ Vg and
node n ∈ Vg. If there is no link between node m and node
n, then Eg(m, n) = 0. Let P(m, n) be the set of simple paths
connecting nodem to node n, where each edge is used at most
once. And let T (m, n, p) represent the fraction of traffic from
node m to node n that is routed through path p ∈ P(m, n).
Typically, the traffic is routed through the shortest path.

A topologymapping is defined by a function F : Vc→ Vg,
which maps the vertices (processes) of the communication
graph C to the vertices (processors or nodes) of the inter-
connection network graph G. There are two metrics used to
evaluate a mapping: dilation and contention. The length of a
path p is represented as |p|.
The dilation of an edge (u, v) in the communication graph

C is calculated as the average length of the paths taken by a
message sent from process u to process v:

dilation(u, v) =
∑

p∈P(F(u),F(v))

T (F(u),F(v), p) · |p| (1)

The largest dilation among all inter-process communica-
tions is defined as the dilation of the mapping F :

dilation(F) = max
u,v∈Vc

dilation(u, v) (2)

It represents the maximum number of edges traversed by
packets and thus plays a crucial role in determining the per-
formance of an application. The contention of a link (m, n)
in the interconnection network is the ratio of the amount of
traffic on the link to its capacity. For simplicity, the capacity
of a link is typically set to one. Therefore, the contention of
an edge e ∈ Eg is calculated as follows:

contention(e) =
∑
u,v∈Vc

∑
p∈P(F(u),F(v)),e∈p

T (F(u),F(v), p)

(3)

The largest contention among all inter-processor commu-
nications is defined as the contention of the mapping F :

contention(F) = max
e∈Eg

contention(e) (4)

It has a significant impact on the minimum communication
latency between tasks.

Both dilation and contention can be calculated in poly-
nomial time. A simple task mapping requires both dilation
and contention to be equal to one. The regular task mapping
typically meets this requirement. However, it becomes chal-
lenging to satisfy these requirements when mapping tasks on
Random topologies, especially when links are shared among
multiple parallel tasks. In such cases, both dilation and con-
tention are larger than one [3]. This scenario is also taken into
consideration when mapping tasks on Random topologies
in this work. The terms mapping and embedding are used
interchangeably throughout the rest of the work.

There have been highly scalable cluster management tools
for HPC clusters, such as SLURM [15] and Kubernetes
Scheduler [16]. While these tools offer a means for allocating
compute node resources to users on an exclusive or non-
exclusive basis, their primary focus is on scheduling and
monitoring tasks on the nodes that have been allocated. Our
objective in this work, however, is different. Specifically,
we seek to enhance task execution performance primarily
through intra-task node mapping. As a future undertaking,
we plan to investigate the co-design of Hamorder-based task
mapping and scheduling within the context of existing HPC
environments.

B. GRAPH REORDERING
Graph reordering is a technique used to improve the perfor-
mance of graph algorithms by rearranging the vertices and
edges in memory. This process does not modify the graph
itself and does not require any changes to the underlying algo-
rithms. The reordering of vertices is performed to improve
cache locality based on the new vertex IDs assigned during
the relabeling process.

Many researchers have proposed various graph reordering
techniques, with the most powerful methods leveraging the
community structure commonly found in real-world graphs.
For instance, the Gorder [7] technique comprehensively ana-
lyzes the connectivity between vertices and rearranges them
such that vertices with common neighbors are placed close to
each other in memory. Another example is Rabbit Order [8]
which is a hierarchical community-based ordering method
that leverages the locality derived from hierarchical commu-
nity structures found in real-world graphs.

There are also graph reordering techniques that focus on
temporal locality, which is the rearrangement of vertices
based on their degrees. These techniques aim to reduce the
cache footprint of frequently accessed vertices for improved
cache efficiency. For example, DBG (Degree-Based Group-
ing) [9] is a novel graph reordering technique that aims to
preserve graph structure while reducing the cache footprint

VOLUME 11, 2023 40375

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

of frequently accessed vertices. However, DBG only uses
coarse-grain reordering, meaning it partitions vertices into
a few groups based on their degree while maintaining the
original relative order within each group. On the other hand,
HubSort [10] only sorts frequently accessed vertices, preserv-
ing some graph structure while reducing the cache footprint
of frequently accessed vertices.

Our proposed technique, Hamorder, has similarities to
existing graph reordering techniques. For instance,Hamorder
also requires a preprocessing pass over the graph dataset
and does not require any changes to the graph algorithms.
Additionally, Hamorder is a software-based method that
can improve performance without requiring any additional
hardware support. However, the main difference between
Hamorder and other graph reordering algorithms is its focus
on improving the performance of parallel applications rather
than the cache hit rate in memory. Additionally, Hamorder is
a fine-grain ordering algorithm that sorts vertices within any
group to minimize structural disruption, making it effective
in maintaining spatial locality among processes within a dis-
patched job when using the default by-order task mapping
approach.

C. TUNING OF MPI APPLICATIONS
The MPI (Message Passing Interface) standard has been
successful due to the wide availability of various MPI imple-
mentations, such as MPICH [17], which is the dominant
implementation used on the majority of the world’s top
10 supercomputers. MPI program users aim to minimize
communication overhead, however, the performance of the
communication library is largely dependent on the MPI
library developers.

On one hand, it can be challenging for MPI program
developers to optimize their programs when there are a large
number of processes involved, such as over 10,000 processes
on a supercomputer. On the other hand, as the number of cores
on a chip increases and the data hierarchy becomes deeper,
the distance between data owned by each process increases,
leading to a rise in communication delay.

In data centers, the optimal implementation and configura-
tion of parallel applications are chosen based on the network
device and system scale. While improving processor perfor-
mance and network bandwidth is important, reducing com-
munication overhead, which is a side effect of parallelization,
should also receive attention. This issue is especially relevant
in interconnection networks that involve thousands of high-
speed compute nodes. Therefore, it is crucial to use the fastest
possible MPI implementation and configuration.

Autotuning is becoming more popular in domains such as
high performance computing (HPC) to optimize programs
by automating the search for an optimal implementation or
configuration. This can make the optimization process more
efficient by searching a larger space than would be possible
by hand. Our goal is to explore performance tuning func-
tions without putting a burden on the developers of high-
performance parallel programs.

There have been many efforts to optimize MPI commu-
nication. For example, MPI point-to-point communication
routines can be optimized by using more efficient primi-
tives [18], or through the use of a library for monitoring
MPI applications [19]. MPI collective communications can
be optimized over wide-area networks by considering net-
work details [20], or through a library like HPC-X [21] for
offloading. There have also been developments in algorithms
for MPI collective operations [22], [23], [24], as well as opti-
mizations for thread-based MPI implementations [25] and
clusters of SMPs [26]. A set ofMPI collective communication
routines, called STAR-MPI [27], is developed to adapt to
system architecture and application workload. There is even a
combined compiler and library approach [28] for optimizing
MPI communication.

This work, however, goes beyond simply developing
MPI collective communication algorithms. It focuses on
optimizing the system using Hamorder-based autotuning by
selecting the optimal or suboptimal combination of network
parameters and configurations from a set of communication
options. The use of Hamorder-based autotuning offers the
potential for further performance improvement.

III. THE OPTIMIZATION BY HAMORDER
A. THE HAMORDER ALGORITHM
In this study, we introduce a new, lightweight node reordering
algorithm called Hamorder to enhance parallel application
performance. Notice that, our focus in this work is on a
new algorithm for reordering node IDs. We adopt a default
by-order task mapping approach [3], which assigns ranks
to available processors in ascending order. This means that
rank-n is initially assigned to processor-n, with rank-0 on
processor-0, rank-1 on processor-1, rank-2 on processor-2,
etc. Hamorder performs fine-grained node reordering such
that each node is adjacent to at least one node with a neigh-
boring ID. Unlike community-based reordering techniques
like Gorder, which classify nodes based on their communi-
ties, Hamorder treats each node equally across the network.
Within each task mapping block, Hamorder keeps the origi-
nal order of nodes, preserving the graph structure on a larger
scale. The steps of the Hamorder algorithm are outlined in
Algorithm 1.

The Hamorder algorithm is designed to find a solution to
the Hamiltonian cycle problem, which is a well-known math-
ematical problem [29]. To start, a small weight is assigned to
each edge in the original network topology T , while a large
weight is assigned to each edge in the complement topology
Tc. These two topologies are then merged to form a complete
topology Tm with varying edge weights. A greedy algorithm
is then used to solve the Hamiltonian cycle problem in Tm
and find the shortest cycle that visits all the nodes. The node
IDs are then reordered based on the order of the nodes in the
resulting cycle. The Hamorder algorithm operates by adding
one node to the solution in each iteration. The node added to
the solution is chosen to be the one not already in the cycle

40376 VOLUME 11, 2023

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

Algorithm 1 The Hamorder Algorithm
Require:

Topology T (N ,E), where topology T has a node set N
and an edge set E

Ensure:
Node-ID mapping M [|N |], where M [n] is the renum-
bered ID of node n

1: procedure hamorder(T)
2: STEP 1: Set weight = 1 to each edge of T
3: STEP 2: Obtain the complement topology of T , i.e.,
Tc, and set weight = MAX_INT to each edge of Tc

4: STEP 3: Merge topologies T and Tc to form a new
topology Tm, i.e., Tm = T ∪ Tc

5: STEP 4: Solve the Hamiltonian cycle problem to
generate a node list L[|N |] by using a greedy method in
Tm

6: STEP 5: Renumber N based on the resulting L[|N |]
7: id← 0
8: for i = 0→ |N | − 1 do
9: M [L[i]]← id++, where L[i] is original node ID
10: end for
11: end procedure

whose connection to the previous node incurs the least cost.
As a result, the time complexity of the Hamorder algorithm
is O(|N |2). As an offline graph reordering approach, it has
minimal impact on the real-time MPI application execution
performance.

The results of node ID renumbering on a simple sample
network topology are depicted in Figure 2 for a synthetic
example. For comparison, Gorder, a typical community-
based graph ordering technique, is used. The initial node
numbering is not suitable for communication patterns where
neighboring ranks havemore frequent communication as they
are mapped to distant processors. Gorder improves this by
performing community detection and node clustering oper-
ations on the network topology. After dividing the network
into communities, the node IDs are reassigned such that nodes
within the same community have close IDs. This is because
nodes within the same community have more connections to
each other than those outside the community. Within each
community, the node IDs are renumbered to be contiguous.
However, this approach is a coarse-grain approach, meaning
it ignores the ordering of nodes within a single community,
as it was originally designed to improve cache hit rate. There-
fore, neighboring nodes within the same community are not
guaranteed to have adjacent IDs.

In contrast to other techniques, our proposed solution,
Hamorder, reorders the processors so that neighboring ranks
are mapped to processors that are close to each other. This is
because these ranks are likely to have more communication
with one another.
Hamorder takes a comprehensive approach to node

reordering, starting from the entire topology, and ensuring

FIGURE 2. Illustration of node ID renumbering by a simple example
graph.

that each node has at least one neighboring node with an
adjacent ID. In this example, the nodes are renumbered to
form a path from node 0 to node 7 (0 → 1 → 2 → 3 →
4 → 5 → 6 → 7) in order to approximate a solution to the
Hamiltonian cycle problem in the network topology.

This solution offers the benefit of reordering node IDs
within a task mapping, regardless of the topology fragment,
while community-based techniques like Gorder focus on
reordering with a community granularity. In a scenario where
nodes 0 to 2 are already occupied and a new parallel task
of two ranks is to be dispatched, Gorder would assign the
task to nodes 3 to 4 (4-hop away), worsening the topology
embedding compared to the original node ordering. However,
with Hamorder, the task would be assigned to nodes 3 to 4
(1-hop away) using the same mapping procedure.

Therefore, compared to community-based graph reorder-
ing techniques, Hamorder offers the advantage of reducing
communication distance between nodes within a contiguous
node embedding, assuming that neighboring ranks have more
communication. This helps to improve the performance of
parallel applications. The effectiveness of Hamorder relies
on the presupposition that communication among neighbor-
ing processes (ranks) is more intense. In a Random net-
work topology with irregular or uncertain communication
patterns, determining the optimal graph reordering solution
is challenging.

The primary focus of this research is on reordering nodes
within a Random topology with a specified network degree,
while assuming that the links are predetermined. In a prior
study [13], we demonstrated the feasibility of utilizing a wire-
less link to establish 1-hop communication between compute
nodes. It is anticipated that the Hamorder algorithm, in com-
bination with wireless links for inter-node communication,
could enhance application execution performance even fur-
ther. We intend to explore this co-design aspect in our future
endeavors.

VOLUME 11, 2023 40377

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

B. HAMORDER-BASED AUTOTUNING
In the previous section, we introduced Hamorder as a solu-
tion to optimize the mapping of parallel application processes
to processors in the network. In this section, we further
improve the performance of the high-performance parallel
program by tuning it based on Hamorder.
Our autotuning process to optimize MPI communication

is approached as a search problem. The search space consists
of a variety of configurations, including network topologies,
MPI implementations, collective communication algorithms,
and others. The performance of each configuration is evalu-
ated, for instance, in terms of application execution time, and
the results are recorded.

To explore the search space of possible implementa-
tions and optimizations based on Hamorder, we use Open-
Tuner [30]. This tool provides an extensible configuration
representation, which can handle complex and user-defined
data types, and allows us to define the search space by
creating a configuration representation that includes a set of
parameters for OpenTuner to search through. In the follow-
ing, we will delve further into our tuning framework for MPI
applications.

1) TOPOLOGY OPTIMIZATION
In this work, we aim to optimize the topology of a gener-
ated Random network based on design parameters like BiBW
(Bisection Bandwidth) [31] andASPL (Average Shortest Path
Length) [32].
BiBW represents the bandwidth available between two

bisected partitions in the network and accounts for the bottle-
neck bandwidth of the entire system. It is considered a better
representation of the bandwidth characteristics of the network
than any other metric. On the other hand, ASPL is the average
number of hops along the shortest paths for all possible node
pairs, measuring the efficiency of data transfer in the network.

We consider two approaches for topology optimization:
Opt-maxBisec and Opt-minASPL. The former optimizes
the base Random network to generate a topology with the
possible largest BiBW. This is done using a 2-Opt local
search algorithm [33], which replaces two old edges with two
new ones in each iteration, keeping the degree of each node
unchanged and increasing the BiBW. The algorithm stops
when the BiBW has not evolved for a specified number of
iterations (I) and generates the resulting graph.
Similarly,Opt-minASPL optimizes the base Random net-

work to generate a topology with the possible minimum
ASPL. The algorithm used for topology generation is similar
to that of Opt-maxBisec.

In this work, we set I = 1, 000 for a realistic convergence
speed in the 2-Opt heuristic. The both topology optimization
algorithms are described in Algorithm 2.

2) MPI IMPLEMENTATION
Choosing the right implementation of the MPI standard
can be challenging for MPI programmers, as they often

Algorithm 2 The Algorithm of Topology Optimization
Require:

Base topology Tb, Iteration limit I
Ensure:

Optimized topology To
1: procedure Opt-maxBisec(Tb, I)
2: To← Tb
3: maxBiBW← calcBiBW(Tb)
4: i← 0
5: while i++ < I do
6: Tt ← 2-Opt(To)
7: BiBW← calcBiBW(Tt)
8: if BiBW > maxBiBW then
9: To← Tt
10: maxBiBW← BiBW
11: i← 0
12: end if
13: end while
14: end procedure

15: procedure Opt-minASPL(Tb, I)
16: To← Tb
17: minASPL← calcASPL(Tb)
18: i← 0
19: while i++ < I do
20: Tt ← 2-Opt(To)
21: ASPL← calcASPL(Tt)
22: if ASPL < minASPL then
23: To← Tt
24: minASPL← ASPL
25: i← 0
26: end if
27: end while
28: end procedure

exhibit similar performance but have different implementa-
tion details, such as communication algorithms. To address
this, we consider three popular and stable MPI implementa-
tions that work well with multi-threaded programs:MPICH,
OpenMPI, and MVAPICH2 [34]. These implementations
are considered to be typical and commonly used.

3) COLLECTIVE COMMUNICATION ALGORITHM
Collective communication operations are critical to the per-
formance of MPI applications. Each MPI implementation
offers various algorithms for each operation and automati-
cally selects the one that best suits the situation based on
factors like communication data size, number of processors,
communicator, or communication library. These selections
are a result of both empirical testing and theoretical analysis
and can vary greatly between MPI implementations [27].
While MPI programmers can manually optimize the algo-
rithms used for collective operations, they must take into
account a variety of parameters.

40378 VOLUME 11, 2023

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

TABLE 1. MPI benchmarks used for evaluation in this work.

This study examines the following algorithms for tuning
MPI applications:

Alltoall: The algorithms include: Bruck, 2dmesh,
3dmesh, Recursive doubling, Pair, Ring, and Basic linear.
Allreduce: The algorithms include: Recursive dou-

bling, Logical ring, Rabenseifner, Rabenseifner var1, and
Rabenseifner var2.
Allgather: The algorithms include: Bruck, 2dmesh,

3dmesh, Recursive doubling, Pair, Ring, and Spread.
Bcast: The algorithms include: Binomial tree, Flat

tree, Scatter logical-ring allgather, and Scatter recursive-
doubling allgather.
The collective communication routines used in our bench-

mark MPI applications are selected from those available in
our simulation framework, SimGrid [35], and have since been
implemented. Further details about each algorithm can be
found in [27].

IV. EVALUATION
A. ENVIRONMENT
To assess the effectiveness of the proposed Hamorder algo-
rithm in enhancing the intra-task communication efficiency
between compute nodes, we employ MPI applications that
place a heavy emphasis on inter-node communication in our
experiments. In this study, we utilize the SimGrid simula-
tion framework (version 3.26) [35] to evaluate the perfor-
mance of parallel application benchmarks, which include:
FT, IS, CG, BT, SP, MG, LU taken from the NAS parallel
benchmarks [36], as well asMM (Matrix Multiplication) and
Graph500 [37]. We adopt Class A as the problem size for
FT, IS, CG, BT, SP, MG, and LU. Each matrix in the MM
application has a size of 1, 000 × 1, 000. A description of
these MPI applications is provided in Table1.

In our simulations, we have set the computing power of
each node to 100 GFlops, while the cable bandwidth has
been set to 40 Gbps. Additionally, the switch latency and
bandwidth have been set to 60 ns and 10 Pbps, respectively.
It is important to note that the execution time of the bench-
mark applications in SimGrid ranges from 5 milliseconds to
5 seconds.

With the aim of minimizing the simulated time of a target
MPI application, we customize the objective of OpenTuner,
which by default aims to minimize the execution time of

TABLE 2. Execution time (s) of MPI applications on 64-node topologies.
The best/worst result is shown in green/red.

a running program. Our custom objective is achieved by
defining a run function, which evaluates the fitness of a con-
figuration in the search space and produces a measurement
result. Using OpenTuner, we search the space of configu-
ration parameter objects with the goal of minimizing the
execution time of the target MPI program.

This study employs pre-defined Random network topolo-
gies for parallel task executions, where the distance between
compute nodes is determined by the number of minimal path
hops. To find the shortest path between compute nodes in an
unweighted graph, we utilize the Dijkstra algorithm, which
is not adaptive and does not alter its behavior based on input
changes. Routing deadlocks are not a concern in this context
and, therefore, are not considered. In order to ensure a fair
comparison, we employ the Dijkstra algorithm for all parallel
task executions during the evaluation.

B. IMPACT OF TOPOLOGY EMBEDDING
This section focuses on examining the effect of parallel
application execution on various network topologies. The
knowledge of network topology plays a crucial role in
optimizing the performance of MPI implementations. The
physical structure of the parallel machine and the process
topology for application execution are described. The con-
nection relationships between nodes or processors in the
network are defined by the chosen topology.

In this research, we aim to analyze a graph with a Ran-
dom topology, taking into consideration the number of nodes
(graph size) and maximum node degree (radix). For compari-
son, we also analyze conventionalMesh and Torus topologies
with the same graph size and maximum node degree. Our
simulation results present the execution times of these appli-
cations on different topologies. The execution time of each
application is influenced by its topology and degree, which
we set to 6.

Table 2 shows the execution times of MPI applications
on 64-node topologies. The conventional topologies are 3-D
Mesh (4 × 4 × 4) and 3-D Torus (4 × 4 × 4), while the
Random topologies are generated with a degree of 6 and
varying dilations. The dilation in topology embedding refers
to the shortest path length between two nodes of an edge,
in terms of number of hops. In general, an increase in the
specified dilation results in easier topology embedding, but
also longer paths and communication latency between non-
adjacent nodes.

VOLUME 11, 2023 40379

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

The execution times of most MPI applications, such as FT,
IS, CG,MG, andMM, are shortest when they are executed on
the Random topologies with dilation-1. For instance, running
MM on Random topologies leads to faster execution times
than when running on conventional topologies such as 3-D
Mesh and 3-D Torus. This is because conventional topolo-
gies may cause long communication hops between compute
nodes, while these can be reduced by shortcut connections in
Random topologies with specific communication patterns.
On the other hand, 3-D Torus has the shortest execution

time for BT and SP, while Random topologies with dilation-
4 perform the worst. This is because BT and SP have more
regular communication patterns, where compute nodes have
equal chances to exchange messages with each other. In such
cases, regular topologies like Mesh and Torus are more
suitable.

It is important to note that a regular topology may not be
suitable for all parallel applications, especially those with
irregular or uncertain communication patterns. In compari-
son, a Random topology seems to be a better choice for most
parallel applications that have irregular or uncertain commu-
nication patterns. However, for Random topologies, a larger
topology embedding dilation leads to slightly degraded exe-
cution performance. It should also be noted that this section
does not consider communication contention between multi-
ple large-dilation embedded tasks, so the side effects of large-
dilation topology embedding seem to be limited.

C. IMPACT OF LOCALITY
Locality is connected to the topology embedding dilation
for task mapping. A large-dilation topology embedding can
result in longer path hops and increased communication
latency between non-neighboring compute nodes. When a
non-contiguous topology embedding is used, one or more
links can be shared by multiple parallel applications, which
leads to bandwidth contention as multiple applications simul-
taneously use the same link.

In this section, we assess the impact of locality on network
contention between parallel applications.We look at the aver-
age execution time of parallel applications when link sharing
occurs between them.

For our experiment, we use a 2-D Torus topology (4 × 2)
and evaluate the impact of different interleaving patterns on
two parallel applications. In pattern A (Fig.3(a)), the two
tasks run without link sharing and are each mapped to a 2-D
Mesh (2×2) topology with a dilation-1 topology embedding,
resulting in good locality for their executions. This is used
as our baseline. In contrast, with patterns B (Fig.3(b)), C
(Fig. 3(c)), and D (Fig.3(d)), one or more links are shared
by the two tasks, thus their execution times will be impacted
by link contention.
The time-independent traces of the MPI applications were

obtained using SimGrid, and multiple MPI applications were
then run simultaneously in replay mode using Batsim [38] to
evaluate the average execution time of two applications over
a 2-D Torus (4× 2) topology.

FIGURE 3. Simultaneous executions of two parallel tasks over the same
network.

FIGURE 4. Average execution time of two simultaneously running NPB
applications.

As seen in Fig. 4, pattern A has the best execution time
because there is no link sharing between the two tasks, allow-
ing each task to make optimal use of the bandwidth over
the network topology. Among all MPI applications, LU is
the most impacted by network contention due to link shar-
ing, with a 104.1% increase in execution time when using
pattern C compared to pattern A. On the other hand, FT is
relatively immune to network contention, with only a 29.2%
increase in execution time when using pattern C compared to
pattern A. The average execution time of the evaluated MPI
applications increases by about half when using patterns B,
C, or D, highlighting the significance of locality for topology
embedding and its potential impact on the execution perfor-
mance of parallel applications.

D. GRAPH REORDERING BY HAMORDER
To enhance the locality of the topology embedding with a
finer resolution on Random topologies, we propose using
the Hamorder graph reordering algorithm, which does not
require modification of the entire network topology or
improvement of the default task mapping approach. The
state-of-the-art graph reordering algorithm, Gorder, shares
several similarities with our proposed Hamorder algorithm.
Both algorithms require a preprocessing pass over the graph
dataset and do not necessitate any modifications to the graph
algorithms. Furthermore,Gorder is a software-based method
that can boost performance without the need for additional
hardware support. Although Gorder’s primary aim is to
increase the cache hit rate in memory, it also facilitates the
maintenance of a certain spatial locality among processes
when using the default by-order task mapping approach.

40380 VOLUME 11, 2023

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

In contrast, the proposed Hamorder algorithm is a fine-grain
ordering algorithm that sorts vertices within each group to
minimize structural disruption during task mapping. Gorder
was initially designed for optimizing cache hit rates rather
than high-performance parallel applications. In this research,
we assess the performance ofGorder andHamorder by com-
paring them on the same Random network topology, utilizing
communication-intensive MPI applications.

The comparison results of the three graph ordering meth-
ods are depicted in Figure 5, using 64-node Random network
topologies. Random network topologies are characterized by
the absence of a specific rule or algorithm governing the
connections between nodes. Hence, these connections are
established randomly. We divided the experiment into two
groups based on network degree, i.e., degree-4 and degree-
6 Random topologies, using the original node numbering
method as a baseline. Notice that, in our evaluation, the
network degree is equivalent to the node degree. This means
that the degree-4 and degree-6 network topologies refer to
each node having 4 and 6 neighboring nodes, respectively.
The results indicate a similar trend for both the degree-4 and
degree-6 cases. The use of an optimized graph reordering
algorithm, such as Gorder or Hamorder, provides an advan-
tage over the baseline ordering method, as it improves the
locality of topology embedding through node renumbering.

Furthermore, Hamorder outperforms Gorder for nearly
all the evaluated MPI applications in both degree-4 and
degree-6 topologies. This is because Hamorder considers
reordering not only amongmultiple topology embeddings but
also within a single topology embedding, while Gorder does
not take into account node reordering within a node group.
On average, Hamorder reduces the execution time by 12.1%
(degree-4) and 17.4% (degree-6) compared to the original
ordering, and by 4.0% (degree-4) and 11.2% (degree-6) com-
pared to Gorder.
We observe that the improvement achieved by Hamorder

is limited, as in this section we have fixed other network
parameters and configurations that could potentially result
in further improvements in the execution performance of
parallel applications if altered based on Hamorder.

E. HAMORDER-BASED AUTOTUNING
In this section, we delve further into the potential of enhanc-
ing parallel applications by presenting an autotuning method
based on the Hamorder algorithm for MPI applications,
which searches over a large number of user-defined configu-
ration parameters. The autotuningmethod includes a compre-
hensive framework for describing complex search spaces for
MPI communication, which significantly reduces the burden
on parallel program developers. The total number of tuning
tests for each MPI application was set to 100.

Figure 6 displays the autotuning progress for five MPI
applications. The X-axis represents the ID of tuning tests and
the Y-axis shows the best execution time achieved by each
tuning run, which gives the best searching result at that point
in time. The results are compared with those obtained from

FIGURE 5. Relative execution time on 64-node Random network
topologies.

conventional topologies, including 2-D Mesh (8 × 8), 3-D
Mesh (4×4×4), 2-D Torus (8×8), and 3-D Torus (4×4×4).
As the tuning tests progress, the application execution time
decreases due to improved configuration parameters.

In this section, we show the improvement in the execu-
tion time of parallel applications through the autotuning pro-
cess. The performance of the application called MG initially
performs worse compared to conventional topologies, but
improves gradually as the tuning process continues. On the
other hand, for other applications such as CG, FT, MM, and
particularlyGraph500, the initial execution time for the tuned
case is either comparable or even better than the conventional
topologies, and it continues to improve throughout the tuning
process. By the end of the tuning process, the tuned case
results in a significant improvement for all tested parallel
applications.

To measure the improvement in the autotuning results,
we use the gap between the final tuned execution time and
the initial one. Figure 7 illustrates the speedup calculated as
follows:

I =
Ti
To

(5)

where Ti denotes the initial execution time at the first search
trial and To is the best (shortest) execution time during the
tuning period.

The evaluation results show that most of the MPI
applications are significantly accelerated by autotuning.
In particular,MG achieved up to 2.29× speedupwith the opti-
mal configuration found. On average, the MPI applications
achieved 1.38× speedup in our defined search space with just
100 tuning tests, rather than an exhaustive search.

VOLUME 11, 2023 40381

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

FIGURE 6. Optimization results for MPI applications.

FIGURE 7. Speedup by autotuning MPI applications.

To demonstrate the efficiency of the application tuning,
we measure the number of tuning tests needed to reach near-
optimal performance. Figure 8 shows the percentage of tun-
ing tests required to get close to the optimal performance
during the tuning period. The proximity (C) to the optimal
performance is defined as follows:

C(n) = 1−
Tn − To
To

(6)

where Tn denotes the temporarily best (shortest) execution
time by the n-th tuning test and To denotes the best (shortest)
execution time throughout the tuning period.

Evaluation results indicate that aminimal number of search
trials are sufficient to achieve near-optimal performance for
all the tested MPI applications. For example, only 1%, 15%,
31%, 3%, and 1% of search trials are required to reach 90%
optimal performance for CG, MG, FT, MM, and Graph500,
respectively. In essence, the proposed autotuning framework
effectively extends the performance enhancement capabilities
of Hamorder to parallel applications on Random topologies.

V. CONCLUSION
In our study, we introducedHamorder, a lightweight reorder-
ing algorithm that enhances the locality of topology embed-
ding through both inter- and intra-task node renumbering

FIGURE 8. Efficiency of autotuning progress for MPI applications.

on Random network topologies. Unlike traditional graph
reorderingmethods,Hamorder prioritizes improving the exe-
cution performance of parallel applications. Our results indi-
cate that Hamorder outperforms the current state-of-the-art
method, Gorder, resulting in an up to 27.3% increase in
speed.

We further leveraged Hamorder in an autotuning frame-
work powered by OpenTuner to optimize the execution of
parallel applications on Random topologies. Our framework
achieved a speedup of up to 2.29× with a minimal number of
search trials.

In future work, we plan to increase the efficiency of
Hamorder and conduct experiments on large-scale systems.
Additionally, we aim to optimize the representation of the
search space in autotuning by considering the importance of
different configuration parameters. This can greatly reduce
the tuning time and improve the search for optimal or subop-
timal configurations.

REFERENCES
[1] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, ‘‘Charac-

terization of MPI usage on a production supercomputer,’’ in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal. (SC), Nov. 2018,
pp. 386–400.

40382 VOLUME 11, 2023

Y. Hu: Accelerating Parallel Applications Based on Graph Reordering for Random Network Topologies

[2] T. Hoefler and M. Snir, ‘‘Generic topology mapping strategies for large-
scale parallel architectures,’’ in Proc. Int. Conf. Supercomput. (ICS),
New York, NY, USA, May 2011, pp. 75–84, doi: 10.1145/1995896.
1995909.

[3] O. Tuncer, V. J. Leung, and A. K. Coskun, ‘‘PaCMap: Topology
mapping of unstructured communication patterns onto non-contiguous
allocations,’’ in Proc. 29th ACM Int. Conf. Supercomput., Jun. 2015,
pp. 37–46.

[4] T. Agarwal, A. Sharma, A. Laxmikant, and L. V. Kale, ‘‘Topology-aware
task mapping for reducing communication contention on large parallel
machines,’’ in Proc. 20th IEEE Int. Parallel Distrib. Process. Symp.,
Apr. 2006, p. 10.

[5] O. Tuncer, Y. Zhang, V. Leung, and A. Coskun, ‘‘Task mapping on a
dragonfly supercomputer,’’ in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), Sep. 2017.

[6] J. Galvez, N. Jain, and L. V. Kale, ‘‘Automatic topologymapping of diverse
large-scale parallel applications,’’ in Proc. Int. Conf. Supercomput. (ICS).
New York, NY, USA: Association for Computing Machinery, Jun. 2017,
pp. 1–10.

[7] H. Wei, J. X. Yu, C. Lu, and X. Lin, ‘‘Speedup graph processing by graph
ordering,’’ in Proc. Int. Conf. Manage. Data (SIGMOD). New York, NY,
USA: Association for Computing Machinery, Jun. 2016, pp. 1813–1828,
doi: 10.1145/2882903.2915220.

[8] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura, ‘‘Rabbit
order: Just-in-time parallel reordering for fast graph analysis,’’ in Proc.
IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016, pp. 22–31.

[9] P. Faldu, J. Diamond, and B. Grot, ‘‘A closer look at lightweight graph
reordering,’’ 2020, arXiv:2001.08448.

[10] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
‘‘Making caches work for graph analytics,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2017, pp. 293–302.

[11] S. A. Al-Gailani, M. F. M. Salleh, A. A. Salem, R. Q. Shaddad,
U. U. Sheikh, N. A. Algeelani, and T. A. Almohamad, ‘‘A survey of free
space optics (FSO) communication systems, links, and networks,’’ IEEE
Access, vol. 9, pp. 7353–7373, 2021.

[12] I. Fujiwara, M. Koibuchi, T. Ozaki, H. Matsutani, and H. Casanova,
‘‘Augmenting low-latency HPC network with free-space optical links,’’ in
Proc. 21st Int. Conf. High-Perform. Comput. Archit. (HPCA), Feb. 2015,
pp. 390–401.

[13] Y. Hu and M. Koibuchi, ‘‘Enhancing job scheduling on inter-rackscale
datacenters with free-space optical links,’’ IEICE Trans. Inf. Syst.,
vol. E101.D, no. 12, pp. 2922–2932, 2018.

[14] A. Rosenberg, ‘‘Issues in the study of graph embeddings,’’ in Graphtheo-
retic Concepts in Computer Science (Lecture Notes in Computer Science),
vol. 100. Berlin, Germany: Springer, 1981.

[15] N. A. Simakov, M. D. Innus, M. D. Jones, R. L. DeLeon, J. P. White,
S. M. Gallo, A. K. Patra, and T. R. Furlani, ‘‘A Slurm simulator: Imple-
mentation and parametric analysis,’’ in High Performance Computing
Systems. PerformanceModeling, Benchmarking, and Simulation, S. Jarvis,
S. Wright, and S. Hammond, Eds. Cham, Switzerland: Springer, 2018,
pp. 197–217.

[16] H. Ishak, S. A. Makhlouf, and G. Belalem, ‘‘A proposal of kubernetes
scheduler using machine-learning on CPU/GPU cluster,’’ in Proc. Comput.
Sci. On-Line Conf., Aug. 2020, pp. 567–580.

[17] MPICH. Accessed: Jan. 20, 2023. [Online]. Available:
http://www.mpich.org/

[18] L. Mario, S. Pakin, and A. Chien, ‘‘Efficient layering for high speed
communication: The MPI over fast messages (FM) experience,’’ Cluster
Comput., vol. 2, pp. 107–116, Sep. 1999.

[19] E. Jeannot and R. Sartori, ‘‘Improving MPI application communica-
tion time with an introspection monitoring library,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), May 2020,
pp. 691–700.

[20] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang,
‘‘MagPIe: MPI’s collective communication operations for clustered wide
area systems,’’ in Proc. 7th ACM SIGPLAN Symp. Princ. Pract. parallel
Program. New York, NY, USA: Association for Computing Machinery,
May 1999, pp. 131–140, doi: 10.1145/301104.301116.

[21] J. Jose, ‘‘Optimizing MPI collective communication using HPC-X on
AzureHPCVMs,’’Microsoft, Redmond,WA,USA, Tech. Rep.,May 2020.
[Online]. Available: https://techcommunity.microsoft.com/t5/azure-
compute-blog/optimizing-mpi-collective-communication-using-hpc-x-
on-azurehpc/ba-p/1356740

[22] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway,
J. E. Moreira, B. Steinmacher-Burow, andY. Zheng, ‘‘Optimization ofMPI
collective communication on BlueGene/L systems,’’ in Proc. 19th Annu.
Int. Conf. Supercomput., Jun. 2005, pp. 253–262.

[23] C. Sudhakar, T. Ramesh, and K. Waghmare, ‘‘Path based optimization of
MPI collective communication operation in cloud,’’ in Proc. Int. Conf.
Comput., Power Commun. Technol. (GUCON), Sep. 2018, pp. 595–599.

[24] H. Zhou, J. Gracia, and R. Schneider, ‘‘MPI collectives for multi-
core clusters: Optimized performance of the hybrid MPI+MPI parallel
codes,’’ in Proc. Workshop Proc. 48th Int. Conf. Parallel Process. (ICPP).
New York, NY, USA: Association for Computing Machinery, Aug. 2019,
doi: 10.1145/3339186.3339199.

[25] J. Adam, M. Kermarquer, J.-B. Besnard, L. Bautista-Gomez, M. Pérache,
P. Carribault, J. Jaeger, A. D. Malony, and S. Shende, ‘‘Checkpoint/restart
approaches for a thread-based MPI runtime,’’ Parallel Comput., vol. 85,
pp. 204–219, 2019, doi: 10.1016/j.parco.2019.02.006.

[26] S. Sistare, R. vandeVaart, and E. Loh, ‘‘Optimization of MPI collectives on
clusters of large-scale SMP’s,’’ in Proc. ACM/IEEE Conf. Supercomput.,
Jan. 1999, p. 23.

[27] A. Faraj, X. Yuan, and D. Lowenthal, ‘‘STAR-MPI: Self tuned adaptive
routines for MPI collective operations,’’ in Proc. 20th Annu. Int. Conf.
Supercomput. (ICS). New York, NY, USA: Association for Computing
Machinery, Jun. 2006, pp. 199–208, doi: 10.1145/1183401.1183431.

[28] A. Karwande, X. Yuan, and D. K. Lowenthal, ‘‘CC-MPI: A compiled
communication capable MPI prototype for Ethernet switched clusters,’’ in
Proc. 9th ACM SIGPLAN Symp. Princ. Pract. Parallel Program. (PPoPP).
New York, NY, USA: Association for Computing Machinery, Jun. 2003,
pp. 95–106, doi: 10.1145/781498.781514.

[29] Hamiltonian Path Problem. Accessed: Jan. 20, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Hamiltonian_path_problem

[30] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, ‘‘OpenTuner: An extensible frame-
work for program autotuning,’’ in Proc. 23rd Int. Conf. Parallel Architec-
tures Compilation (PACT), Aug. 2014, pp. 303–315.

[31] Bisection Bandwidth. Accessed: Jan. 20, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Bisection_bandwidth

[32] Average Path Length. Accessed: Jan. 20, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Average_path_length

[33] 2-OPT. Accessed: Jan. 20, 2023. [Online]. Available: https://en.
wikipedia.org/wiki/2-opt

[34] Using MPI. Accessed: Jan. 20, 2023. [Online]. Available:
https://www.carc.usc.edu/user-information/user-guides/software-and-
programming/mpi

[35] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, ‘‘Ver-
satile, scalable, and accurate simulation of distributed applications and
platforms,’’ J. Parallel Distrib. Comput., vol. 74, no. 10, pp. 2899–2917,
Oct. 2014.

[36] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga. (Mar. 1994). The
NAS Parallel Benchmarks. [Online]. Available: https://www.nas.nasa.
gov/assets/pdf/techreports/1994/rnr-94-007.pdf

[37] Graph500. Accessed: Jan. 20, 2023. [Online]. Available: https://
graph500.org/?page_id=462

[38] P.-F. Dutot, M. Mercier, M. Poquet, and O. Richard, ‘‘Batsim: A realis-
tic language-independent resources and jobs management systems sim-
ulator,’’ in Job Scheduling Strategies for Parallel Processing. Springer,
Jul. 2017, pp. 178–197, doi: 10.1007/978-3-319-61756-5_10.

YAO HU (Member, IEEE) received the M.S.
degree from the Beijing University of Posts and
Telecommunications, China, in 2009, and the
Ph.D. degree from the Department of Computer
Science and Engineering, Waseda University,
Tokyo, Japan, in 2015. He is currently an Assis-
tant Professor with Keio University, Yokohama,
Kanagawa, Japan. His main research interests
include high-performance computing and graph
computation.

VOLUME 11, 2023 40383

http://dx.doi.org/10.1145/1995896.1995909
http://dx.doi.org/10.1145/1995896.1995909
http://dx.doi.org/10.1145/2882903.2915220
http://dx.doi.org/10.1145/301104.301116
http://dx.doi.org/10.1145/3339186.3339199
http://dx.doi.org/10.1016/j.parco.2019.02.006
http://dx.doi.org/10.1145/1183401.1183431
http://dx.doi.org/10.1145/781498.781514
http://dx.doi.org/10.1007/978-3-319-61756-5_10

