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ABSTRACT Food crop classification and identification are crucial aspects of modern agriculture. With
progression of drones or unmanned aerial vehicles (UAVs), crop detection from RGB images goes through
a paradigm shift from traditional image processing methods to deep learning (DL) methods due to effective
breakthroughs in convolutional neural networks (CNN). Drone images are reliable for identifying different
crops because of its higher spatial resolution. Food crop classification utilizing deep learning on drone images
includes machine learning techniques for distinguishing and identifying different types of crops in images
captured by UAVs. It is beneficial for various applications, like crop monitoring and precision agriculture.
This paper presents a new Satin Bowerbird Optimization with deep learning for Food Crop Classification
(SBODL-FCC) technique on UAV images. The presented SBODL-FCC technique exploits DL models with
hyperparameter optimizers for food crop classification on UAV images. To accomplish this, the presented
SBODL-FCC technique employs adaptive bilateral filtering technique for image preprocessing. Besides, the
SBODL-FCC technique uses MobileNetv2 feature extractor with Bayesian optimization (BO) algorithm for
parameter optimization. Moreover, the food crop classification process is performed through convolutional
long short-term memory (ConvLSTM) model. Furthermore, the hyperparameter tuning of the ConvLSTM
method is accomplished through SBO algorithm. The experimental validation of the SBODL-FCC technique
is validated on UAV image database and the results are inspected under different aspects. The simulation
outcomes inferred that the SBODL-FCC technique reaches better performance over other models in terms
of several performance measures.

INDEX TERMS Unmanned aerial vehicles, food crop, image classification, deep learning, agriculture,
metaheuristics.

I. INTRODUCTION
Achieving food security for an increasing population world-
wide would need considerable progress in market building,
local capacity, and technology. A key element of enlightening
food security in the near terminology is more detailed data
on seasonal crop productivity, made available as quickly as
possible during growing season and upgraded as conditions
change [1]. Remote sensing (RS) from unmanned aerial
vehicles (UAVs) and satellites can enrich the accuracy and

The associate editor coordinating the review of this manuscript and

approving it for publication was Hayder Al-Hraishawi .

timeliness of agricultural data and augment ground surveys.
Timely and accurate information about the crop state is a
key component to increasing agricultural crops that could
be done by means of effective RS technology [2]. Further-
more, a robust algorithm is crucial to efficiently exploit RS
information.

Crop classification is the important key in advanced agri-
culture that attempts to classify plant and crop types into
various classes while determining the spatial distribution [3].
It helps farmers and government authorities to have effective
data regarding the crops that are used to enhance the capa-
bilities of making decisions. A great number of studies have
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been conducted on precise crop classification from satellite-
based RS images with the use of machine learning (ML)
and deep learning (DL) techniques accomplishing impressive
performance [4]. On the other hand, they have numerous
obstacles like different weather conditions that have made
data collection extremely challenging, and low spatial or
temporal resolutions that must have adverse effects on data
quality. Such constraints may decline the performance of
the algorithm resulting in incorrect crop classification [5].
Furthermore, conventional techniques to categorize different
types of plants or crops from aerial imagery have depended
on traditional ML, together with Random Forest (RF) and
Support Vector Machine (SVM) techniques [6].

Amongst several crop classification techniques, DL algo-
rithm is becoming more and more frequent in the field of crop
detection and is considered a breakthrough technology [7].
DL network has a more complex and deeper structure that
could learn the feature automatically inside the network layer,
to accomplish improved crop detection. During crop clas-
sification and recognition, few crops are hard to determine
because of low resolution of crop mapping, similar spectral
features, and salt and pepper noise that have a serious effect
on the performance of crop recognition and classification [8].
With the ongoing progress of RS technologies, it can able
to perform a large number of crop classification studies by
using RS images [9]. With traditional classification methods
to extract RS information is generally challenging to apply the
high dimensional feature covered by an image, and the classi-
fication effects are poor. Deep learning (DL) technique could
learn deep feature of images, extracts them efficiently, and
make decision based on the target requirement [10]. Recently,
the application scope of DL has been further extended that
bring a new technique to attain best classification perfor-
mance of UAV RS images.

This paper presents a new Satin Bowerbird Optimiza-
tion with deep learning for Food Crop Classification
(SBODL-FCC) technique on UAV images. The presented
SBODL-FCC technique employs adaptive bilateral filter-
ing (ABF) technique for image preprocessing. Besides, the
SBODL-FCC technique uses MobileNetv2 feature extractor
with Bayesian optimization (BO) algorithm for parameter
optimization. Moreover, the food crop classification process
is performed through convolutional long short-term memory
(ConvLSTM) model. Furthermore, the hyperparameter tun-
ing of the ConvLSTM model is accomplished by the use of
SBO technique. The experimental validation of the SBODL-
FCC technique is validated on UAV image database and the
outcomes are inspected under different aspects.

II. RELATED WORKS
In [11], the authors make use of RGB images gathered from
drones flown in Rwanda for developing a DL technique to
detect crop types, particularly legumes, bananas, and maize,
which were main strategic food crops in Rwandan agricul-
ture. The method uses advancements in deep CNNs and

TL, using the VGG16 structure and openly available Ima-
geNet dataset for pre-training. Reedha et al. [12] intend to
show that the attention-related deep network was an auspi-
cious method for addressing the abovementioned issues, with
regard to context of crops and weed recognition with drone
mechanism.

Razfar et al. [13] presented a vision-based weed detection
mechanism utilizing DL approaches that successfully iden-
tify weeds within a soybean plantation. Five DL techniques
were utilized, which include three custom CNN techniques,
MobileNetV2, and ResNet50. Tetila et al. [14] modelled the
outcomes of the assessment of 5 DL architectures for classi-
fying soybean pest imageries. The performance of VGG-19,
Inception-v3, Resnet-50, Xception and VGG-16, has been
assessed for distinct fine-tuning and TL approaches over a
dataset of 5,000 imageries captured in real time conditions.
In [15], the aim was to find maize leaves that were infected
by fall armyworms (faw) by utilizing automatic recognition
methods depends on the CNN namely, InceptionV3, VGG16,
MobileNetV2 and VGG19. Such techniques are utilized for
investigating the infected maize leaves that have been taken
through an UAV-RS technologies.

Pan et al. [16] modelled a DL-related technique to find
wheat yellow rust from drone images. The technique depends
on the pyramid scene parsing network (PSPNet) semantic
segmenting method for categorizing bare soil in small-scale
drone images, healthy wheat, and yellow rust wheat. More-
over, it has been modelled to use the high-accuracy classifier
outcomes of conventional techniques as weak samples for
wheat yellow rust detection. In [17], the UAV image has been
captured on 4 distinct dates than 2 distinct rice domains D
and Object-based image analysis (OBIA) and techniques are
applied to the weed mapping task of the UAV image. For
the OBIA techniques, the multiresolution segmentation and
method were implemented for segmenting the image various
distinct objects; the texture and colour were concatenated and
extracted into a feature vector; random forest (RF) BP-SVM
and neural network are utilized for classification.

In [18], an enhanced NMS-based max intersection over
portion (MIoP-NMS) technique was presented for addressing
this problem and execution in the YOLOv4 network structure
to single-stage target recognition. Pandey and Jain [19] exam-
ines a novel conjugated dense CNN (CD-CNN) structure with
a novel activation function termed as SL-ReLU for intelligent
classification of several crops in RGB images taken by UAV.
CD-CNN combines data fusion and mapping feature extrac-
tion from conjunction with classifier procedure.

Chaudhari et al. [20] focuses in the development of
Bayesian optimization with DL driven crop type classifica-
tion (BODLD-CTC) approach. For attaining this, the pro-
jected BODLD-CTC algorithm executes Xception method
as extraction feature. For classification methods, the LSTM
technique was utilized. Juyal and Sharma [21] examines a
technique to apply field surveillance by utilizing UAV for
assigning a grade to all the fields that can be connected
to crop growth. On a banana planting, this technology is
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FIGURE 1. Overall flow of SBODL-FCC system.

demonstrated among themmade it modular that utilized with-
out need to huge effort to various crops.

Several models are existed in the literature to perform
classification process. Though several ML and DL models
for crop classification are available in the literature, it is still
needed to enhance the classification performance. Owing to
continual deepening of the model, the number of param-
eters of DL models also increases quickly which results
in model overfitting. At the same time, different hyperpa-
rameters have a significant impact on the efficiency of the
CNN model. Particularly, the hyperparameters such as epoch
count, batch size, and learning rate selection are essential to
attain effectual outcome. Since the trial and error method for
hyperparameter tuning is a tedious and erroneous process,
metaheuristic algorithms can be applied. Therefore, in this
work, we employ SBO algorithm for the parameter selection
of the ConvLSTM model.

III. THE PROPOSED MODEL
In this article, we have developed a new SBODL-FCC
method for automated food crop classification process on
the UAV images. The presented SBODL-FCC technique
employed the concepts of DL and hyperparmaeter tuning
for food crop identification process. It comprises a series of
processes such as ABF based noise removal, MobileNetv2
feature extractor, BO based parameter tuning, ConvLSTM
based classification, and SBO based hyperparameter opti-
mization. Fig. 1 demonstrates the overall flow of SBODL-
FCC approach.

A. IMAGE PREPROCESSING
Primarily, the presented SBODL-FCC technique employed
ABF technique for image preprocessing. ABF can be refereed
as variant of bilateral filter where the weights were deter-
mined adaptively on the basis of the local image content [22].
This can further enrich the performance of the filter by con-
sidering the particular features of the image, like the presence
of large intensity variations or strong edges. ABF was a type

of image processing method that can be utilized to smooth
images while protecting edges and other significant details.
It functions by implementing a weighted average to pixels in
an image, withweights being determined by both the intensity
difference between them and spatial distance among pixels.

B. FEATURE EXTRACTION USING OPTIMAL
MOBILENET MODEL
In this work, the SBODL-FCC technique uses MobileNetv2
feature extractor. It is chosen due to the following merits:
high performance, low computation cost, lightweight, fast
inference, and compatible with limited memory. MobileNet
is a framework that is designed to be worked on embed-
ded devices or systems and mobiles, which lack computa-
tion power [23]. This framework was introduced by Google.
Depthwise convolution was exploited in MobileNet frame-
work for dramatically decreasing the number of trained
parameters than typical CNN which have comparable depth.
The depthwise convolutional layer handles the spatial dimen-
sion together with depth dimension (number of channels).
Depthwise convolutional layer splitting the kernels into
2 smaller kernels, one for depthwise convolution and other
for pointwise convolutional layer. This splitting of kernel
decreases computation costs significantly. MobileNet pro-
vides the outcome that is similar to AlexNet while con-
siderably decreasing the trained parameters. In this work,
a pretrained MobileNet architecture (trained on ImageNet
data) is introduced. The Pretrained model is exploited due to
the lack of largescale dataset for the detection. Dense layer
of 128× 1 replaces the classification models that are head of
the model, 3 × 1 and 128 × 1, 2 × 1 for binary and ternary
classification, respectively. Then, the method is finetuned on
input image for effective performance. During finetuning,
MobileNetV2 provides input image of 224× 224× 3 dimen-
sions. Then, the input undergoes depthwise and pointwise
convolutional layers at different times. Finally, the feature
attained from the abovementioned processes are given into
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two dense layers of 128 × 1 and 3 × 1 or 2 × 1 dimensions
for classification.

For the enhancement of the performance of the
MobileNetv2 method, the BO algorithm is applied. BO func-
tions by building a posterior distribution of functions that
can be gaussian process that better defines the function to
optimize [24]. The posterior distribution enhances, once the
number of comments increases, and the algorithm is certain
of which areas in parameter space were computing and worth
exploring. BO technique contains 2 main elements: one is
acquisition function to determine where sampling next one
and another one is Bayesian statistical model for modelling
the main function. The function will trade off exploration and
exploitation. Exploitation can be referred as sample in which
the Bayesian statistical method estimatedmaximumobjective
scores.

Return a solution: either the point assessed with largest (x),
or the point with largest posteriormean. Sampling at locations
in which the estimation uncertainty was maximum. Both con-
tributed to higher acquisition function value and the objective
was to maximize the acquisition function for determining
next sample points. After assessing the goal related to an
opening space-filling experimental model, often consisting
points selected regularly at random, it is utilized iteratively
for allocating a budget remainder of N function assessments.
The time complexities for DL are (w·m·e), wherew signifies,
m denotes the count of learning samples, and e indicated the
running epochs. For BO, the time complexity is (n3), where
n is observations. In this study, the number of filters that are
used in all attention layers is maximized. For hyper parameter
tuning with BO, the author constructed amain function which
have taken the filters in all attention layers as input and returns
test accuracy score.

C. FOOD CROP CLASSIFICATION USING CONVLSTM
Here, the food crop classification process is performed
through the ConvLSTMmodel. LSTM-DNN model is a kind
of Recurrent Neural Network (RNN) that excels in modelling
temporal behaviors like | text, language, audio and time
series, owing to the additional parameter metric available for
the connection among time steps along with the feedback
loop used for learning [25]. The main component of LSTM
is forget gate, input gate, output gate and memory cells.
They allow the LSTM model to have connection from time
layers and prior steps, whereby all the outputs are based
on the input and the previous inputs. Typically, there are
more than one LSTM layers, whereby all the layers consist
of multiple LSTM units, and all the units comprise input,
output, and forget gates. The equation for input, output, and
forget gates, along with the cell state, the LSTM cell output,
and the candidate cell state, were correspondingly defined as
follows:

it = σ (Whiht−1 +Wxixt + bi) (1)

ft = σ (Whfht−1 +Wx fxt + bf ) (2)

0t = σ (Whoht−1 +Wxoxt + b0) (3)

Ct = tanh (WhCht−1 +WxCxt + bC ) (4)

Ct = ftCt−1 + (1− ft) C̃t (5)

ht = 0t tanh (Ct) (6)

Now i denotes the input gate, f refers to the forget gate,
0 indicates the output gate, Ct shows candidate cell state,
C represents cell state, h denotes the hidden state and cell
output, σ signifies a logistic sigmoid function, W shows the
weight matrix, and b denotes the bias vector. Fig. 2 represents
the framework of ConvLSTM.

FIGURE 2. Structure of ConvLSTM.

ConvLSTM is a kind of LSTM that developed to precisely
model the spatiotemporal data, by leveraging the strength
of LSTM and CNN. Like LSTM, the ConvLSTM is capa-
ble of deciding what data to be discarded or retained from
the earlier cell state in its existing cell state. On the other
hand, convolutional structure is applied on both state-to-state
and input-to-state transitions that usually exchange internal
matrix multiplication with convolutional operation. The input
vector to the ConvLSTM can be given fed as a sequence of
2D or 3D imageries since the convolutional operation enables
the information that passed over ConvLSTM cell to keep
the inputted dimension rather than being a 1D vector with
feature. To define the ConvLSTM operation, Eqs (1) and (6)
are formulated by:

it = σ (WCi◦Ct−1 +Whi∗ht−1 +Wxi ∗ xt + bi) (7)

ft = σ
(
WC f ◦Ct−1 +Whf ∗ht−1 +Wxf ∗ xt + bf

)
(8)

0t = σ (WCo◦Ct +Who∗ht−1 +Wxo∗xt + b0) (9)

Ct = tanh (WhC∗ht−1 +WxC ∗ xt + bC ) (10)

Ct = ft ◦ Ct−1 + (1− ft) ◦ C̃t (11)

ht = 0t ◦ tanh (Ct) (12)

From the above equations, ◦ signifies the Hadamard prod-
uct, ∗ shows the convolution operators, WCi,Whi,Wxi,WC ,

Wh,Wx ,WCo,Who,Wxo,WhC ,WxC ∈ Rn×T represents the
convolution kernel within the model, and bi, bf ,b0, bC shows
the bias parameter. The architecture of ConvLSTM, where
the red line indicates the additional connection was found in
ConvLSTM cell over LSTM cell that comes from present and
prior cell states.
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D. HYPERPARMETER TUNING USING SBO ALGORITHM
Lastly, the hyperparameter tuning of the ConvLSTM method
is accomplished by the use of SBO algorithm. SBO tech-
nique starts producing a uniform arbitrary population which
comprises a group of places to bower [26]. SBO algorithm
has the following characteristics: global optimization, easy
to implement, less number of parameters, robust, and highly
efficient. Each position (pop(i).Pos) can be defined to the
variable that is assumed that enhance as given in Eq. (14).
It is noted that the value of initial population lies amongst the
present minimal and maximal limit of enhancing parameter.

pop(i).Pos = rand(1,nvar ) · (VarMax − VarMin)

+ VarMin,∀i ∈ nPop (13)

Relatively, similar to ABC, the probability of fascinating
of male/female (Probi) to bower was evaluated by:

Probi =
costi∑nPop
k=1 costi

,∀i ∈ nPop (14)

costi =

{
1

1+f (xi)
, f (xi) ≥ 0

1+ |f (xi)|, f (xi) < 0
(15)

Like other evolutionary based on optimizer, elitism was
exploited to store an optimal solution at every iteration.
During mating, males like every bird utilizes its drives for
decorating and building the bower. Remarkably, experienced
and older males are attracted more consideration of others to
the bower. On the other hand, these bowers have additional
fitness than the other bower. In the SBO process, the location
of optimal bower generated by bird was assessed as elite of
k th iteration (xelite,k ) viz., highest fitness and able to affect the
other locations. In each iteration, a novel modification at cer-
tain bower was calculated based on the following expression:

χnew
ik = χold

i,k + βk

[(
xjk + xelite,k

2

)
− χold

i,k

]
(16)

Note that roulette wheel selective technique was exploited
for selecting bower with better probability (xjk ). In SBO,
variable βk determines the step count select target bower that
is evaluated to each variable as:

βk =
α

1+ Propi
(17)

Arbitrarymodificationwas implemented to xik with certain
probability, where normal distribution (N) was exploited by
the variance of σ and average of xoldi,k as follows:

Xneωik ∼ Xoldik + σ ·N (0, 1)

σ = Z · (VarMax − VarMin) (18)

Lastly, each cycle is an older population and population
obtained as abovementioned were sorted, integrated, assessed
and novel population was generated.

The SBO method derived a fitness function (FF) to have
enhanced classifier outcome. It determined positive values

Algorithm 1 Pseudocode of SBO Algorithm

Input: Population P⃗sp
Output: Optimum search agent, ⃗Pbst
Procedure SOA

Parameter Initialization: CA and CB
Define the fitness of each searching agent
⃗Pbst← optimum search agent

While (z < Maxiterations) do
for all the searching agents do

Upgrade the position of search agent
end for
Upgrade parameters CA and CB
Define fitness value of each search agent
Upgrade ⃗Pbst if best solution exists over earlier

optimal solution
z←z+ 1

End while
Return ⃗Pbst

End process

for signifying the superior performance of the candidate solu-
tions. In this article, the reduced classifier error rate is the FF,
as given in Eq. (19).

fitness (xi) = ClassifierErrorRate (xi)

=
number of misclassified samples

Total number of samples
∗100 (19)

IV. RESULTS AND DISCUSSION
The proposed model is simulated using Python tool. The
proposed SBODL-FCC technique is validated using the UAV
food crop dataset [27], comprising 6450 samples as repre-
sented in Table 1. The dataset holds samples with six class
labels.

TABLE 1. Details of dataset.

The confusion matrix of the SBODL-FCC technique on
food crop classification outcomes is demonstrated in Fig. 3.
The figure shows that the SBODL-FCC approach proficiently
recognizes different types of food crops.

In Table 2 and Fig. 4, the food crop classification results of
the SBODL-FCC method with 80:20 of TRS/TSS are given.
The results implied that the SBODL-FCC technique obtains
enhanced performance with the classification of six different
classes. For instance, with 80% of TRS, the SBODL-FCC
technique accomplishes average accuy of 96.49%, precn of
88.88%, recal of 85.22%, Fscore of 86.87%, and MCC of
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FIGURE 3. Confusion matrices of SBODL-FCC system (a-b) TRS/TSS of
80:20 and (c-d) TRS/TSS of 70:30.

TABLE 2. Food crop classifier outcome of SBODL-FCC system on 80:20 of
TRS/TSS.

84.76%. Afterwards, with 20% of TSS, the SBODL-FCC
method accomplishes average accuy of 96.46%, precn of
89.16%, recal of 83.93%, Fscore of 86.18%, and MCC of
84.16%.

In Table 3 and Fig. 5, the food crop classification results of
the SBODL-FCC method with 70:30 of TRS/TSS are given.
The results implied that the SBODL-FCC approach obtains
enhanced performance with the classification of six different
classes. For example, with 70% of TRS, the SBODL-FCC

FIGURE 4. Average outcome of SBODL-FCC system on 80:20 of TRS/TSS.

TABLE 3. Food crop classifier outcome of SBODL-FCC system on 70:30 of
TRS/TSS.

method accomplishes average accuy of 97.43%, precn of
89.02%, recal of 85.03%, Fscore of 86.74%, and MCC of
85.34%. Then, with 30% of TSS, the SBODL-FCC method
accomplishes average accuy of 97.09%, precn of 88.76%,
recal of 83.84%, Fscore of 85.83%, and MCC of 84.31%.

The TACY and VACY of the SBODL-FCC technique are
investigated on food crop classifier performance in Fig. 6.
The figure shows that the SBODL-FCC approach has shown
improved performance with increased values of TACY and
VACY. Notably, the SBODL-FCC technique has reached
higher TACY outcomes.

The TLOS and VLOS of the SBODL-FCC approach are
tested on food crop classifier performance in Fig. 7. The
figure inferred that the SBODL-FCC method has revealed
better performance with least values of TLOS and VLOS.
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FIGURE 5. Average outcome of SBODL-FCC system on 70:30 of TRS/TSS.

FIGURE 6. TACY and VACY outcome of SBODL-FCC system.

FIGURE 7. TLOS and VLOS outcome of SBODL-FCC system.

Seemingly the SBODL-FCC method has reduced VLOS
outcomes.

A clear precision-recall analysis of the SBODL-FCC tech-
nique under test database is given in Fig. 8. The figure
specified that SBODL-FCC algorithm has enhanced values
of precision-recall values under all classes.

FIGURE 8. Precision-recall outcome of SBODL-FCC system.

FIGURE 9. ROC outcome of SBODL-FCC system.

FIGURE 10. Accuy outcome of SBODL-FCC approach with other existing
systems.

The detailed ROC study of the SBODL-FCC approach
under test database is shown in Fig. 9. The outcomes
designated the SBODL-FCC method have revealed its ability
in categorizing distinct classes.

In Table 4 and Fig. 10, a brief comparative study of the
SBODL-FCC technique with existing models is made [11].
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TABLE 4. Comparative outcome of SBODL-FCC approach with other
existing systems [11].

The experimental values represented that the DNN, ResNet,
and SVM models obtain poor performance with least
classification accuy values of 86.23%, 87.70%, and 86.69%
respectively.

Moreover, the VGG-16 and AlexNet models accomplish
moderately closer accuy of 90.35% and 90.49% respectively.
However, the SBODL-FCC technique results in maximum
accuy of 97.43%, precn of 89.02%, recal of 85.03%, and
Fscore of 86.74%. These results reassured the better perfor-
mance of the SBODL-FCC technique over other models.

V. CONCLUSION
In this article, we have developed a new SBODL-FCC tech-
nique for automated food crop classification process on UAV
images. The presented SBODL-FCC technique employed
ABF technique for image preprocessing. Followed by, the
SBODL-FCC technique uses MobileNetv2 feature extractor
with the BO algorithm for parameter optimization. Moreover,
the food crop classification process is performed through the
ConvLSTM model. Furthermore, the hyperparameter tuning
of the ConvLSTM method is accomplished through SBO
method. The experimental validation of the SBODL-FCC
technique is validated on UAV image database and the results
are inspected under different aspects. The simulation val-
ues inferred that the SBODL-FCC technique reaches better
performance over other models in terms of several perfor-
mance measures. In future, the performance of SBODL-FCC
method will be boosted by hybrid DL classification model.
Besides, the proposed model can be tested on large scale real
time dataset.
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