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ABSTRACT Pervasive computing techniques provides application guidance and support for intelligent
transportation systems. On the basis of connected autonomous vehicles, a extendedmodel has been proposed.
This paper focuses on studying the effects of the electronic throttle and driver’s memory. In order to show
the influence of these two factors on the model, the extended model is studied by theoretical analysis and
numerical methods. Stability conditions are obtained by adding perturbation to the linear analysis, the TDGL
equation and mKdV equation are derived by nonlinear analysis, which shows that the phase change behavior
of traffic jams can be described by both of them. The numerical simulation results show the correctness of
the analysis results. Numerical results show that the effects of driver’s memory and electronic throttle play
an key role in the stability of traffic flow, which is consistent with the theoretical analysis results.

INDEX TERMS TDGL equation, mKdV equation, driver’s memory, electronic throttle, traffic flow.

I. INTRODUCTION
Global warming is becoming more and more serious, which
is closely related to our life, it is not only endangers the
balance of natural ecosystems, but also threatens human sur-
vival. There are many factors contributing to this situation.
Environmental pollution is one of the causes of this situation,
it has become a major global problem. The main reason
comes from people who burn fossil fuels, petroleum and
other chemicals. Some of them come from emissions of cars,
and traffic congestion will increase emissions of exhaust gas.
To alleviate environmental pollution, people have started
to tackle traffic congestion and slow down environmental
pollution. Therefore, a series of traffic models have been
proposed to analyse and solve traffic problems andmake their
own contribution to the mitigation of atmospheric pollution.
For example, car following model [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
hydrodynamic lattice models [18], [19], [20], [21], cellular
automation models [22], [23], continuum model [24], [25],
[26], [27], gas kinetic models [29], [30], [31], the car follow-
ingmodel is a micromodel, which analyzes traffic congestion
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from a micro perspective by establishing a new model and
taking some factors into account.

Bando et. al. [28] firstly presented the optimal velocity
model (OVM), which has revealed the dynamic evolution of
traffic congestion in a simple way. According to this original
model, many newmodels have been proposed. Such as gener-
alized forcemodel (GFM) [32], full velocity differencemodel
(FVDM) [33], and so on [20], [34], [35], [36], [37]. In recent
years, with the development of internet technology, modern
technological devices are becoming more and more sophisti-
cated. The application of intelligent transport technology has
not only made traffic smarter, but has also effectively reduced
traffic congestion. In the intelligent traffic environment, the
traffic information of other vehicles is integrated into the
collaborative driving control by using the information and
communication technology system (ICT). the representative
scholars in this field include Ge, etc. [38], [39], [40]. Vehicle-
to-Vehicle communication is a very promising technology.
Sun et. al. [41] studied the delay feedback control under
the V2V. The intelligent driving system under the inter-
net of vehicles environment can acquire the driving state in
front of the vehicle in real time, effectively improving the
stability of traffic flow. Yu et. al. [42] considered the velocity
change with memory feedback under the connected cruise
control (CCC). In the actual traffic environment, When a
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traffic situation occurs, the driver usually needs a certain
amount of time to react to the current situation. Cao et. al.
[43] created a new model, which avoids the disadvantages of
existing models that ignore the sensory buffer time.

Past reports [44], [45], [46] never have linked the stability
of traffic flow to electronic throttle and driver’s memory
effect. According to the studies we have seen, there is no
article to study both electronic throttle and driver’s memory
effect under an intelligent transportation system. This article
combines these two factors, which is different from other’s
articles.

The rest of this article is arranged as follows. In Section II,
an extended model is proposed which takes into account both
electronic throttle and driver’s memory effect, the stability of
the model is analyzed and the neutral stability conditions is
obtained. TDGL equation is obtained by nonlinear analysis,
the mKdV equation is derived. In Section III, the theoretical
results are verified by numerical simulation. In Section IV,
the conclusions are drawn.

II. METHODOLOGY
A. THE IMPROVED MODEL AND LINEAR STABILITY
ANALYSIS
Jiang et.al. [33] proposed the full velocity difference model
(FVDM), The formula for this model is

dvn(t)
dt

= α [V (1xn(t)) − vn(t)] + λ (vn+1(t) − vn(t)) (1)

where α is the sensitivity coefficient of the driver and recipro-
cal to the delay time τ . vn(t) is the velocity of car nth at time t ,
1xn(t) = xn+1(t) − xn(t) represents the headway difference
between two adjacent cars. 1vn(t) = vn+1(t) − vn(t) is the
velocity difference between the leading car n + 1 and the
following car n at time t . V (1xn(t)) is the optimal velocity
function. λ is the velocity difference coefficient. Based on
the full velocity difference, Li et. al. [45] proposed a car-
followingmodel for CAVvehicles based on electronic throttle
angle control. The model formula is

dvn(t)
dt

= α [V (1xn(t)) − vn(t)]

+ λ (vn+1(t) − vn(t)) + κ(θn+1(t) − θn(t)) (2)

where κ is the electronic throttle angle control coefficient,
θn+1(t) and θn(t) are the electronic throttle angles of the nth
car and the n+ 1th car at time t , respectively.

dvn(t)
dt

= −d(vn(t) − ve) + c(θn(t) − θe) (3)

where d and c are constants, and d > 0, c > 0. ve is the
current steady state velocity. θe is the electronic throttle angle
corresponding to the current steady state velocity ve.

dvn(t)
dt

= α [V (1xn(t)) − vn(t)] + λ (vn+1(t) − vn(t))

+

m∑
j=1

wj(θn+j(t) − θn(t)) (4)

where m is the first m cars, and satisfies m < n, wj is the
weight coefficient of the electronic throttle angle difference
term of front j vehicles.

dvn(t)
dt

= α

[
V

(
1
τ0

∫ t

t−τ0

1xn(u)du
)

− vn(t)
]

+ λ (vn+1(t) − vn(t)) + k1
m∑
j=1

wj(θn+j(t) − θn(t))

(5)

We can know by using the median theorem of integrals

1
τ0

∫ t

t−τ0

1xn(u)du = 1xn (t − τ1) τ1 ∈ [t − τ0, t] (6)

where the integral of 1xn(u) from t − τ0 to t represents the
continuous headway of vehicle n, τ0 is the memory response
time of the driver, k1 is the coefficient of the electronic
throttle. The optimal speed function is

V (1xn(t)) =
vmax

2
[tanh(1xn(t) − hc) + tanh(hc)] (7)

where vmax is the maximal velocity, hc is the safe distance, the
optimal velocity function V (•) is a monotonically increasing
function with an upper bound and a critical point at 1xn =

hc : V ′′(hc) = 0. The basic idea of the optimal velocity model
is that when the distance between the vehicles increases
infinitely, the vehicle runs at the maximum speed, and the
vehicle runs smoothly. When the distance between adjacent
cars decreases, the vehicles slow down to avoid collision. For
the convenience of linear analysis, Eq. (5) can be converted
to

d2xn(t)
dt2

= α

[
V

(
1
τ0

∫ t

t−τ0

1xn(u)du
)

−
dxn(t)
dt

]
+ λ (

dxn+1(t)
dt

−
dxn(t)
dt

)

+ k1
m∑
j=1

wj(θn+j(t) − θn(t)) (8)

Similary, in order to facilitate subsequent nonlinear analy-
sis, Eq. (8) is rewritten as follows

d21xn(t)
dt2

= α

V
(
1
τ0

∫ t

t−τ0

1xn+1(u)du−
1
τ0

∫ t

t−τ0

1xn(u)du
)

−
d1xn(t)
dt


+ λ (

d1xn+1(t)
dt

−
d1xn(t)
dt

)

+ k1
m∑
j=1

wj(1θn+j(t) − 1θn(t)) (9)

In a uniform traffic flow, all vehicles travel at a fixed distance
h and an optimal velocity V (h), then the steady state solution
is

x0n (t) = hn+ V (h)t, h = L/N (10)
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where N is the total number of vehicles and L is the length
of the road. A small disturbance yn(t) is added to the steady
state solution x0n (t): xn(t) = x0n (t)+ yn(t). Substituting it into
Eq. (8) yields a linear equation

d2yn(t)
dt2

= α

[
V ′

(
1
τ0

∫ t

t−τ0

1yn(u)du
)

−
dyn(t)
dt

]
+ λ (

dyn+1(t)
dt

−
dyn(t)
dt

)

+ k1
m∑
j=1

wj(θn+j(t) − θn(t)) (11)

where 1yn(t) = yn+1(t) − yn(t) and V ′(h) =

dV (1xn)dt|1xn=h. Let’s expand out yn(t) = eikn+zt , and get
the following result

z2 = α
[
V ′(e−ik − 1) − τ1z(e−ik − 1) − z

]
+ λ z

(
e−ik − 1

)
+
k1z
c

m∑
j=1

wj
[
ze−ikj−z+ d(e−ikj − 1)

]
(12)

where V ′
= V ′(h), making z = z1(ik) + z2(ik)2 + · · ·, then

the first-order and second-order terms of ik are

z1 = V ′, z2 =
1
2
V ′

− τ1V ′2
+ τλV ′

+
k1dτ

c

m∑
j=1

jwj − τV ′2

(13)

According to the long wave theory, if z2 > 0, traffic flow
reaches a steady state. Otherwise, the traffic flow is unstable.
The condition for unstable traffic flow is

τ >

1
2 − τ1V ′

λ +
k1d
c

m∑
j=1

jwj − V ′

(14)

This result is related to k1 and τ1. The neutral stable lines
of the proposed model considering the electronic throttle and
driver’s memory effect are shown in Figure 1 with vmax =

2, hc = 4. The apex of each neutral stability curve is the
critical point (hc, αc). For a given neutral stability curve, the
region above the curve is the stable region, and the region
below the curve is the unstable region, and uniform traffic
flow should become unstable in this region.

Pattern (a) of Figure 1 demonstrates that when the value
of τ1 is increased, the neutral line decreases and the stable
region gradually decreases, indicating that the memory effect
gradually weakens the stability of the traffic flow. Therefore,
the memory effect of the driver plays a negative role in
enhancing the stability of traffic flow.

Pattern (b) of Figure 1 shows that as the k1 increases, the
neutral curve gradually decreases and the stable region grad-
ually expands, indicating that the electronic throttle effect has
an important role in improving the stability of traffic flow.

FIGURE 1. The neutral stability curves for different values of τ1 and k1.

B. THE TDGL EQUATION
The nonlinear density wave equation is used to describe the
phase change behavior of traffic jams, We discover traffic
problems through nonlinear analysis and adopt methods to
solve them, The TDGL equation for evolution of density
wave is derived by reduced perturbation method. First, intro-
duce the slow variables of space n and time t , as defined below

X = ε(n+ bt) T = ε3t 0 < ε ⩽ 1 (15)

The headway 1xn is set as

1xn(t) = hc + εR(X ,T ) (16)

ε2ξ1∂xR+ ε3ξ2∂2xR

+ ε4
[
ξ3∂3xR+ ξ4∂xR3 − a∂TR

]
+ ε5

[
ξ5∂4xR+ ξ6∂x∂TR+ ξ7∂2xR

3
]

= 0 (17)

where the coefficients ξi are given in Table 1.
Then, we study traffic flow near the critical point (hc, αc),

making b = V ′, αc = (1+ ε2)α, the second-order terms of ε

is removed from Eq. (16), the equation can be simplified to

ε4∂TR

= ε4


1
6
V ′

−
1
2
τ1V ′2

+
1
2

λV ′τ

+(
V ′2k1
c

m∑
j=1

wjj−
dV ′k1
2c

m∑
j=1

wjj2)
1 − 2τ1V ′

2d
c

m∑
j=1

wjj

 ∂3xR

+ ε3

1
2
V ′

−τ1V ′2
+(

k1d
c

m∑
j=1

wjj− V ′)V ′τ +λV ′τ

 ∂2xR
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TABLE 1. The coefficient ξi of the model.

+ ε5


1
24

−
τ1V ′2

6
+

1
6

λV ′τ

−(
k1V ′2

2c

m∑
j=1

wjj2+
k1dV ′

6c

m∑
j=1

wjj3)
1 − 2τ1V ′

2k1d
c

m∑
j=1

wjj


× ∂4xR

+ ε4
V ′′′

6
∂xR3 + ε5

V ′′′

2
∂x

2R3 (18)

By transforming variables X and T to variables x = ε−1X
and t = ε−3T , and taking S(x, t) = εR(X ,T ), Eq. (18) is
rewritten as follows

∂tR

=


1
6
V ′

−
1
2
τ1V ′2

+
1
2

λV ′τ+

(
V ′2

c

m∑
j=1

wjj−
k1dV ′

2c

m∑
j=1

wjj2)
1 − 2τ1V ′

2k1d
c

m∑
j=1

wjj

 ∂3x S

+

1
2
V ′

− τ1V ′2
+ (

k1d
c

m∑
j=1

wjj− V ′)V ′τ + λV ′τ

 ∂2x S

+
V ′′′

2
∂x

2S3 +
V ′′′

6
∂xS3

+


1
24

−
τ1V ′2

6
+

1
6

λV ′τ

−(
k1V ′2

2c

m∑
j=1

wjj2 +
dk1V ′

6c

m∑
j=1

wjj3)
1 − 2τ1V ′

2k1d
c

m∑
j=1

wjj

 ∂4x S

(19)

By adding item

[
1
2V

′
− τ1V ′2

+ ( k1dc
m∑
j=1

wjj− V ′)V ′τ

]
∂xS

on the left and right sides of Eq. (19) and performing t1 = t

and x1 = x −

[
( k1dc

m∑
j=1

wjj− V ′)V ′τ −
1
2V

′
+ τ1V ′2

]
t for

Eq. (19), and we obtain, as in (20), shown at the bottom of
the next page.

We define the thermodynamic potential

φ(S) = −

1
2
V ′

− τ1V ′2
+ (

k1d
c

m∑
j=1

wjj− V ′
+ λ )V ′τ

 S

+
V ′′′

2
S4 (21)

By rewriting Eq. (20) with (21), the TDGL equation for
this model

∂t1S = −(∂x1 −
1
2
∂x1

2)
δ8(S)

δS
(22)

With

8(S)

=

∫
dx1

×




1
6
V ′

−
1
2
τ1V ′2

+
1
2

λV ′τ

+(
k1V ′2

c

m∑
j=1

wjj−
k1dV ′

2c

m∑
j=1

wjj2)
1 − 2τ1V ′

2k1d
c

m∑
j=1

wjj


×(∂x1S)2 + φ(S)


(23)

where δ8(S)/δS represents derivative of a function. In addi-
tion to S = 0, the TDGL equation has two steady-state
solutions, one of which is a homogeneous solution

S(x1,t1)

= ±


3V ′

− 6τ1V ′2
+ 6( k1dc

m∑
j=1

wjj− V ′
+ λ )V ′τ

V ′′′


1
2

(24)

And the other is the kink solution

S(x1,t1)

= ±


3V ′

− 6τ1V ′2
+ 6( k1dc

m∑
j=1

wjj− V ′
+ λ )V ′τ

V ′′′


1
2

× tanh


1
2
V ′

− τ1V ′2
+ (

k1d
c

m∑
j=1

wjj− V ′
+ λ )V ′τ


1
2

×(x1 − x0)} (25)
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where x0 is a constant. From the thermodynamic potential
equation, we can obtain the coexistence curve, the metastable
curve and the critical point. The conditions that satisfy the
coexistence curve are as follows

∂φ/∂S = 0, ∂2φ/∂S2 > 0 (26)

If we substitute Eq. (21) into Eq. (26), we get the coexistence
curve with the original parameters

(1x)co

= hc ±


3V ′

− 6τ1V ′2
+ 6( k1dc

m∑
j=1

wjj− V ′
+ λ )V ′τ

V ′′′


1
2

(27)

The conditions for the critical point are as follows

∂2φ/∂S2 = 0 (28)

From Eq. (21), the metastable curve equation is obtained

(1x)co

= hc ±


V ′

− 2τ1V ′2
+ 2( k1dc

m∑
j=1

wjj− V ′
+ λ )V ′τ

V ′′′


1
2

(29)

From the above, we can get the critical point of the original
parameter

(1x)c = hc, a =

2λ +
2k1d
c

m∑
j=1

jwj − 2V ′

1 − 2τ1V ′
(30)

C. THE mKdV EQUATION
The mKdV equation near the critical point is derived. Simi-
larly, near the critical point (hc, αc), slow variables X and T of
space and time are introduced. By substituting τ = (1+ε2)τc
into Eq. (17), we can gain

ε4(∂TR− ς1∂
3
X
R+ ς2∂XR3)

+ ε5(ς3∂2XR+ ς4∂
2
XR

3
+ ς5∂

4
XR) = 0 (31)

where the coefficients ςi are given in Table 2.

TABLE 2. The coefficient ςi of the model.

In the table above V ′
= dV (1xn)/d1xn|1xn=hc , V

′′′
=

d3V (1xn)/d1xn3
∣∣
1xn=hc

. For simplifying the derivation,
let’s introduce a transformation

T =
1
ς1
T ′,R =

√
ς1

ς2
R′ (32)

So we get an standard mKdV equation with an O(ε) correc-
tion term as follows

∂T ′R′
= ∂x

3R′
− ∂xR′3

− ε

[
ς3

ς1
∂x

2R′
+

ς4

ς1
∂x

4R′
+

ς5

ς2
∂x

2R′3
]

(33)

If the higher order O(ε) is neglected, we can obtain a kink-
antikink density wave solution of mKdV equation

R′

0
(
X ,T ′

)
=

√
c tanh

√
c
2

(
X − cT ′

)
(34)

Assuming that R′
(
X ,T ′

)
= R′

0

(
X ,T ′

)
+ εR′

1

(
X ,T ′

)
, If we

consider the O(ε) correction term, the solvable condition

∂t1S =




1
6
V ′

−
1
2
τ1V ′2

+ (
k1V ′2

c

m∑
j=1

wjj−
dk1V ′

2c

m∑
j=1

wjj2)

×
1 − 2τ1V ′

2k1d
c

m∑
j=1

wjj
+

1
2
V ′

λτ

 ∂2x1S

× (∂x1 −
1
2
∂x1

2)

× −

1
2
V ′

− τ1V ′2
+ (

k1d
c

m∑
j=1

wjj− V ′)V ′τ + λV ′τ

 S −
V ′′′

2
S3

 (20)
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(
R′

0,M
[
R′

])
≡

∫
+∞

−∞
dX ′R′

0M
[
R′

]
can be used. where

M
[
R′

0
]

=
ς3
ς1

∂X
2R′

+
ς4
ς1

∂X
4R′

+
ς5
ς2

∂X
2R′3, Therefore, the

propagation velocity c of the kink wave can be determined

c =
5ς2ς3

2ς2ς4 − 3ς1ς5
(35)

The general kinking solution of the mKdV equation is

1xn(t) = hc ±

√
ς1c
ς2

(
τ

τc
− 1

)
× tanh

√
c
2

(
τ

τc
− 1

)
×

[
n+ (1 − cς1)

(
τ

τc
− 1

)
t
]

(36)

where V ′′′ < 0, the kink solution includes the coexistence
phase of the free phase at low density and the coexistence
phase of blocked phase at high density. The kink solution
of the mKdV equation (36) coincides with the kink solution
of the TDGL equation (25), which indicates that the phase
transition behavior of the plugged phase can be described not
only by TDGL equation and its non-travelling wave solution,
but also by mKdV equation and propagation solution.

III. RESULTS AND DISCUSSION
A. NUMERICAL SIMULATION
The effects of driver’s memory and electronic throttle on the
car following model are studied by numerical simulation.
Equation (4) is discretized by difference scheme

1xn(t + 21t)

= 21xn(t + 1t) − 1xn(t)

+ α1t2(V (1xn+1(t)) − V (1xn(t)))

− ατ1V ′1t(1xn+1(t + 1t) − 1xn(t)

− 1xn(t + 1t) + 1xn(t))

− α1t(1xn(t + 1t) − 1xn(t))

+ λ1t(1xn+1(t + 1t) − 1xn+1(t)

− 1xn(t + 1t) + 1xn(t)) +
k1
c

m∑
j=1

wj(1xn(t + 21t)

− 21xn(t + 1t) + 1xn(t)

− 1xn−j(t + 21t) + 21xn−j(t + 1t) − 1xn−j(t))

+ 1t
k1d
c

m∑
j=1

wj(1xn(t + 1t)

− 1xn(t) − 1xn−j(t + 1t) + 1xn−j(t)) (37)

where 1t is the time step, the boundary condition is chosen
to be periodic and hc = 4m. In the numerical simulation,
we selected n = 3 and obtained a CAV vehicle following
model with three front car electronic throttle controls for
numerical simulation experiments. The initial condition is
chosen as follows

1xn(t) = 1xn(0), 1xn(0) =


h n ̸= 50, 51

h− 0.5 n = 50

h+ 0.5 n = 51

(38)

FIGURE 2. The spatial-time evolutions of the headway from t = 14850 to
15000 sec for different values of τ1.

FIGURE 3. The headway profiles of density wave at t = 15000 sec for
different values of τ1.

where N = 100 is the number of cars, h is the average
headway.

B. THE INFLUENCE OF DRIVER’S MEMORY EFFECT ON
TRAFFIC FLOW STABILITY
First, we will examine the impact of parameter τ1 on the
stability of traffic flow. Figure 2 shows the space and time
evolution of the headway for vehicles with different value of
τ1. When τ1 = 0 in pattern (a), the evolution of the traffic
flow in the extended model without memory effect. When
the driver’s memory effect factor is taken into consideration,
as the τ1 increases, the amplitude of the traffic flow is grad-
ually increased, and the traffic flow becomes more and more
disordered.

Fig. 3 plots the headway distribution corresponding to the
time t = 15000 seconds of Fig. 2, as the τ1 increases,
the amplitude of the density wave gradually increases. The
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FIGURE 4. The spatial-time evolutions of the headway from t = 14850 to
15000 sec for different values of k1.

FIGURE 5. The headway profiles of density wave at t = 15000 sec for
different values of k1.

driver’s memory effect has a reverse effect on the stability of
traffic flow in the model.

C. THE INFLUENCE OF ELECTRONIC THROTTLE ON
TRAFFIC FLOW STABILITY
In order to study the influence of the electronic throttle coeffi-
cient k1, the memory effect coefficient is fixed to be τ1 = 0.5.
And for k1 = 0.5, 1, 1.5, 2.5, the headway distribution at
t = 15000 seconds along the road is shown in Figure 4. With
the increase of k1, the amplitude of the densitywave decreases
gradually, and the traffic jam is alleviated well. It can be seen
that within a certain range, the value of k1 should be as large
as possible to enhance the stability of traffic flow to a certain
extent.

Figure 5 depicts the change of headway for different values
of k1 = 0.5, 1, 1.5, 2.5, corresponding to Figure 4. It can
be seen from the figure that increasing the value of elec-
tronic throttle coefficient k1 can reduce traffic congestion and
improve the stability of the traffic flow.

IV. CONCLUSION
Considering the memory effect of the driver and the effect
of the electronic throttle on the traffic jam, we have studied
an extended model. In order to show the effect of memory
and the effect of electronic throttle on traffic congestion,
the extended model was studied by theoretical analysis and
numerical methods. The stability conditions of the newmodel
are obtained by linear analysis. Then, by using the nonlin-
ear analysis method, the TDGL equation and the modified
KdV equation are derived, The phase transition behavior of
the blocked phase can be described by TDGL equation and
mKdV equation. Theoretical analysis and numerical results
show that the memory effect of the driver and the electronic
throttle have an important influence on the stability of traffic
flow.

The main findings of the paper are as follows:
First, we will examine the impact of driver’s memory effect

on the stability of traffic flow. When τ1 = 0, the evolution
of the traffic flow in the extended model without memory
effect. When the driver’s memory effect factor is taken into
consideration, as the τ1 increases, the amplitude of the traffic
flow is gradually increased, and the traffic flow becomes
more and more disordered.

Secondly, in order to study the influence of the electronic
throttle coefficient, with the increase of k1, the amplitude
of the density wave gradually decreases, and the consider-
ation of electronic throttle has a great improvement on traffic
congestion.

In conclusion, The driver’s memory effect and the elec-
tronic throttle effect effectively alleviate traffic congestion
and reduce carbon emissions.
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