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ABSTRACT The growth of data generation capabilities, facilitated by advancements in communication
and computation technologies, as well as the rise of the Internet of Things (IoT), results in vast amounts
of data that significantly enhance the performance of machine learning models. However, collecting all
necessary data to train accurate models is often unfeasible due to privacy laws. Federated Learning (FL)
evolved as a collaborative machine learning approach for training models without sharing private data.
Unfortunately, several in-design vulnerabilities have been exposed, allowing attackers to infer private data
of participants and negatively impacting the performance of the federated model. In light of these challenges
and to encourage the development of FL solutions, this paper provides a comprehensive analysis of secure
FL proposals that both protect user privacy and enhance the performance of the model. We performed a
systematic review using predefined criteria to screen and extract data from multiple electronic databases,
resulting in a final set of studies for analysis. Through the systematic review methodology, the paper groups
the security vulnerabilities of FL intomodel performance and data privacy attacks. It also presents an analysis
and comparison of potential mitigation strategies against these attacks. Additionally, the paper conducts a
security analysis of state-of-the-art FL applications and proposals based on the vulnerabilities addressed.
Finally, the paper outlines the main applications of secure FL and lists future research challenges. The
survey highlights the crucial role of security strategies in ensuring the protection of user privacy and model
performance in the context of future FL applications.

INDEX TERMS Federated learning, machine learning, collaborative learning, information security, multi-
access edge computing.

I. INTRODUCTION
Machine learning techniques have shown excellent perfor-
mance in solving complex problems in the last few years [1],
[2]. However, machine learningmodels require a large dataset
for training, especially for deep learning [1]. Deep learning
performance considerably increases when exposed to a large

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inácio .

amount of data [3]. Collecting data from diverse sources
provides a solution to data acquisition [4]. The conventional
cloud computing or cloud-centric method involves mobile
devices acting as data collection points that transmit the
collected data to centralized cloud servers. Subsequently,
the cloud servers process the data by performing various
analytical and computational tasks [5]. The cloud-centric
approach is widely used in several scenarios where the data
is generated by local devices and processed by a system

41928
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5072-8102
https://orcid.org/0000-0002-1279-7366
https://orcid.org/0000-0001-9481-6374
https://orcid.org/0000-0001-8221-0666


H. N. Cunha Neto et al.: Survey on Securing FL: Analysis of Applications, Attacks, Challenges, and Trends

in the cloud. It is important to highlight that the process-
ing system must not be machine learning-based [6], [7],
[8]. A potential implementation for healthcare monitoring
using a cloud-centric approach involves equipping a patient
with Internet of Things (IoT) monitoring devices that gen-
erate sensor data. The data is subsequently transmitted to
a cloud-based system that utilizes predictive modeling to
anticipate potential diseases [6]. Unfortunately, centralized
data merging for training a machine learning model harms
data privacy protected by personal data protection laws in
several countries worldwide.

Increasingly strict private data protection policies limit
cloud-centric approaches to extracting knowledge from
remote data. Personal data protection laws stipulate rights
to data owners and obligations to institutions that hold data.
A prominent law is the General Data Protection Regulation
(GDPR),1 in force throughout the European Union (EU),
which establishes guidelines on storing and processing per-
sonal data in the EU [9]. The GDPR emphasizes the impor-
tance of protecting the fundamental rights and freedoms of
individuals in the handling of their data [10]. It has inspired
other countries2 to adopt similar guidelines, such as the Lei
Geral de Proteo de Dados (LGPD) in Brazil, the California
Consumer Privacy Act (CCPA) in the United States, and the
Personal Information Protection and Electronic Documents
Act (PIPEDA) in Canada. In Brazil, the LGPD identifies the
entities, either a public or private organization, that carries out
any processing operation on the personal data [11]. Among
the duties established for these entities is collecting explicit
consent from the data owner and providing reports that iden-
tify the processing operations applied to the data, including
the specification of its storage location, data masking, and
data protection measures.

On top of privacy concerns, the cost of uploading raw
data to the cloud also presents a significant challenge for the
cloud-centric approach. Uploading data from a mobile device
in an area with a poor network connection, for example,
causes long delays to the training due to low throughput.
The cloud-centric approach results in propagation delays that
can cause unacceptable latency for real-time decision-making
applications, such as anomaly detection [12]. Transferring
data to the cloud for processing burdens both core and access
networks. Overload is even more relevant when considering
unstructured data, such as text, voice, or video. The restric-
tions of sending data to the cloud (e.g., band and delay)
are critical when cloud-centric training depends on wireless
access networks [4]. Thus, current proposals consider devel-
oping mobile applications at the Multiaccess Edge Comput-
ing (MEC) [13], in which training becomes a task performed
by three distinct actors: devices, edge, and cloud. The training
anchored in theMECmodel incurs high communication costs
and is unsuitable for constant retraining applications [14],

1Available at https://gdpr-info.eu/. Accessed on 07/11/2022.
2Available at https://www.dlapiperdataprotection.com/. Accessed on

07/11/2022.

such as smart keyboards. Furthermore, outsourcing comput-
ing and data processing on edge servers involve transmitting
potentially sensitive personal data, exposing privacy-sensitive
data.

The aforementioned limitations of the cloud-centric
approach have led to the development of Federated Learn-
ing (FL). This collaborative learning solution addresses
issues such as privacy preservation and communication effi-
ciency [15]. By allowing training with real data from mobile
devices and preserving privacy-sensitive information, FL
enables machine learning algorithms to run collaboratively
without transferring private data to a cloud server. As a result,
FL is a critical component in ensuring data privacy in dis-
tributed environments.

FL has two main entities, the participants — often referred
to as clients — that train the machine learning models with
their personal data, and the aggregation server that aggregates
the local models, generating the global model. The global
model aggregates knowledge of participants’ local data in
a single model. Participants perform the following tasks:
i) every participant must retrieve parameters from the global
model, ii) selected participants must update their local models
with their data, and then iii) send the updated local param-
eters of the models to the server. The aggregation round is
the process of updating the global model with data stored
on participants, uploading the parameters, and performing
aggregation. The aggregation server is responsible for con-
trolling the aggregation rounds, selecting a subset of par-
ticipants, and for aggregating the updates provided by the
selected participants to improve the global model. The server
randomly selects a subset of participants for the model update
at each aggregation round. The federated approaches intro-
duce the concept of using local computational resources, such
as Central Processing Unit (CPU) or Graphics Processing
Unit (GPU), for model training while participants can keep
their data secure and private. Thereby, FL presents itself as a
powerful approach to preserving privacy. Since data is always
processed locally, the global operation aggregates the models
without accessing the data stored on participants.

As FL enables the use of large amounts of data while
preserving user privacy, it has become a popular solution in
many areas, such as cyberattack detection, vehicle networks,
smart healthcare, and IoT in general [16], [17], [18], [19],
[20]. Unfortunately, the FL approach presents new vulner-
abilities and security challenges. For example, a malicious
entity may infer the honest data stored on participants despite
FL sharing only the parameters of the model. The malicious
entity may be a participant or an aggregation server willing to
know the data stored on honest participants [21]. In addition,
a malicious participant may contaminate the global model
with poisoned models and data. The malicious participant
may intentionally compromise the global model to mispredict
a specific class or degrade the performance of the model [22].
Hence, achieving FL premises requires mechanisms to
protect participants’ private data and the global model
performance.
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Numerous efforts have been made in the literature to con-
duct a comprehensive survey on FL and its applications [1],
[14], [23], [24]. Although previous works [25], [26] have
proposed a taxonomy of current FL attacks, they lack a
thorough analysis of the literature on FL proposals from a
security perspective. Additionally, none of them provided an
analysis of the current applications from a security point of
view. The contributions of our paper are as follows:

1) We provide an in-depth analysis of the fundamental
concepts underlying FL, including its background and
the role of Secure Multiparty Computation (SMC) and
MEC in FL;

2) We present the main threats and vulnerabilities of FL,
and possible solutions, including the main proposals to
address the threats;

3) We provide insights into the security and privacy of
current FL applications by analyzing potential security
threats and vulnerabilities. The analysis contributes to
developing more robust and secure FL systems.

Our contributions provide a comprehensive roadmap for
researchers, developers, and practitioners to navigate the
complexities of FL and design more privacy-preserving and
secure solutions for various real-world applications.

The remainder of this paper is structured as follows.
In Section II, we present the methodology used in this
survey. In Section III, we review related work. We present
a comprehensive overview of collaborative machine learning
in Section IV. Section V provides background information on
FL. Section VI describes the role of MEC and SMC in FL.
We identify the current vulnerabilities of FL in Section VII.
Section VIII analyzes the primary research challenges and
opportunities in FL and current proposals to address these
challenges. In addition, we provide a security analysis of
these proposals. In Section IX, we examine the main applica-
tions of FL and perform a security analysis of these applica-
tions. Finally, in Section X, we provide concluding remarks.

II. METHODOLOGY
In this paper, we conducted a systematic review to identify
and retrieve relevant studies for our survey. We follow the
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) method, which is a systematic review
in a rigorous and transparent methodology that comprehen-
sively reviews the literature to identify, assess, and synthesize
all relevant studies on a particular research question [27]. Our
research questions are:

1) What is the level of security provided by current FL
proposals and applications in light of known threats and
vulnerabilities?

2) What are the primary threats to FL security, and what
are the most effective solutions to mitigate them?

Our primary aim for this review is to conduct a comprehen-
sive security analysis of current FL applications and solutions
by evaluating their associated threats and vulnerabilities.

To achieve this objective, we will systematically identify and
categorize the threats to FL that are currently present.

The eligibility criteria for paper selection in this sur-
vey include peer-reviewed conference papers, journals, and
magazines, as well as high-cited arXiv papers relevant to
the survey. Although arXiv is not explicitly included in
the databases, we include those relevant arXiv papers that
are discovered by analyzing the reference citations of the
papers we select in our primary database. By utilizing this
method, we ensure the inclusion of relevant, high-quality
literature thatmight not have been captured through our initial
databases. The database we use are IEEE Xplorer, ACM
Digital Library, and Scopus.

Our search is executed by conducting keyword searches
on the databases. Our search keywords are: ‘‘federated learn-
ing’’, combinedwith (AND) ‘‘threats’’ and (OR) ‘‘vulnerabil-
ities’’. Following this, we eliminate duplicate search results
and limit our search to documents published in conference
papers, journals, and magazines. Additionally, to ensure con-
sistency, we exclude non-English papers and conduct a pre-
liminary review of all papers’ abstracts to eliminate those that
do not alignwith our research objective. The primary basis for
excluding papers from the review was their lack of relevance
to the study of FL threats and vulnerabilities, including papers
that focused on using FL for threat detection or described
threats in other machine learning approaches. Thus, any paper
that did not align with these criteria was excluded from the
review process.

In addition to our primary search, we conducted another
search for related surveys of FL application and concepts
in the literature, utilizing the same designated database.
Our survey-specific search utilized the keywords ‘‘feder-
ated learning’’ combined with the Boolean operator (AND)
and the word ‘‘survey’’, which returned hundreds of papers.
Our inclusion criteria were designed to identify surveys that
addressed FL concepts, primary FL applications, and FL
threats. At the same time, we excluded surveys that focused
mainly on new FL techniques or hypothetical scenarios.

A. THREATS TO VALIDITY
Our systematic literature review may be susceptible to spe-
cific threats to validity, which could affect the reliability and
robustness of our findings. If not properly addressed, these
threats can potentially distort the interpretation and synthesis
of the available evidence, and may result in inaccurate or
incomplete conclusions.

Search bias is a significant threat to the validity of our
study, if our search strategy is incomplete or biased toward
certain types of studies or sources. This could lead to the
exclusion of relevant studies or the inclusion of studies that
do not accurately represent the population of interest, which
may affect the generalizability of our findings. For example,
if we limit our search to high-impact journals and confer-
ences, we may inadvertently exclude relevant studies that
have been published in lower-tier venues. This can result in an
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incomplete or biased representation of the available evidence,
and may lead to inaccurate or incomplete conclusions.

Another threat to validity is quality assessment bias. The
quality assessment process may introduce bias if the crite-
ria used to evaluate study quality are unclear, inconsistent,
or subjective. This could affect the inclusion or exclusion
of studies, as well as the weighting of studies in the anal-
ysis, which may affect the robustness and reliability of our
findings.

In order to mitigate potential threats to validity, we employ
a search strategy that includes multiple sources of informa-
tion, such as traditional bibliographic databases, grey litera-
ture, and hand-searching of relevant journals and conference
proceedings. We will also employ a snowballing technique to
identify additional relevant studies by reviewing the reference
lists of papers that have been identified through our search
strategy. We recognize that grey literature can be particularly
challenging to identify and assess, and to ensure that we
capture the most relevant studies by focusing only on highly
cited grey literature.

To mitigate the potential threat of quality assessment bias
in this systematic review, we employed some strategies to
ensure that the included studies are assessed for quality and
risk of bias. In our revision, we conducted a blind qual-
ity assessment to minimize bias due to preconceptions or
expectations. Then, we compare the results of the included
studies with other relevant papers in the field. This can help
to evaluate the quality and relevance of the contributions,
avoiding inclusion of low-quality papers.

III. RELATED WORK
Previous works have provided a review of threats present
in the FL environment. Lyu et al. [28] provided a brief
and comprehensive overview of FL, along with a taxonomy
that includes threat models and two major types of attacks,
i.e., poisoning attacks and inference attacks. Similarly, Liu
et al. [25] provided a taxonomy of the threat of FL, fol-
lowed by an analysis of the threats and possible defenses,
along with a summary of their issues. The paper emphasized
the importance of adequate measures to mitigate security
and privacy threats at each phase to establish a trusted FL.
Finally, Mothukuri et al. [29] aimed to bridge the security
gap in FL and provided a study of FL security and privacy
aspects, including diverse implementation styles, challenges,
and potential risks.

In summary, while previous papers provided valuable
insights into the threats and vulnerabilities of FL, they
neglected to provide a security analysis of the current state
of the art of FL applications and proposals. To fill this gap,
we present an analysis of the state-of-the-art FL applications
and assess their security and privacy implications based on
the threats in the literature. In addition, our work provides a
background of FL, and we present current FL challenges and
applications that are missing in the mentioned works.

In addition to surveys addressing FL threats, sur-
veys encompassing the concepts underlying FL are also

considered related work, as we also discuss the FL back-
ground. Yang et al. [1] described the concepts of FL. The
survey also proposed a categorization for FL, which includes
horizontal, vertical, and transfer learning. Furthermore, the
authors provided practical examples of how FL can be uti-
lized by organizations. Zhang et al. [30] presented a review of
the development of FL and introduced the existingwork of FL
from five different aspects: Data Partitioning, Privacy Mech-
anism, Machine Learning Model, Communication Architec-
ture, and Systems Heterogeneity. Lim et al. [14] provided
a survey of issues related to the implementation of FL for
collaborative model training at MEC. It reviewed and ana-
lyzed the approaches to deal with emerging implementation
challenges, such as communication cost, resource allocation,
data privacy, and data security.

While the surveys mentioned above provided a brief
overview of privacy and security concerns associated with
FL, they do not delve into current attacks and defenses. ‘‘This
constitutes a notable limitation of previous surveys, as several
types of attacks can compromise the integrity and confiden-
tiality of FL systems, including model poisoning attacks,
inference attacks, and backdoor attacks. Additionally, the
surveys do not thoroughly analyze the security and privacy
aspects of current FL proposals and applications.

Our paper presents a comprehensive analysis of existing
proposals on FL by focusing on current applications and
challenges from a security perspective. We conduct a review
of threats and vulnerabilities associated with FL and provide
potential solutions, including proposals to address the dis-
cussed threats. We use the reviewed threats and vulnerabil-
ities to analyze the current FL applications and proposals and
emphasize the importance of addressing FL security aspects.
This paper also provides a detailed overview of the funda-
mental concepts required to understand the covered topics,
including FL background and the role of SMC and MEC
in FL.

IV. COLLABORATIVE MACHINE LEARNING
Collaborative machine learning has emerged as an approach
that enables distributed processing of a vast amount of avail-
able data. This data is necessary to train the ever more
sophisticated machine learning models. However, in order
to understand collaborative learning, we must first define
centralized learning, as it serves as a basis for comparison
and contrast to collaborative learning.

Centralized machine learning training is defined as a train-
ing approach for machine learning models where all data
is collected and stored in a central location or server. Typi-
cally, the owner or an authorized entity collects the data and
performs the model training. Furthermore, in a centralized
approach, the model is trained on the entire dataset at once
on a central server or cluster of servers. Such an approach is
most useful when the training entity is the owner of the data
or has permission to access it.

Often, the training in the centralized approach is performed
by a cluster of servers in a data center to decrease the training
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time. Each server in the cluster can be called by participants.
The participant is a node within the cluster that contributes
to the processing of the machine learning model. For training
a machine learning model in a cluster, every participant has
access to the entire dataset and is responsible for computing
a portion of the model. After every participant computes
their part of the machine learning model, a reduce function
creates the model [4], [31], [32]. MapReduce, Hadoop [33],
and Apache Spark [34] are well-known implementations of
centralized machine learning with distributed processing [4].
Figure 1(b) shows centralized training on a cluster server
architecture, in which the participants have full access to
a single dataset shared between nodes. Unfortunately, this
approach has a few downsides, including privacy concerns
around sharing sensitive data with a central cluster of servers
and the potential for the training process to become a bottle-
neck as the dataset grows. The centralized approach may be
unfeasible in a scenarios where the central entity is now the
data owner.

Decentralized training is a machine learning training
paradigm in which each participant trains its model to con-
tribute to developing a global model. Decentralized training
has at least two entities, the participants and the parameter
server [35]. The parameter server is responsible for managing
tasks among participants. On the other hand, the participants
are responsible for performing the tasks demanded by the
parameter server using their local data [35]. The parameter
server is fundamental to speeding up the training process
and allocating computational resources through an interface
to train the model efficiently. The parameter server is also
responsible for combining the participant models into a single
global model. Figure 1 shows that each participant has access
to a local dataset, and the parameter server coordinates the
participants. It is worth highlighting that the parameter server
cannot access the participant data.

Training in the FL approach is decentralized. The parame-
ter server is called the aggregator server, which has no control
or access over the data stored on participants. Its function is
to select participants and aggregate the updated parameters
received by selected participants. The participant can refuse
to participate or even lose connection during the training.

V. FEDERATED LEARNING: BACKGROUND
The FL system consists of two main entities: the participants,
who own the data, and the aggregation server, which owns the
global model. Let N = {1, . . . , n} be the set of participants.
Each participant n has its own private dataset Dn, n ∈ N ,
and uses their dataset Dn to train a local model wtn at every
aggregation round t . In each aggregate round, the aggregation
server randomly selects a subset of the participants S t ,S t ∈ N .
Each selected participant sends only the local model parame-
ters to the aggregation server. Then, the aggregation server
aggregates all parameters from the selected participants to
generate an updated global model wtG, where t is the cur-
rent aggregation round. The participants update the Local
models for τ local updates before sending the parameters to

FIGURE 1. Comparison of Centralized and Decentralized Training
Architectures. (a) Centralized training in a cluster of servers.
(b) Decentralized training architecture, where the training is performed
on the participants devices. The blue rectangles represent the tasks
performed on the participant side and the grey box on the server side.
The green ellipse represents the machine learning model.

the server for global aggregation. After the global aggrega-
tion, the aggregation server sends the global model wtG to
all federated participants. The participants update the global
model wtG with their local dataset in the aggregation round
t + 1. The aggregation round refers to a specific stage in
the training process of the machine learning model where
the participating devices send their locally computed model
updates to a central server for aggregation. An underlying
assumption is that participants are honest, i.e., they use their
actual private data to train and send the proper parameters to
the server, and they are not attempting to threaten the training.

The training consists of at least three basic steps in each
aggregation round. The first step is Local Update, the second
step is Participant Selection, and the last one is Global Aggre-
gation. Before these three basic steps, the aggregation server
first creates the initialized global model template w0

G. This
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initial model is set with random parameter values, usually,
from a normal distribution, this process is called Initializa-
tion. The server also specifies the training hyperparameters,
such as learning rate (η), local updates number (τ ), and
mini-batch size (B). The three basic steps of the training are
described as follows:

1) Local Update. Based on the global model wtG received
from the server, the selected participants use their local
data and processing power to update the model param-
eters for τ local iterations, generating wtn. The goal of
the participant n in the aggregation round t is to find the
optimized parameters wtn that minimizes the local loss
function Fn(wtn).

2) Participant Selection. The server randomly selects the
subset S t ,S t ∈ N of participants for training. Only the
selected participants will send their parameters to the
aggregation server.

3) Global Aggregation.The server aggregates the param-
eters of the selected participants and updates the global
model wt+1G on every participant. The goal of the server
is to minimize the global loss function F(wtG). A global
aggregation occurs each aggregation round.

The three steps are repeated until the convergence of the
global loss function or the algorithm meets a stop condition.

Machine learning models have a set of updated parameters
based on training data. A training data sample j has two
parts. The first part is the vector xj, which are the features
of the sample j that are the input to the machine learning
model; the other part is yj, which is the desired output of
the model. Each model has a loss function for training the
model. The loss function calculates the error of the predicted
value based on each sample’s desired value yj. The training
process consists of minimizing the loss function based on a
training dataset. The loss function is different according to
the problem. For example, the loss function of a regression

problem usually is Fn(wtn) =
1
2

(
xTj w

t
n − yj

)2
. Besides the

local loss function Fn(wtn), in FL, we have the global loss
function, which is defined by Equation 1. The global loss
function measures the loss of the global model considering
all the selected participants, as follows:

F(wtG) =
N∑
n=1

|Dn|
|D|

Fn(wtn), (1)

where |.| denotes the cardinality of a set. Assuming that D =⋃N
n=1Dn and Dn ∩ Dn′ = ∅ ∀ n ̸= n′.
Note that F(wtG) cannot be calculated directly without

sharing information among participants [36]. The pieces of
information shared by the participants are the dataset size
|Dn| and the local loss Fn(wtn). The optimization problem is
then to minimize F(wG), i.e., to find w∗G = argminF(wG).
It is important to highlight that the local and global loss

functions are almost identical. It is because the global loss
function F(wG) is the weighted sum of the local loss function
of the participants Fn(w), as demonstrated in Equation 1. FL

FIGURE 2. Comparison of Gradient Descent and Stochastic Gradient
Descent. (a) Gradient Descent is a deterministic optimization algorithm
that takes large steps to converge to a minimum. (b) Stochastic Gradient
Descent is a variant of Gradient Descent that takes smaller steps but is
less computationally expensive.

works with models based on Stochastic Gradient Descent
(SGD) methods [15], such as neural networks, linear regres-
sion, and support vector machines. Gradient, in simple terms,
means a surface slope direction. Therefore, the gradient
descent is the direction to reach a surface minimum point.
Hence, the main goal of gradient descent algorithm is to find
the best parameters to minimize the loss function. Thereupon,
the model parameters are updated using the partial derivative
of the loss function with respect to the parameters of the
model wtn for each sample in the entire dataset. However, this
process causes overhead if the dataset has a large number
of samples. SGD is a variant of the gradient descent that
aims to minimize overhead. Figure 2 shows a difference
between gradient descent and SGD. In SGD, the parameters
are updated in mini-batches at each epoch instead of using the
entire dataset samples. Mini-batch denotes the total number
of data used to calculate the gradient at each iteration [37].
That is the reasoning for choosing a subset of participants
at each aggregation round in FL instead of asking the local
model of every participant.

In FL, the aggregation server cannot preprocess the dataset,
as in centralized models. Besides, federated optimization
properties are different from a typical distributed optimiza-
tion problem, as follows:

1) Non Independent and Identically Distributed
(Non-IID) data. Local datasets do not have the same
probability distribution, and the samples are dependent.

VOLUME 11, 2023 41933



H. N. Cunha Neto et al.: Survey on Securing FL: Analysis of Applications, Attacks, Challenges, and Trends

The dependency is due to the context of the use of each
participant;

2) Unbalanced Data. Some users have larger datasets
with more samples than others. The local datasets can
also be an imbalanced dataset that stands for a dataset
with distinct class proportions;

3) Large amount of participants. The number of partici-
pants in a federated optimization is expected to be large.
The FL algorithm must handle the massive amount
of participants. For example, the smart keyboard of
Google uses FL for next words prediction with millions
of clients [38];

4) Limited communication. Mobile and IoT devices,
typical of a FL environment, are often disconnected or
have low throughput connections.

A. THE FEDERATED AVERAGING ALGORITHM
The first and most used aggregation algorithm for FL is
Federated Averaging (FedAvg) [15]. FedAvg convergence
has been empirically proven, particularly for problems where
the loss function is non-convex [14]. However, FedAvg does
not have convergence guarantees andmay diverge in practical
scenarios when data is heterogeneous [24].

Google researchers implemented FedAvg on Gboard [38].
The Gboard is a smart keyboard implemented by Google for
next-word prediction. Since then, other studies have explored
FL in a range of scenarios where data is sensitive, for exam-
ple, developing predictive models for health diagnosis [19]
to promote collaboration between hospitals [39] and Govern-
ment agencies [40].

The FedAvg algorithm is SGD-based because SGD opti-
mizes the parameter of the model based on a gradient vector
∇Fn(wtn) pointing to the best direction in which the model
should evolve. It is simple to perform operations in the
gradients of multiple participants. Another point is that deep
learningmodels lean on SGD and variants method to compute
parameter optimization [15].

For each aggregation round t , FedAvg algorithm randomly
selects a subset of participants, S t ∈ N , which performs the
local update. Each participant computes ∇Fn(wtn), which are
the gradients of their local data for the current model wtn, and
the server aggregates these gradients by applying the update:

wt+1G ← wtG − η

N∑
n=1

Dn
D
∇Fn(wtn). (2)

The hyperparameter η is the learning rate and directly
influences the convergence speed. A small learning rate
implies a smooth trajectory and small weight changes at each
iteration. A very high learning rate implies a more signifi-
cant weight change, increasing convergence speed. However,
it can also lead to fluctuations around a local minimum.
An equivalent and commonly used aggregation type is:

wt+1n ← wtn − η∇Fn(wtn), ∀n; (3)

Algorithm 1 Federated Averaging pseudo-
code [15].
Input: Local mini-batch size B, number of local

updates τ , number of participants per
aggregation round µ, learning rate η, number
of aggregation rounds T

Output: Global model wG
1 [ participant n - Update the local model]
2 Function LocalUpdate(n, w)
3 Split the local dataset Dn into mini-batches of size

B creating the set Bn
4 for each local_epoch from 1 to τ do
5 for each b ∈ Bn do
6 wt+1n ← wtn − η∇Fn(wtn; b)
7 end
8 end
9 return wtn

10 [Server side - Performs a global weighted average
using the selected local parameters of the models]

11 INIT w0
G

12 for each iteration t from 1 to T do
13 Randomly selects a subset Sn ∈ N of size m
14 for each participant n ∈ Sn do
15 wt+1n ← LocalUpdate(n, wtG)
16 end
17 wtG =

∑N
n=1

Dn
D w

t+1
n

18 end

and updated as:

wt+1G ←

N∑
n=1

Dn
D
wt+1n . (4)

Each client locally performs τ gradient descent steps on the
current model using its local data, and the server then com-
putes a weighted average of the resulting models. τ controls
the local train epochs amount. Hence, three main parameters
control the computation amount: i) S t , the portion of partic-
ipants that perform computation in each aggregation round
(parallelization); ii) τ , the number of training iterations each
participant performs on their local dataset; iii) and B, the local
mini-batch size used for local updates. The pseudo-code for
FedAvg is presented in Algorithm 1 [15].

The algorithm follows the FL three basic steps aforemen-
tioned. In step 1, the server starts the training (lines 11 - 16).
Then, in step 2, participant n performs the local training
and optimizes its loss function on the local dataset mini-
batches (lines 2 - 9). In iteration t (line 17), the server
minimizes the overall loss by aggregating the average gra-
dients received from the participants. The FL training pro-
cess will continue until the global loss function achieves
a desirable loss, or reaches a maximum aggregation round
number.
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B. FEDERATED LEARNING REFERENCE ARCHITECTURES
There are three general architectures for a FL system: hor-
izontal FL, vertical FL, and federated transfer learning [1].
We describe each architecture based on a matrix. The rows
represent the sample space, and the columns the feature
space.

1) HORIZONTAL FEDERATED LEARNING
Horizontal FL is the most commonly used FL architecture.
The main characteristic of this architecture is that the n
participants have the same data structure, i.e., the dataset
of participants have the same feature space, with a different
sample space. An example of such a case is shown in [1],
where the authors use horizontal FL to train on the datasets
of customers from two regional supermarket chains, with
a very small overlapping set of customers in between. In
the horizontal architecture, participants collaboratively train
a machine learning model with the guidance of a server.
A conventional assumption is that the participants are honest,
while the server is honest-but-curious, which means that the
server maintains the functionality of the FL environment but
is willing to discover participant data. Therefore, no informa-
tion leakage from any participant to the server is allowed [41].

A well-known challenge in the horizontal FL architec-
ture is to protect sensitive data from an honest-but-curious
server [1]. Even sharing only the parameters of the model,
it is still possible to infer data stored on participants. Themost
used techniques to protect the parameters of the model are
homomorphic cryptography [41] and SMC [42].

2) VERTICAL FEDERATED LEARNING
Vertical FL or feature-based FL, applies to cases where two
datasets share the same sample space but differ in the feature
space. For example, two companies operating in the same city
may have similar customers but have different information
about those customers. Vertical FL is the process of aggre-
gating these different features and computing the loss and
gradients with privacy-preserving to build a model with data
from both parties collaboratively [1].

Some privacy-preserving machine learning algorithms for
vertically partitioned data have been proposed in the liter-
ature, including cooperative statistical analysis [43], asso-
ciation rule mining [44], secure linear regression [45],
classification [46], and gradient descent [47].

Some recent works propose a federated vertical learn-
ing scheme to train a privacy-preserving logistic regression
model [48], [49]. These works apply Taylor expansion to
the loss function and adopt homomorphic cryptography for
privacy-preservation gradient descent calculations.

Suppose companies A and B want to collaboratively train a
machine learning model in their business systems, each with
its data. Furthermore, Company B also has labeled data that
the model needs to predict. For privacy and data security
reasons, A and B cannot exchange data directly. A third
entity C is involved to ensure data confidentiality during the

FIGURE 3. The vertical FL system architecture. The entity creates the key
pairs in the first step and sends the public key to the participants.
In step 2, A and B conduct the security verification to find intersections in
their samples, i.e., mutual customers. Participants send their parameters
encrypted and masked for aggregation by entity C in step 3. Finally,
in step 4, entity C returns the result to the participants.

training process [1]. Entity C is assumed to be honest and not
collude with A or B, whereas parties A and B are honest-but-
curious about each other. Trusting in entity C is a reasonable
assumption, as part C can be performed by authorities such
as governments or replaced by a secure compute node [1].
Vertical FL has two parts, as shown in Figure 3. In part 1,
an alignment between entities is done using cryptography.
Since the two companies have different customers, the system
uses cryptography-based user Identification (ID) alignment
techniques to confirm mutual users in A and B [50], [51].
The system does not use samples of users that do not overlap
among the entities during the alignment of entities. Part 2
consists of the encrypted model training. After determining
similar users, the model uses the data from those samples
to train the machine learning model. We divide the training
process into the following four steps [1].

1) Entity C creates homomorphic additive cryptographic
pairs of keys and sends the public key to A and B, and
encrypts masks for A and B to apply;

2) A and B encrypt and exchange their intermediate
results using C’s mask for gradient and loss calcula-
tions;

3) A and B calculate the encrypted gradients and add an
extra mask. B also calculates the encrypted loss. A and
B send encrypted values to C;

4) C decrypts and sends the decrypted gradients and loss
back to A and B. A and B unmask the gradients and
update the model parameters.

In short, the vertical FL system helps participants establish a
‘‘commonwealth’’ strategy without affecting data privacy.

A vertical FL system typically assumes honest-but-curious
participants. For example, in a two-party case, both parties are
not malicious; however, one of the parties may be committed
to be an adversary. An adversary can only learn information
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from the dishonest participant since the adversary is not
allowed to participate. The third participant C, is introduced
to facilitate safe processing between the two parties. In this
case, it has an assumption that this third party is not in collu-
sion with either party. Secure multiparty computing provides
formal proof of privacy for these protocols [52]. At the end of
learning, each party has only the model parameters associated
with its features. Therefore, the two parties must collaborate
to generate the output model at the inference time.

3) FEDERATED TRANSFER LEARNING
Federated transfer learning applies to scenarios where
datasets differ in the samples and the feature space. An exam-
ple is the case of two different institutions operating in
different countries [1]. In this case, transfer learning tech-
niques [53] provide solutions for the entire sample and feature
space in a FL environment.

Suppose parties A and B have only a small set of overlap-
ping samples. The main interest is to train a model to predict
the labels for the participant A dataset (destination domain)
using the participant B model (source domain) knowledge.
The architecture described in vertical FL works only for the
overlaid dataset samples. Federated transfer learning does
not change the general architecture. However, it changes
the intermediate results exchanged between parts A and B.
Transfer learning usually involves exchanging common rep-
resentation from one model to another to minimize the error
of the destination domain party, using the knowledge of the
source domain party (B, in this case). Therefore, the gradient
calculations for parties A and B differ from the vertical
FL scenario. Federated transfer learning is an extension of
existing FL systems as it deals with problems that exceed the
scope of existing FL algorithms.

VI. DATA SHARING AND PROCESSING IN
FEDERATED LEARNING
Current FL applications use MEC and SMC techniques to
ensure low latency and privacy. MEC brings the aggregation
server near to the user, while SMC encrypts the parameters
of the participants enabling arithmetic operations.

A. MULTIACCESS EDGE COMPUTING
Multiaccess Edge Computing (MEC) is a technology that
enables computing resources to be deployed closer to end
devices, such as mobile devices and IoT devices. By deploy-
ing computing resources closer to end devices, MEC can
reduce the data transmission latency. It is particularly impor-
tant for applications that require real-time data processing
or low-latency communications, such as virtual reality, aug-
mented reality, autonomous vehicles, etc. MEC also can sup-
port reducing the amount of data that needs to be transmitted
over the Internet, which can help to lower the network traffic
and reduce congestion. Therefore, MEC allows the model
training close to the data sources [14], that is, in devices
at the access network. Figure 4 shows the MEC traditional
architecture.

FIGURE 4. MEC architecture, in which servers are located in the structure
of the carrier, thus offering high throughput and low latency.

A collaborative paradigm is widely used for train-
ing machine learning models in conventional MEC
approaches [14]. The users send their data to the edge
servers for the model training instead of sending it directly
to the cloud servers, decreasing the communication cost.
However, the paradigm still incurs high communication
costs for applications that require constant training [54].
Furthermore, data processing on edge servers still involves
transmitting potentially sensitive personal data to network
edge servers [14]. The leakage possibility may discourage
users concerned about their data privacy from participating.
Data storage or usage may violate increasingly strict privacy-
enforcement laws, such as GDPR. MEC applications are
increasingly adopting FL to ensure that training data remains
local on the device of participants. FL enables complexmodel
training collaboratively among distributed devices without
data sharing [54].

B. SECURE MULTIPARTY COMPUTATION
FL is closely related to SMC. SMC is a cryptographic pro-
tocol that distributes computations among multiple parties,
with neither party able to access the data of the other. Secure
multiparty computation protocols allow compatible, secure,
and private distributed computation [55].With SMC,multiple
parties can collaboratively compute a common function with-
out revealing their private inputs to other parties. For a secure
SMC protocol, the parties may learn no other information
but the final result. Before FL, previous works proposed
algorithms for secure multiparty decision trees for vertically
partitioned data [56], [57]. Vaidya and Clifton proposed
secure association mining rules [44], secure k-means [58],
and a naive Bayes classifier [59] for vertically partitioned
data. Du et al. proposed secure protocols for linear regression
and multiparty classification [46]. Wan et al. proposed secure
multiparty gradient descent methods [47].

Several SMC approaches were proposed for FL, such as
homomorphic encryption [60], pairwise masking [61], and
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secret sharing [62]. In Homomorphic Encryption, mathemat-
ical operations can be performed on encrypted data. There-
fore, the aggregation server cannot access the raw values
of local models but can aggregate the models, generating
an unencrypted global model [60]. Although homomorphic
encryption ensures privacy, the scheme is computationally
expensive. In pairwise masking, the participants agree with
a pairwise mask. The pairwise mask can be exchanged via
Diffie-Helman key exchange [61]. However, the approach is
insufficient to provide reasonable privacy for the participants.
In secret sharing, a secret is broken into multiple parts. Only
when the parts are together can the secret be revealed [62].
The secret can be a mask, a key, or parameters. The main goal
of using SMC is to protect the local models against a possible
honest-but-curious aggregation server.

VII. VULNERABILITIES IN FEDERATED LEARNING
FL is susceptible to attacks against collaborative training.
This section categorizes the main attacks on FL as model per-
formance attacks and privacy attacks. The section discusses
FL attacks and proposed countermeasures to address these
attacks.

A. MODEL PERFORMANCE ATTACKS
This kind of attack aims to directly or indirectly affect the
performance of the global model. Malicious participants can
send incorrect or corrupted parameters to bias the global
model during global aggregation. Attacks on the model per-
formance can be targeted attacks (backdoor attacks), and
untargeted attacks (byzantine attacks) [25]. The malicious
participant can backdoor subtasks by sending poisoned mod-
els. A backdoor subtask makes the global model fail to pre-
dict a particular class, leading to mispredictions [22]. The
Byzantine attack goal is to cause the collapse of the global
model. Unlike backdoor attacks, byzantine attacks do not
intend the misprediction on a specific task. Consequently,
when attackers try to poison the training, the aggregation
server will update the global model incorrectly, and the entire
collaborative training will be compromised [26]. Besides,
a participant may want to get the global model but is unwill-
ing to contribute, sending random parameters to aggregation
(free-riding). Even unintentionally, free-riding can be harm-
ful to collaborative training.

1) DATA POISONING ATTACKS
The objective of the FL is to preserve the privacy of data
stored on participants by training machine learning mod-
els locally and transmitting only the model parameters to a
central server for aggregation. However, the server cannot
guarantee that the participants have used actual data dur-
ing their training process, rendering the system vulnerable
to attacks by malicious participants [63]. By poisoning the
global model, an attacker can introduce mislabeled data,
which biases the training of the global model and produces
falsified parameters [64]. Mislabeled data refers to instances
in a dataset where the label assigned to a data point is

incorrect, i.e., the data is labeled with a category or class that
does not accurately reflect its true identity or characteristics.
One potential method of carrying out such an attack is to
generate a series of counterfeit samples and incorporate them
into the local model update, thereby impeding or sabotaging
the convergence of the global model.

This attack only affects collaborative training if a group
of participants colludes to poison the global model. The
server randomly selects the participants for aggregation; then,
a malicious participant has a 1

N chance of being selected.
Even being selected once or twice, a single malicious partic-
ipant cannot harm the training by poisoning its dataset [14].
The malicious participant may collude, infect other partici-
pant machines, or use a Sybil attack. The Sybil attack involves
a malicious participant attempting to amplify the impact of
data poisoning by generating multiple false identities of legit-
imate participants, all containing poisoned data. Only two
false participants can collapse the entire training [64].

Similar to the Sybil attack, Distributed Backdoor Attack
(DBA) is a threat assessment framework that exploits the
distributed nature of FL tomanipulate a subset of training data
by injecting adversarial triggers in a distributed manner [65].
In DBA, a global trigger pattern is decomposed into different
local patterns and embedded into the training set of different
adversarial parties. A trigger pattern can be a specific image
or a sequence of pixels that can manipulate the machine
learning model’s behavior when added to the training data.
For example, a trigger pattern in an image classification task
could be a small, specific shape or pattern (such as a red
square) added to a corner of an image. When this trigger
pattern is present in the image, the model will misclassify the
image to a targeted class. DBA aims to create backdoors in
the FL model that will make arbitrarily incorrect predictions
on the test set with the same trigger embedded. Compared to
standard centralized backdoors, DBA is more persistent and
stealthy against FL on diverse datasets such as finance and
image data [65].

Data poisoning attacks in FL can be executed through
Generative Adversarial Networks (GANs) [66]. The attacker
initially trains the GAN to replicate the training samples of
other participants and subsequently leverages these replicated
samples to generate poisoned updates. Such a poisoning
attack is characterized by increased generality and efficacy,
making it challenging to identify and mitigate [66].

Clean-label and dirty-label are the two main categories of
data poisoning attacks [28]. In clean-label attacks, the adver-
sary is assumed to be unable to modify the labels of training
data due to a certification process that verifies the correct
class of the data and requires imperceptible modifications
to any data samples. Conversely, in dirty-label attacks, the
adversary can deliberately mislabel a set of data samples with
a desired target label, leading to themisclassification of future
data when these samples are introduced into the training set.
Possible Solution: Robust aggregation and differential pri-

vacy are the most common defense against data poisoning
attacks. Robust aggregation in FL refers to aggregatingmodel
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updates from multiple participants in a way resistant to vari-
ous types of attacks or noise. Robust aggregation techniques
are used to aggregate the updates robustly to such noise
and attacks. Another solution to mitigate model poisoning
attacks involves incorporating differential privacy mecha-
nisms. This approach entails the introduction of noise to the
model updates of each participant, thereby ensuring that the
updates do not disclose any information about the participant
private data. The differential privacy prevents attackers from
generating poisoned updates, similar to the GAN poisoned
dataset. Fung et al. introduced a robust aggregation method
to identify and mitigate Sybil attacks [64]. The proposed
defense strategy is called FoolsGold. The authors have dis-
covered the differentiation of honest participants from mali-
cious ones by analyzing their updated gradients. In FL, the
training data of each participant has a unique distribution and
is not shared. Sybil attackers share a common goal and will
contribute updates that are similar to each other, unlike honest
participants. FoolsGold uses this assumption to modify each
local learning rate in each aggregation round to minimize the
impact of malicious participants. The proposal is to maintain
the learning rate of participants who provide unique updates
while reducing the learning rate of customers who repeatedly
contribute similar gradient updates.

Fang et al. proposed a defense strategy for detecting
and mitigating poisoning datasets in FL [67]. The pro-
posed defense is based on identifying malicious participants
by analyzing their parameter updates, which have unique
characteristics compared to honest participants. The defense
strategy is designed to differentiate between malicious and
honest participants using Principal Component Analysis
(PCA) for dimensionality reduction and pattern visualization.
After computing the gradients in a model update and com-
pared to the global model, only the subset of models corre-
sponding to the participants suspected to be the source of a
poisoning attack is extracted. This subset is added to a global
list. Then, the standardized list is fed into PCA, generating a
two-dimensional data visualization. The results show that the
defense can effectively identify malicious participants, even
in scenarios with a few participants, and remains robust to
gradient drift. Similarly, Tolpegin et al. propose a method for
identifyingmalicious participants by comparing their updates
and either blacklisting them or disregarding their updates in
future aggregation rounds [68]. Finally, Sun et al. proposed
to add Gaussian noise with small standard deviations to the
aggregation to mitigate the backdoor attacks [69].

2) MODEL POISONING ATTACKS
In model poisoning attacks, the malicious participant
attempts to manipulate the local model updates before send-
ing them to the aggregation server to poison the global
model directly [63]. The adversary aims to cause the global
model to misclassify specific inputs with high confidence,
which is achieved by manipulating the training process. The
attacker can even scale up their parameters to prevail over

the averaging, increasing their influence on the global model.
Previous works [22], [70], [71], [72] have demonstrated that
model poisoning attacks are significantly more effective than
data poisoning attacks. Furthermore, these attacks can be
executed with just a single attempt, making them a serious
threat to the security and integrity of the global model [70].

Bagdasaryan et al. introduced a highly effective model
poisoning attack for FL [71]. By sharing their poisoned
model that contains a backdoor to bias the global model
to misclassify, a malicious participant can compromise one
or more participants using the proposed constrain-and-scale
backdoor. This algorithm allows attackers to create a model
with high accuracy in both the main task and the backdoor,
enabling the global model to be manipulated without modify-
ing the local dataset of themalicious participant. For instance,
in a sentiment analysis task, a backdoor attack could bias the
model to classify all reviews containing a particular keyword
as positive, regardless of their actual sentiment. Bagdasaryan
et al. showed that their approach is more effective than dataset
poisoning attacks. Only eight participants are sufficient to
compromise an entire FL environment with high accuracy in
the malicious classification. However, the aggregation server
can detect malicious participants by comparing the received
models, as poisoned models will have large parameter values
compared to other participants.

Zhou et al. proposed a deep model poisoning that can
be stealthy among benign models [72]. The proposed attack
trains a mini-batch for the main task and backdoor sub-
task, respectively. In this way, the poisoned models will
have similar parameters to benign ones, making detection by
model comparison complex. The authors reported that some
neurons are more important for the main task, and others
are more important for the backdoor sub-task. The authors
found that calculating the second-order derivative makes it
possible to find the neurons that considerably affect the loss
function. Then, capturing the second-order derivative, the
Hessian matrix can measure the distance and direction of the
update [72]. Hence, the authors proposed to find the neurons
important to the main task and use a regularization term to
penalize SGD, avoiding updating those neurons.

Wang et al. proposed a new class of backdoor attack called
edge-case backdoor [22]. The edge-case backdoor target
underrepresented input data for misclassification. For exam-
ple, in an image classification task, the malicious participants
can label samples of people using a kilt3 as ‘‘airplane’’. In an
image dataset, it is relatively common to have ordinary peo-
ple, but people wearing kilts are rare. The edge-case backdoor
train the poisoned model using Projected Gradient Descent
(PGD) to reduce the detection probability. Using PGD, model
of the malicious participant does not differ much from the
global one at every aggregation round. Finally, before sending
the model to the aggregation server, the malicious participant
scales its parameter by a scalar to cancel the contribution of
the honest participants [71].

3Kilt is a traditional Scottish garment.
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Possible Solution: The main defense for model poison-
ing attacks is robust aggregation [25]. There are two possi-
ble ways to achieve robust aggregation [25]. One approach
involves evaluating the performance of local models using
a validation dataset and avoiding those with significantly
poor performance. The other approach involves comparing
local models from each participant to detect any statistical
differences with the updates made by other local workers.
Typically, malicious participants have different goals than
honest participants, leading to differences in their local mod-
els. Therefore, identifying statistically different local models
can help prevent model poisoning attacks.

Andreina et al. proposed a robust aggregation called
Backdoor detection via Feedback-based FL (BAFFLE) [73].
BAFFLE introduced a validation phase in the collaborative
training. In this phase, the aggregation server sends the global
model to a random participant set for validation using their
local dataset. The participants in this set will vote if the aggre-
gation is genuine. Based on the feedback of the participants,
the aggregation server accepts or rejects the global model.

Shen et al. proposed a mechanism called AUROR for
robust aggregation [74]. The authors observed that the param-
eters of most honest participants have a similar distribu-
tion. On the other hand, malicious participants present an
anomalous distribution. AUROR uses k-means to cluster the
updates of the participants at each aggregation round and
discard outliers. Xie et al. proposed a general framework
called Certifiably Robust Federated Learning (CRFL) [75].
CRFL clips and smooths the local parameters using parame-
ter smoothing [76] before aggregation.

Pillutla et al. introduced a new approach called Robust
Federated Aggregation (RFA) to make FL more robust in
settings where some participants may send corrupted updates
to the aggregation server [77]. RFA relies on a robust aggre-
gation based on the geometric median of the parameters
and preserves the privacy of participating devices through
secure multi-party computation. The paper establishes RFA’s
convergence for least squares estimation of the global model.
It provided experimental results with linear models and deep
networks for three tasks in computer vision and natural
language processing. RFA outperforms classical aggrega-
tion approaches in terms of robustness when the level of
malicious participants is high and competitive in low cor-
ruption regimes. Similarly, Yin et al. presented a robust
aggregation algorithm against model poisoning [78]. The
focus is on achieving optimal statistical performance, and
the authors analyzed two robust distributed gradient descent
algorithms based on median and trimmed mean operations.
Their median-based aggregation algorithms also improved
communication because they required fewer aggregation
rounds for convergence.

Mhamdi et al. introduced a new approach called Bulyan,
which reduces the space for adversarial attacks and achieves
convergence as if only non-Byzantine gradients had been
used to update the model [79]. Bulyan combined Krum and a
variant of the trimmed mean. Krum is a distributed algorithm

that stands for ‘‘K-reverse nearest neighbor Using Minimiza-
tion’’. The Krum algorithm operates by collecting model
updates from a subset of participants and then selecting the
updates that are closest to the median using the Euclidean dis-
tance as a metric for comparison. Specifically, Krum chooses
the K updates farthest away from the other updates, then
averages them to produce the final aggregated update. Bulyan
is shown to avoid convergence to ineffectual models and
achieves comparable performance to a non-attacked averag-
ing scheme. However, the authors acknowledge that finding
the best direction for non-convex loss functions remains a
challenging problem.

3) FREE-RIDING ATTACKS
In FL, free-riding is a deceptive attack where a participant
tries to exploit the benefits of the global model without
investing sufficient resources in the training process. Essen-
tially, a free-rider selects a smaller subset of their actual
dataset for training or uses random noise instead, conserving
their computational resources. This behavior results in the
honest participants having to contribute more resources to
the global model training process. Consequently, the overall
model performance gets compromised by the poor quality of
data provided by the free-rider.
Possible Solution: Various solutions have been proposed

to mitigate the issue of free-riding in FL. One commonly
suggested solution is to utilize blockchain technology to track
participant updates and ensure their contributions. However,
this approach can lead to potential data privacy attacks.
An alternative approach is incentivizing participants to con-
tribute by implementing reward mechanisms that benefit
participants with contributions and penalizing those who do
not.

Kim et al. proposed BlockFL, a FL architecture that lever-
ages blockchain technology to exchange and verify local
model updates, thereby addressing the problem of free-riding
in FL. [80]. Each participant trains and sends the trained
local model to its associated miner in the blockchain and
then receives a reward proportional to the number of sam-
ples of trained data. Then, the proposed framework avoids
free-riding participants and encourages all participants to
contribute to the learning process. A similar model, also
based on blockchain, is introduced by Weng et al., aiming
to provide data confidentiality, computational auditability,
and incentives for participants in FL [81]. However, using
blockchain technology implies the implementation and main-
tenance of miners to operate the blockchain. Furthermore,
consensus protocols used in blockchain networks, such as
Proof-of-Work (PoW), tend to cause long delays in informa-
tion exchange and, thus, are not appropriate for implementing
dynamic FL models.

Another approach to avoid free-riding is using incentive
mechanisms for participants contributing to the collaborative
training [82]. The incentive mechanism compensates for the
effort of a contributing participant. Richardson et al. define
the influence of the participant as the effect of its contribution
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TABLE 1. Proposals in literature against model performance attacks. None of the proposals protect against poisoning and free-riding simultaneously.

on the loss function of the FL model. The participants receive
incentives according to their influence. The total reduction in
the loss function bounds the expenses. The aggregation server
has to obtain the required budget for the rewards. Huang et al.
model their incentive framework as a game theory [83]. The
idea is to monetize the global model and allocate the profits
to each participant according to their contributions.

Table 1 summarizes the state-of-the-art defenses against
model performance attacks. It is important to highlight that
none of the proposals simultaneously protect collaborative
training against poisoning and free-riding.

B. DATA PRIVACY ATTACKS
One of the main goals of FL is to protect the privacy of
the participant in collaborative training. However, data pri-
vacy attacks can infer the data stored on participants. Any
entity possessing local models can infer their data [21]. The
aggregation server is the most likely entity to perform such

an attack. In particular, this threat is against the FL privacy
assumption because the data stored on participants may be
leaked.

1) MODEL INVERSION AND GRADIENT INFERENCE
Model inversion is the attack in which an adversary possess-
ing a trained model uses its parameters to predict the dataset
used as input to train that model, thus characterizing an attack
on the privacy of a participant [21]. The attacker seeks to
take advantage of the correlation between the target, which
would be the unknown features, and the result predicted by
the model. This attack can be performed by the aggregation
server that has the updated local models of the participants.
The model inversion is harmful to blockchain-based propos-
als because the models are stored in clear text on the chain.
Every blockchain client has a copy of the chain and can
be able to perform model inversion to reveal data stored on
participants. Fredrikson et al. proposed the model inversion
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FIGURE 5. FedGP architecture for two participants. Sensitive data is used
to train a GAN, producing an artificial private dataset. The green rectangle
represents the data of each participant, and the blue one represents the
generator model. Adapted from [85].

attack to retrieve images from a facial recognitionmodel [84].
The authors developed a new class of model inversion
attacks that exploits the training parameters revealed with the
predictions.
Possible Solution:Themain solution for model inversion is

using cryptography, differential privacy, and the generation of
artificial data with Generative Adversarial Networks (GAN).
Triastcyn and Faltings proposed a framework called Feder-
ated Generative Privacy (FedGP) [85]. The main idea of this
approach is to train GANs on data stored on participants to
produce an artificial dataset to replace the actual participants
dataset. As some participants may have insufficient data to
train a GAN locally, the authors proposed a federated GAN
model. Thus, user data always remains on their devices.
In addition, federated GAN generates a dataset following all
data stored on participants distribution rather than a single
one, which increases privacy. Figure 5 shows the architecture
of the framework. The authors evaluated the protection by
running the model inversion attack and showed that federated
GAN reduces information leakage.

Zhang et al. proposed a homomorphic encryption scheme
to preserve the local model parameters of FL [60]. The
authors proposed Privacy-Enhanced Federated Learning
(PEFL) to protect gradients from an untrusted server. PEFL
enhances privacy by encrypting the gradients of local
models with Paillier homomorphic cryptosystem. The pro-
posal uses Distributed Selective Stochastic Gradient Descent
(DSSGD) [86] algorithm in the local update to reduce the
computational costs of the cryptographic system. In addi-
tion, encrypted gradients are used for server-side secure sum
aggregation, as shown in Figure 6. In this way, the untrusted
server only learns the aggregated statistics of the updates,
keeping local data protected. The authors theoretically prove
that the scheme is secure. Evaluations demonstrate that PEFL
has low computational costs and, at the same time, achieves
a high-accuracy global model. Zhang et al. also analyze the
time to encrypt the parameters of a fragment of the weights,

FIGURE 6. In the PEFL Architecture, the participants send the data
encrypted using homomorphic encryption, and the server performs the
aggregation returning the aggregated weights to all the participants.
Adapted from [60].

using DSSGD, and conclude that it is short, sometimes less
than one second [60]. However, the authors use state-of-the-
art equipment in the evaluations, which does not correspond
to the reality of the IoT and mobile environments.

Titcombe et al. proposed a mechanism called NoPeekNN
to protect the participants against model inversion by adding
noise to the intermediate data representation [87]. The
authors used additive Laplacian noise to obscure the pri-
vate data stored on participants. The noise increases privacy
but decreases the performance of the model. On the other
hand, Qi et al. proposed a privacy-preserving method for
FL training using differential privacy [88]. The authors used
Local Differential Privacy (LDP) for the model gradients
before uploading them to the server to protect privacy. LDP
is a privacy-preserving technique that adds random noise to
individual data points before releasing them or computing
aggregate statistics. This way, it can protect the privacy of
individuals in a dataset by making it difficult to link their
specific data points to their identities.

2) GAN RECONSTRUCTION ATTACK
The GAN reconstruction attack is a class of FL privacy
attacks that is even more effective than model inversion
attacks [91]. Model inversion attacks struggle to infer data
stored on participants when the deep learning structure is
more complex. Hitaj et al. introduced the GAN reconstruc-
tion attack and showed that a malicious participant could
reconstruct the data of the participants [91]. In this attack,
the malicious participant creates a replica of the global model
to be the discriminator and then trains a generator to create
replicas of the data stored on participants. The malicious
participant inputs data produced by the generator into the
discriminator, calculate the loss of the discriminator outputs
and then updates the generator. The malicious participant
could infer the data stored in the participants even by applying
moderate differential privacy. It is essential to highlight that
the more differential privacy is used, the lower the accuracy
is.
Possible Solution: Securemultiparty computation ormech-

anisms for malicious participant detection are the primary
defense for FL from GAN reconstruction. Chen et al.
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TABLE 2. Proposals against data privacy attacks. Currently, there is no definitive solution for data privacy in FL. The more effective solution requires high
computation and communication costs.

proposed a mechanism to protect collaborative training
against GAN reconstruction attacks using secure multiparty
computation [89]. For this sake, the authors used an improved
Du-Atllah scheme, a method for multiple parties to per-
form calculations without knowledge of the raw data [92].
To achieve privacy, each party adds a mask to their data in a
way that the other party mask can cancel the mask during the
calculation. The proposed mechanism needs a Trusted Third
Party to generate the masks. Since participants do not have
full access to the global model during training, the aggre-
gation server must communicate with participants several
times at each local update to assist the local training. Thus,
neither the participants nor the aggregation server can access
the data [89]. The advantage is that the data is protected
against the honest-but-curious server and the other malicious
participants. The downside is the increased communication
cost and the need for a new trusted party.

Yan et al. protected the collaborative training against GAN
attacks by changing the parameter exchanging protocol [90].
In the proposal, every honest participant embeds an additional
layer in the local model called the buried point layer. During
the training, when a malicious participant sends its model
for aggregation, the aggregation server can identify it due
to the absence of the buried point layer. When a malicious
participant is detected, communication with the participant is
blocked.

Table 2 summarizes the main defenses for data privacy
attacks. Data privacy is one of the main concerns in FL and
is still an open issue. The current solutions do not defend
against all known privacy attacks and increase computational
and communication costs.

VIII. RESEARCH CHALLENGES AND OPPORTUNITIES IN
FEDERATED LEARNING
The FL challenges differ from other classical problems, such
as distributed learning in data center or traditional private data
analytics. The main three challenges in FL are:

1) Expensive communication: The FL environment com-
prises a large number of devices, e.g., millions of smart-
phones, and network communication can be slower
than local computing due to limited resources such as
bandwidth and energy [1]. Two main aspects must be
considered to reduce communication in the federated
environment: i) reduce the total number of communica-
tion rounds and ii) decrease the size of data transmitted
in each aggregation round;

2) Device heterogeneity: Storage, computing, and com-
munication capabilities of each device in the federated
environment may differ due to variability in hardware
(CPU andmemory), network connectivity (2G, 3G, 4G,
5G, and Wi-Fi), and power (battery level) [1]. Further-
more, each network size and system-related restrictions
typically result in only a small fraction of devices
being active at the same time [93]. It is common for
an active device to fail in a given aggregation round
due to connectivity or power constraints [93]. Device
heterogeneity intensifies challenges such as stragglers
mitigation and fault tolerance. The FL methods must,
therefore, predict participant failure, tolerate heteroge-
neous hardware, and be robust enough to enable that
participant failure does not affect aggregation;

3) Federated Optimization: Devices often generate and
collect data in a Non-IID manner in the FL environ-
ment. Smartphone users, for example, have varied lan-
guage usage in the context of a next-word prediction
task. Also, the number of data points (feature space
— x) between devices can vary significantly, and there
may be an underlying statistical structure that captures
the relationship between devices and their associated
distribution [1]. This data generation paradigm violates
the Independent and Identically Distributed (IID) data
assumptions often used in distributed optimization and
can add complexity to problem modeling, theoretical
analysis, and empirical evaluation of solutions.
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TABLE 3. Security and privacy summary of recently FL proposals to main challenges.

A. EXPENSIVE COMMUNICATION
Effective communication is crucial to achieving the desired
accuracy in FL. Complex deep learning model training, such
as in Convolutional Neural Network (CNN), can comprise
millions of parameters in each update [108], resulting in
expensive communication and potentially impacting train-
ing. The bottleneck is aggravated by network conditions of
participating devices and asymmetries in Internet connec-
tions, where the transmitting rate is lower than the receiving
rate, leading to delays [96], [99]. Therefore, works in the
literature [36], [95], [96], [97], [98], [109] aim to improve
the communication of FL in three ways: i) increasing the
local computation, thus reducing the need for communication
rounds; ii) performing the compression of the local model,
reducing the size of the data sent to the server; and iii) per-
forming updates based on importance, in which only the
parameters that have relevant changes during the local train-
ing are sent. Liu et al. proposed the aggregation algorithm
Federated Stochastic Block Coordinate Descent (FedBCD),
in which each participating device performs several local
updates before communicating for global aggregation [94].
Convergence assurance is provided with an approximate cal-
ibration of the optimal number of local updates calculated
at each aggregation round. Similarly, Yao et al. proposed
augmented computing on each participating device, adopting
a two-streammodel [95]. The two-streammodel is commonly
used in domain transfer and adaptation learning [110]. During
each aggregation round, the global model is received by
the participants and set as a reference in the local training
process. During the local update, the participant learns from
local data and other participants by using the global model
as a reference. The authors incorporate the Maximum Mean
Discrepancy (MMD) into the local loss function to use the
global model as a reference during local updates. MMD is
a measure of the difference between two probability distri-
butions. The authors used MMD to measure the difference
between the local model from the participants and the global
model. Then, the proposal aims to minimize the MMD. The

authors used the Canadian Institute For Advanced Research
- 10 Classes (CIFAR-10) and MNIST datasets and deep
learning models such as CNN in the simulations. The results
show that the proposed two-stream FL can converge in fewer
aggregation rounds, even when the data is Non-IID [95].
In both papers [94], [95], no mechanism ensures that the
participants will follow the protocols. Malicious participants
can add backdoors or try to affect the performance of global
model. In addition, free-riders can also fake their effort in
training. A possible solution is to compare the discrepancy
in the parameters of the local models.

Wang et al. proposed an algorithm to determine the global
aggregation frequency to use the available resources more
efficiently [36]. For this, the authors analyze the convergence
limit of FL based on gradient descent from a theoretical
perspective. A new convergence limit is proposed, incorpo-
rating the distribution of Non-IID data between nodes and
an arbitrary number of local updates between two global
aggregations. The authors proposed a control algorithm that
learns data distribution, system dynamics, and model char-
acteristics using this theoretical convergence limit. Based on
the proposed algorithm, the system dynamically adapts the
frequency of global aggregation in real time to minimize
loss. Finally, the authors evaluate the performance of the
proposed control algorithm through experiments using real
datasets, both in a scenario with a hardware prototype and
in a simulated environment. The results confirm that the
proposed approach provides near-optimal performance for
different data distributions, various machine learning models,
and system configurations with different numbers of edge
nodes. The system obtains a desirable trade-off between local
update and global aggregation to minimize the loss function.
From a security perspective, the participants can lie about
their data distribution, forcing more aggregation rounds on
fake or mislabeled data.

While local update methods can reduce the total number
of communication rounds, model compression schemes can
also be used to reduce the volume of data transmission in
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FL. Examples of compression schemes include ‘‘sparsing’’,
subsampling, and quantization, which significantly reduce
the size of the messages communicated in each aggregation
round. These methods have been extensively studied in the
literature for distributed training in data center environments,
both empirically and theoretically. Konevcny et al. [96] intro-
duced the structured update and sketched update methods for
updating the local model. The purpose of these models is to
decrease the amount of information sent from participants
to the aggregation server during each aggregation round.
The structured update method imposes a predefined struc-
ture on participant updates: a low-rank matrix and random
mask. Each update must be the product of two matrices in
the low-rank matrix structure in this approach. One of the
matrices remains constant during each round, while the other
is optimized. The random array is compressed as a seed,
and only the optimized array needs to be sent to the server.
Alternatively, the random mask structure requires each local
update to be a sparse matrix following a random, predefined
pattern generated independently during each round. Partici-
pants must send only non-zero entries to the server. Sketch
updates encode the update in a compressed form before
communicating with the server, which decodes the updates
before aggregation. The server then averages the sub-sampled
updates to obtain an unbiased estimate of the true average.
A structured random rotation is applied before quantiza-
tion to reduce quantization error, which is the product of a
Walsh-Hadamard matrix and a binary diagonal matrix [111].
Caldas et al. extended Konevcny et al. approach by proposing
a loss compression to reduce communication costs [97]. From
a security perspective, compressing the updates can make it
difficult for the aggregation server to find an infected model
because compressing mechanism force the models to have
a similar structure. Then, compressing the model may facil-
itate malicious participants to deceive a backdoor detection
mechanism.

Another way to reduce the number of bytes transmitted
in FL is called importance-based updating. This technique
assumes that most parameters of a deep neural networkmodel
are sparsely distributed and their values near to zero [112].
Thus, Tao et al. proposed the edge Stochastic Gradient
Descent (eSGD) algorithm, which sends only a small fraction
of important gradient to the aggregation server [98]. The
eSGD algorithm tracks the loss values in two consecutive
aggregation rounds. If the loss value of the current aggrega-
tion round is less than the previous one, it implies that the
current training gradients and parameters are important for
minimizing the training loss. Thus their respective hidden
weights are assigned a positive value.

Thus, Wang et al. introduced the Communication-
Mitigated Federated Learning (CMFL) algorithm, which
selectively transmits relevant local model updates to the
aggregation server to reduce communication costs and ensure
global convergence [99]. The local model update is first
compared with the global model in each aggregation round to
determine its relevance. The simulation results showed that

CMFL requires fewer aggregation rounds to achieve 80%
accuracy for image classification using the MNIST dataset
and for next-word prediction, both compared to the FedAvg
algorithm, which is usually used as a benchmark. In this case,
free-riders can forge their parameter in such a way that the
aggregation server will never select them. On the other hand,
malicious participants can forge slight contributions on both
main and backdoor tasks.

B. DEVICE HETEROGENEITY
In the FL environment, there is significant variation in
the device characteristics of network participants, as these
devices may have different hardware, network connectivity,
and battery levels. These system characteristics make issues
such as delays significantly more prevalent than in typical
data center environments. To solve this problem, several solu-
tions have been proposed.

Typically, the participant selection in FL is random. FL
training progress is limited by the training time of the slowest
participating devices [14] i.e. stragglers. Therefore, partici-
pant selection protocols are investigated to solve the training
bottleneck in FL. Kang et al. considers system overheads
incurred by each device when designing incentive mecha-
nisms to encourage devices with high-quality data to par-
ticipate in the training process [100]. While these methods
primarily focus on the variability of systems to perform live
sampling, it is advantageous to consider live sampling a set of
small but sufficiently representative devices based on the sta-
tistical data structure. From a security perspective, the mali-
cious participant can forge the results to receive the incentive
and be selected using their poisoned or mislabeled data.
Likewise, Nishio et al. proposed a new FL protocol called
Federated Learning with Client Selection (FedCS) [13]. The
proposed framework is a MEC-based solution where the
aggregation server coordinates the training process across
a cellular network comprising mobile devices with vary-
ing resources. The server initiates the process by requesting
resource-related information from a randomly selected subset
of participants, such as CPU information and wireless con-
nection.With the gathered data, the aggregation server selects
the maximum number of participants to complete the training
within a pre-determined period for the upcoming aggregation
round. The simulation results showed that, compared to the
FedAvg protocol, the FedCS is more accurate, as it involves
more participants in each aggregation round instead of a fixed
number. In this case, the malicious participants can lie about
their pieces of information to be always selected or never be
selected in the case of a free-rider.

Traditional data center configurations are based on syn-
chronous and asynchronous schemes. In the synchronous
scheme, participants wait for each other to sync — in the
asynchronous scheme, participants run independently with-
out synchronization [24]. Synchronous schemes are simple
and guarantee a trivial equivalent serial computational model,
but they are also more susceptible to delays due to device
variability. Asynchronous schemes are approaches used to
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mitigate stragglers in heterogeneous environments, partic-
ularly in shared memory systems. However, they rely on
bounded delay assumptions to control the degree of staleness.
The FedAvg [15] algorithm synchronously aggregates param-
eters. It is, therefore, susceptible to the lag effect as each
training round progresses at the speed of the slowest device
as the server waits for all selected devices to complete their
local training before global aggregation. The training will be
affected if various participants face network problems or a
Distributed Denial of Service (DDoS) attack.

Sprague et al. have empirically found that an asynchronous
approach is robust for participants joining during the aggrega-
tion round in progress, as well as when the federation involves
participating devices with heterogeneous processing capabil-
ities [101]. Nevertheless, training models on Non-IID data
often results in a significant slowdown in the global model
convergence. Similarly, Xie et al. proposed the FedAsync
algorithm, where each newly received local update is adap-
tively weighted according to its degree of obsolescence,
which is defined as the difference between the current aggre-
gation round and the aggregation round to which the received
update belongs [102]. Thus, an obsolete update from a
straggler is still considered but receives less importance.
Furthermore, the authors prove the convergence guarantee
for a restricted group of non-convex problems. However,
it FedAsync accepts every update from honest and mali-
cious participants. FedAsync has no mechanism to identify
a malicious participant, and every participant is considered
honest. Despite the potential benefits of asynchronous FL,
synchronous methods remain more prevalent due to their
relative immaturity and lack of reliability.

C. FEDERATED OPTIMIZATION
Distributed machine learning and FL are both approaches for
performingmachine learning on data that is distributed across
multiple devices. However, there is a key difference between
these two approaches. In distributed machine learning, a cen-
tral server can access the entire training dataset and can sub-
sample it into smaller subsets with similar distributions. The
central server can then forward these subsets to participating
nodes for distributed training. There are frameworks such as
Apache Spark and Apache Hadoop that are used for such a
purpose. On the other hand, FL is a method where the central
server does not have access to the data. In the latter, the
training data remains on the devices that generated it and only
the model parameters are shared among the devices.

Previous works on machine learning aim to model statisti-
cal heterogeneity usingmeta-learning andmultitasking learn-
ing methods. Meta-learning consists of machine learning
algorithms applied to metadata [113]. Multitasking learning
is a transfer of learning approach that improves generaliza-
tion by using the information in the training parameters of
related tasks as an inductive bias [114]. These ideas were only
recently extended to the FL environment [24].

Kim et al. proposed FL Acceleration with Momentum
(FedAGM) to use global momentum to maintain knowledge
from previous aggregations [103]. The global momentum
prevents performance instabilities during collaborative train-
ing, reducing the gap between the local and global objective
functions. The FedAGM algorithm aims to send the global
momentum to the selected participants, enabling the incor-
poration of global momentum into the local updates at each
participant.

Smith et al. proposed MOCHA, an optimization frame-
work for FL that enables the development of customized
models for each device while utilizing a shared representa-
tion via multitasking learning [104]. MOCHA is calibrated
according to the resources of participating devices, such as
network conditions and processing load. Although multitask-
ing learning effectively captures internal relationships in local
models to improve performance and increase the effective
sample size for each node, it has limitations in scalability to
massive networks, and is restricted to convex problems [104].

Corinzia et al. proposed an algorithm for federated multi-
task learning, which extends the FL paradigm to handle
real-world federated datasets that show statistical heterogene-
ity among devices. The algorithm is designed to work with
general non-convex models. It uses approximated variational
inference to perform learning on the federated network, treat-
ing it as a star-shaped Bayesian network. The aggregation
server aggregates the model parameters received from each
participant and uses them to compute a posterior distribution
over the shared model parameters. Variational inference is
used to approximate this posterior distribution.

When modeling data in the FL environment, it is important
to consider metrics beyond accuracy. In particular, naively
solving a global loss function may imply taking advantage
and/or disadvantage of some devices, as the learned model
may become biased towards devices with larger amounts
of data [24]. Li et al. introduced FedProx, a framework for
addressing heterogeneity in FL. FedProx is a generalization
and re-parametrization of FedAvg [106]. FedProx provides
convergence guarantees for learning over non-identically dis-
tributed data while allowing each participating device to per-
form variable amounts of work. Additionally, it modifies the
global loss function to ensure convergence [106]. Huang et al.
proposed a federated machine learning method called Loss-
based AdaBoost (LoAdaBoost) for Non-IID scenarios [107].
The method adapts to different data distributions in diverse
sources and achieves higher predictive accuracy with lower
computational complexity than the baseline method. When
the training reaches a predefined number of aggregation
rounds, the cross-entropy loss for each client is calculated and
compared with the median loss from the previous aggregation
round. Participants with a loss greater than the median are
considered ‘‘poorly fitted’’, those with a loss less than the
median are considered ‘‘well-fitted’’, and those with a loss
equal to the median are considered ‘‘neutral’’. Poorly-fitted
clients are trained for more aggregation rounds, well-fitted
clients are trained for fewer, and neutral clients are trained
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for the same number of aggregation rounds as in the previous
round.

It is out of the scope of the aforementioned works to deal
with malicious participants. However, dealing with model
optimization can harden the malicious participant work since
the entire update is not aggregated. It is important to highlight
that mechanism to detect malicious participants is crucial on
FL environments. Similarly to the corporative environment
that must require security mechanisms to keep their business
secure, the FL environments require security to ensure the
safety of the training. As shown in Table 3, none of the pro-
posals guarantee privacy nor mechanism against poisoning.

IX. MAIN APPLICATIONS
FL is a technology that is used for various applications
such as vehicular networks [18], cyberattack detection [115],
Edge Caching and Computation Offloading [36], base station
association [17], vehicular networks [116], and smart health-
care [117]. This section describes FL applications in IoT and
summarizes their vulnerabilities. Table 4 presents a security
and privacy summary of the FL applications. We observe
that most applications use the aggregation algorithm FedAvg,
which is prone to poisoning and data leakage [25]. In such a
case, considering the security and privacy issues in designing
FL applications is crucial.

A. CYBERATTACK DETECTION
Detecting cyberattacks is essential in preventing and mit-
igating the consequences of attacks on networks. Several
works have proposed using machine learning for Intrusion
Detection Systems (Intrusion Detection System (IDS)) [16],
[115], [118]. Deep learning is considered one of the most
efficacious approaches in the cyberattack detection domain.
Deep learning can accurately identify various attacks, thus
establishing it as the preeminent tool for network attack detec-
tion. [115]. However, the IDS model accuracy depends on the
dataset used. Deep learning models demand a relatively large
dataset for training. Therefore, current cyberattack detection
proposals use FL regarding the privacy issue [118]. In this
scenario, we have n IDSes protecting their network. Every
intrusion detection system is a participant in FL. The dataset
consists of network traffic generated by the network moni-
tored by the IDS.

In previous work, Cunha Neto et al. proposed federated
hyperparameter optimization of the FedAvg and participant
selection [118]. The authors claim that the optimized selec-
tion of participants tends to improve accuracy and decrease
the loss of the federated global model. Hence, the authors
proposed Federated Simulated Annealing (FedSA), an exten-
sion of the Simulated Annealing (SA) meta-heuristic for
a distributed scenario where the solutions tend to change
at new rounds. The results show that the proposal can
achieve slightly better accuracy than FedAvg [15], but with
fewer aggregation rounds and participants. In addition, using
FedSA in participant selection helps mitigate the risk of
selecting malicious participants.

FIGURE 7. Reference architecture of the federated learning-based IDS
proposed by [16]. The participants in this scenario are intermediary
intrusion detection systems.

Nguyen et al. proposed an autonomous self-learning dis-
tributed system for detecting compromised IoT devices that
utilize federated learning [115]. The authors systematically
and extensively evaluated over 30 off-the-shelf IoT devices
and show that the proposal can detect devices compromised
by Mirai malware without false alarms in a real-world smart
home deployment setting. In the paper, the authors assume
that the participants are honest and willing to contribute to
training using the parameters of their updated models. In the
event of a group of participants being malicious, they can
compromise the entire system. In contrast, Preuveneers et al.
proposed using blockchain technology to manage data shared
by participants [16]. The authors aim to use blockchain to
store updates generated during training and thereby facil-
itate the identification of malicious activities. The authors
identified that using blockchain generates training latency
compared to training using the FedAvg algorithm without
blockchain. The work, therefore, focuses only on using FL
for intrusion detection, but it is not the scope of the work to
use efficient models. It is important to highlight that it is not
possible to ensure the participants will register their actual
model in the blockchain. The use of blockchain in FL has the
potential to introduce new security threats, including model
inversion and GAN attacks. This is because the transparent
nature of blockchain transactions could allow attackers to
access the parameters of the trained model, which can then
be used to reconstruct the original training data or generate
fake data. Figure 7 shows a reference architecture for attack
detection systems using FL.
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TABLE 4. Security and privacy summary of recently federated learning applications.

Chen et al. proposed the Federated Learning-based Atten-
tion Gated Recurrent Unit (FedAGRU) algorithm [119] for
IDS. The authors deploy aGated Recurrent Unit (GRU) Neu-
ral Network but replace the output layer with a Support Vector
Machine (SVM). The Global aggregation is asynchronous,
i.e., the server does not wait for all selected participants to
send their parameters. The participants compare their model
updates with the current global model at each global iteration
by correlating the parameters. The participants only send their
parameters if their update is relevant to the training.

Li et al. proposed a distributed IDS using FL in
the Satellite-Terrestrial Integrated Network (STIN) sce-
nario [120]. STIN is a valuable supplement to the wireless
network allowing large-capacity information transmission
service to space access networks and terrestrial networks.
Besides using FL for distributed IDS, the authors also devel-
oped a dataset applied to the STIN challenges and limitations.
The authors adapted the FL algorithm for the STIN scenario,
proposing an efficient processing time synchronization, con-
sidering the network limitations of the satellites. The datasets
were crafted in a prototype containing approximately forty
nodes and eleven simulated attack types. The authors used
CNN as the deep learning model.

Zhao et al. proposed an intrusion detection based on com-
mands in Command Line Interface (CLI) [121]. The author
used the Long Short-Term Memory (LSTM) model to pro-
vide richer semantic information in feature space combined
with context. The author compared their proposal with cen-
tralized learning. The proposal achieve better performance
since the model is built collaboratively. However, accord-
ing to the simulation results, the performance of Federated

Learning-based Long Short-Term Memory (FL-LSTM) and
Centralized-LSTM is very close.

Mothukuri et al. proposed a FL approach using an ensem-
ble to enable anomaly detection on the IoT networks [23].
The authors used GRU, neural network models, to train the
machine learning model on a Modbus network dataset. The
authors experimented with both GRU and LSTM, and GRU
models outperformed LSTM to achieve a higher accuracy rate
and be computationally inexpensive. In this paper, the authors
used a Random Forest classifier to ensemble seven global
model outputs.

Rey et al. proposed a federated learning-based IDS using
Multilayer Perceptron (MLP) and autoencoder models [132].
The authors used the N-BaIoT, a dataset for modeling net-
work traffic of several real IoT devices while affected by
malware. The authors compare centralized, distributed, and
FL architectures.

B. OPTIMIZING MULTIACCESS EDGE COMPUTING
PERFORMANCE
In order to tackle the dynamic conditions and temporal vari-
ables inherent in a MEC system, Wang et al. proposed a
novel methodology that employs both Deep Reinforcement
Learning (DRL) and FL to optimize memory transient and
compute offload decisions within said system [123]. The
DRL agent is responsible for determining whether to store
a downloaded file in temporary memory and, if so, which
local file to replace in the temporary storage. At the same
time, the reward function is defined as the Quality of Experi-
ence (QoE) of the user equipment. QoE refers to the overall
quality of the user experience when accessing services and
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applications that are offloaded to the edge of the network.
Given the extensive number of states and actions within
the MEC environment, the authors utilized a Double Deep
Q-Network (DDQN) approach to manage communication
and computing resources jointly.

The use of DDQN was motivated by demonstrated
improved performance in [133] and [134]. Wang et al. used
a Federated Learning approach to protect participant pri-
vacy [123] but did not implement parameter protection, leav-
ing the possibility of data leakage. Additionally, Ren et al.
have also suggested the use of DRL to optimize computation
offloading decisions in IoT systems [124].

Chen et al. proposed a framework called Deep Echo State
Networks (DeepESNs) to minimize Breaks In Presence (BIP)
for wireless Virtual Reality (VR) users by considering the VR
application type, transmission delay, VR video quality, and
user awareness. BIP refers to a phenomenon in VR systems
where the user becomes disconnected from the virtual world
due to various factors such as transmission delays, video
quality, and awareness of the virtual environment. BIPs can
negatively impact the user’s experience and immersion in the
VR system. The proposed approach uses directional trans-
mission links from Base Stations (BS) to users to reduce BIP
occurrences. The BIP minimization problem is formulated as
an optimization problem that considers user location, orien-
tation, and BS association and is solved using a distributed
learning algorithm based on federated Echo State Networks
(ESN). The proposed algorithm allows multiple BS to locally
train their DeepESNs and build a global learning model to
predict users’ locations and orientations. Simulation results
show that the proposed algorithm reduces BIP occurrences
by up to 26% compared to centralized ESN and deep learning
algorithms.

Tam et al. proposed a reliable model communication
scheme for securing real-time multiple spatial-resolution
image sensing classifications in multi-platform IoT applica-
tions, considering both FL model computation and network
communication efficiency [125]. The proposed systemmodel
is based on the Software-Defined Network (SDN)/Network
Function Virtualization (NFV)-enabled architecture and uses
an NFV-enabled MEC environment to ensure high-precision
real-time classifications for mission-critical IoT image sens-
ing in peak hour intervals and various congestion conditions.
The proposed algorithms use Deep Q-Learning (DQL)-based
models to sample allocation rules and target weak episodes
with low aggregation rewards to obtain deficient policies.
An agent controller configures long-term self-organizing IoT
resource management, while an NFV-orchestrator maps vir-
tual MEC resource pools based on selected model actions
of particular network congestion states. The proposed FL
classification model is validated using six different bottle-
neck scenarios in SDN/NFV-based IoT architecture. The
simulation results show high precision and efficient Quality
of Service (QoS) metrics for handling future congestion
environments.

C. VEHICULAR NETWORKS
Vehicular networks enable data collection frommultiple vehi-
cles to improve traffic management and safety. Federated
learning can also improve communication efficiency and
reduce privacy concerns by training models locally on user
devices and sharing only aggregated model updates.

Samarakoon et al. discusses the use of Extreme Value The-
ory (EVT) [135] for modeling rare events in radio resource
management of Ultra-Reliable Low Latency Communica-
tions (URLLC) vehicular networks [18]. EVT can model
the distribution of extreme events with low probability using
Maximum Likelihood Estimation (MLE) and can be used
to analyze network traffic, delays, peak rates, and Vehicle-
to-Vehicle (V2V) communication in wireless systems. The
proposed FL approach trains the learning model with locally
held data and loads only the updated model parameters to the
Roadside Units (RSU), which averages the model parameters
and returns an updated global model for the Vehicular Users
(VUEs). In contrast, in an asynchronous approach, each VUE
evaluates and loads its model parameters after collecting a
predefined number of Queue State Information (QSI) sam-
ples. The simulation results show that the proposed frame-
work reduces the number of vehicles with long queue lengths
while minimizing data exchange compared to a centralized
approach.

Ye et al. proposed a selective model aggregation approach
for federated learning in Vehicular Edge Computing (VEC) to
overcome the potential impact of diverse image quality and
computation capability of vehicular clients on the accuracy
and efficiency of image classification [126]. The approach
evaluates the image quality in terms of motion blur level.
It selects ‘fine’ local Deep Neural Networks (DNN) models
with satisfactory image quality and computation capability
by formulating a two-dimensional contract problem, which
is transformed into a tractable problem solved by a greedy
algorithm. A two-dimensional contract problem is an opti-
mization problem where the objective is to design a contract
that incentivizes two parties to take actions that jointly max-
imize their utility. The contract specifies the payments each
party will receive based on their actions and the outcome of
the joint action. The two dimensions of this problem refer
to the different types of actions or decisions each party can
take. In this context, the two dimensions are the quality of the
image data and the computation capability of the vehicular
clients participating in the federated learning process. The
central server designs a contract to incentivize the clients
to select the best quality images and use their computation
capabilities efficiently, resulting in a better global model for
the federated learning system. The proposed approach outper-
formed the original federated averaging approach regarding
accuracy and efficiency while achieving higher utility at the
central server.

Elbir et al. proposed the FL approach in vehicular network
applications to build intelligent transportation systems [127].
Unlike centralized learning, FL can reduce transmission
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overhead by transmitting only model updates rather than the
entire dataset. The paper analyzes the feasibility of FL in
ML-based vehicular applications and identifies significant
challenges from both learning and communication perspec-
tives. However, the paper does not address privacy and secu-
rity concerns, potentially rendering the application infeasible.

Otoum et al. proposed an integrated FL and Blockchain
solution to ensure data privacy and network security in crit-
ical infrastructures [128]. The framework decentralizes the
mutual machine learning models on end devices, enabling
on-end device machine learning without centralized data
training. The proposed model utilizes a consensus method
in the blockchain for trustworthy shared training on the fog,
while a practical Byzantine Fault Tolerance (pBFT) protocol
overcomes many faulty issues. pBFT is a characteristic of
a distributed system that allows it to continue functioning
correctly and reliably even if some of its nodes or com-
ponents fail or behave faultily. The results show that the
proposed Blockchain-Federated Learningmodel outperforms
other solutions in accuracy, latency, throughput, lifetime
reduction, and energy consumption, with an accuracy rate of
around 97%. While the proposed model utilizes pBFT for
blockchain consensus, the proposal is not protected against
a byzantine attack on FL. The paper does not discuss the spe-
cific mechanisms to detect and prevent targeted or untargeted
attacks on the model.

Saputra et al. proposedmachine learning-based approaches
for predicting energy demand in Electric Vehicle (EV) net-
works. The first approach is an Energy Demand Learning
(EDL) algorithm that uses data from all Charging Stations
(CS) to predict energy demand for the entire network. A Fed-
erated Energy Demand Learning (FEDL) approach is intro-
duced to address privacy concerns and reduce communication
overhead. The CSs share only their trained models with the
Charging Station Provider (CSP). The paper further pro-
poses a clustering-based EDL approach to improve prediction
accuracy by grouping CSs into clusters before applying the
FEDL algorithm. Experimental results demonstrate that the
proposed approaches improve prediction accuracy by up to
24.63% and reduce communication overhead by 83.4% com-
pared to baseline machine learning algorithms. The proposed
methods leverage deep learning techniques to improve energy
demand prediction accuracy and reduce communication over-
head in EV networks. Although the paper proposed using FL
to enhance privacy, this objective was not achieved due to a
lack of parameter protection. As a result, the privacy benefits
expected from FL are not achieved.

D. SMART HEALTHCARE
Deep learning algorithms have been extensively used in the
healthcare field to predict diseases, remote health monitor-
ing, and medical imaging [117]. Training an accurate deep
learning model requires a large amount of data. However,
medical data is sensitive and private, and transferring the
data to a data center for training a deep learning model is
prohibited by current privacy laws. Then, the main challenge

of training this model is privacy leakage. For reliable and
private collaborative training, FL is increasingly used in the
smart healthcare field.

Brisimi et al. proposed a FL approach to predict forth-
coming hospitalizations for patients with heart diseases using
Electronic Health Record (EHR) data on various hospi-
tals [19]. The aggregation server aggregates the local model
parameters to build a global Support Vector Machine (SVM)
classifier. Furthermore, Hao et al. proposed a privacy-aware
and resource-saving collaborative training based on FL for an
EHR management system with the collaboration of multiple
institutions [129]. In the proposal, each institution (hospital)
is a participant in the FL training. The participant collab-
oratively trains a Convolutional Neural Network (CNN) in
medical images to identify diseases. The authors proposed a
lightweight data perturbationmethod and utilized packed par-
tially homomorphic encryption to protect the training against
data inferring. The authors also proposed the split of the CNN
into three parts. The first part is the shallow layers, which
consist of the input layer and the first two hidden layers.
The second part consists of all the remaining hidden layers
except the last one. The last part consists of the last hidden
layer and the output layers. Only the second part of the local
model is sent to aggregation, decreasing the communication
cost.

Besides using FL for EHR management, works on litera-
ture proposed federated learning-based remote health mon-
itoring. Wu et al. proposed a FL framework for in-home
health monitoring using CNN model [20]. In this frame-
work, smartphones of the participants at each house learn
personal data and train a local CNN. The authors used the
Generative Convolutional Autoencoder (GCAE) alongside
the CNN to generate synthetical data samples of minority
classes. By using GCAE to balance the dataset, the frame-
work deals with imbalanced data and Non-IID, increasing the
CNN performance. Chen et al. proposed a federated transfer
learning scheme for wearable health monitoring using CNN
models [130]. In the proposed scheme, the aggregation server
initializes the global model by training it with a public dataset
instead of starting the global model with random parameters.
Subsequently, the participants update this model with their
private data and send it to the global model for aggregation.

Yan et al. proposed a Variation-Aware Federated Learning
(VAFL) framework, where each participant trains a GAN to
generate synthetic image data [131]. The generated images
are shared among the participants to minimize the varia-
tion in the datasets of the participants. After the participants
generating a synthetic dataset with a common image space,
a cloud server can use it to train a classifier. The authors
validated VAFL on prostate cancer-related images, achieving
97,22% accuracy. Li et al. proposed using FL to support brain
tumor segmentation [39]. Each hospital is a participant in this
environment, and the local data consists of Magnetic Reso-
nance Images (MRI). The authors used differential privacy
techniques to protect the data stored in the participants against
leakage.
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X. CONCLUSION
FL is an emerging area of research that takes advantage of
the increased processing capacity of edge devices to ensure
the privacy of data stored on participants. The FL tech-
nique is based on developing a collaborative learning model
in which participants, often mobile nodes, perform part of
the learning task locally and contribute to a global model.
However, the development of collaborative learning models
presents several challenges, including the heterogeneity of
participants’ devices and the statistical heterogeneity of the
data. This paper analyzed the main FL proposals and high-
lighted the difficulties these architectures face when dealing
with privacy, heterogeneous data, and devices. We enumer-
ated the main applications in FL and compared them in a
privacy optic. We conclude that most FL applications do
not concern about security and privacy. It is important to
highlight that an application must not propose a new privacy
and security-maintaining mechanism but must ensure them.
Finally, we listed the main research challenges in FL and
analyzed the current proposals to address each issue. The
solutions for these issues are in the initial stage and require
improvement.

The paper also analyzed the main FL attacks. We cate-
gorized the attacks into model performance and data pri-
vacy attacks. Model performance attacks aim to degrade or
backdoor the global model during the training. On the other
hand, privacy attacks aim to infer the participants’ private
data. The main defenses for the attacks consume essen-
tial resources, such as computation and network. Also, less
resource-intensive defenses add noises during the updates,
affecting the performance of the model. The increased com-
putational or network resources can make most FL scenarios
unfeasible. The lack of maturity in the security and privacy
proposals is reflected in the security problems of FL applica-
tions, as pointed out in this paper. Consequently, the security
and privacy of FL is a critical open issue.
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